Fagus Grandifolia) and an Applied Restoration Plan for Mitigation of Beech Bark Disease

Total Page:16

File Type:pdf, Size:1020Kb

Fagus Grandifolia) and an Applied Restoration Plan for Mitigation of Beech Bark Disease Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2021 DEVELOPMENT OF A PROPAGATION PROGRAM FOR BEECH BARK DISEASE-RESISTANT AMERICAN BEECH (FAGUS GRANDIFOLIA) AND AN APPLIED RESTORATION PLAN FOR MITIGATION OF BEECH BARK DISEASE Ande Myers Michigan Technological University, [email protected] Copyright 2021 Ande Myers Recommended Citation Myers, Ande, "DEVELOPMENT OF A PROPAGATION PROGRAM FOR BEECH BARK DISEASE-RESISTANT AMERICAN BEECH (FAGUS GRANDIFOLIA) AND AN APPLIED RESTORATION PLAN FOR MITIGATION OF BEECH BARK DISEASE", Open Access Dissertation, Michigan Technological University, 2021. https://doi.org/10.37099/mtu.dc.etdr/1170 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Forest Management Commons DEVELOPMENT OF A PROPAGATION PROGRAM FOR BEECH BARK DISEASE- RESISTANT AMERICAN BEECH (FAGUS GRANDIFOLIA) AND AN APPLIED RESTORATION PLAN FOR MITIGATION OF BEECH BARK DISEASE By Andrea L. Myers A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Forest Science MICHIGAN TECHNOLOGICAL UNIVERSITY 2021 © 2021 Andrea L. Myers This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Forest Science. College of Forest Resources and Environmental Science Dissertation Advisor: Tara L. Bal Committee Member: Yvette L. Dickinson Committee Member: Andrew J. Storer Committee Member: Angie Carter College Dean: Andrew J. Storer Once again, dedicated to Mitch Grogg. Through your stalwart support, you make everything herein possible. Table of Contents List of figures .................................................................................................................... vii List of tables .......................................................................................................................xv Preface.............................................................................................................................. xvi Acknowledgements ........................................................................................................ xviii List of abbreviations ........................................................................................................ xix Abstract ..............................................................................................................................xx 1 Introduction .......................................................................................................................1 1.2 Beech Bark Disease and Impacts on an Ecologically Important Species ........1 1.3 Propagation Considerations of Resistant American Beech for Use in Restoration ..................................................................................................................5 1.4 Overall Objectives ............................................................................................6 1.5 Literature Cited .................................................................................................7 2 Recent Advances in Propagation of American Beech and their Application in Mitigation of Beech Bark Disease .....................................................................................14 2.1 Abstract ..........................................................................................................14 2.2 Key words .......................................................................................................14 2.3 Introduction ....................................................................................................14 2.3.1 American Beech Ecology and Natural Reproduction .......................16 2.3.2 Beech Bark Disease Ecology ............................................................19 2.3.3 Direct Control of BBD ......................................................................21 2.4 Natural Vegetative Propagation of BBD-Resistance .....................................23 2.5 Artificial Vegetative Propagation of BBD-Resistant American Beech .........25 2.5.1 Micropropagation ..............................................................................26 2.5.2 Grafting .............................................................................................27 2.6 Applications in Restoration ............................................................................31 2.7 Recommendations ..........................................................................................37 2.8 Acknowledgements ........................................................................................42 2.9 Funding Sources .............................................................................................42 2.10 Literature Cited ...............................................................................................42 iv 3 Beech Bark Disease in Northern Michigan after 20 years and Site Selection for a Resistant Tree Restoration Plan .........................................................................................57 3.1 Abstract ..........................................................................................................57 3.2 Key words .......................................................................................................57 3.3 Implications ....................................................................................................57 3.4 Introduction ....................................................................................................58 3.4.1 Disease Phase Evaluation .................................................................58 3.4.2 Site Selection for Restoration ...........................................................59 3.5 Methods ..........................................................................................................60 3.5.1 Composition Surveys and Disease Description ................................60 3.5.2 Planting Site Selection ......................................................................63 3.6 Results ............................................................................................................63 3.6.1 Composition Surveys and Disease Description ................................63 3.6.2 Planting Site Selection ......................................................................64 3.7 Discussion ......................................................................................................68 3.7.1 Composition Surveys and Disease Description ................................68 3.7.2 Planting Site Selection ......................................................................69 3.8 Acknowledgements ........................................................................................72 3.9 Literature Cited ...............................................................................................72 4 Protocols and Refinement of a Grafting Program for the Propagation of BBD- Resistant American Beech .................................................................................................82 4.1 Abstract ..........................................................................................................82 4.2 Introduction ....................................................................................................82 4.3 Methods ..........................................................................................................84 4.3.1 Identification and Testing of Resistant Trees ...................................84 4.3.2 Propagation .......................................................................................88 4.3.2.1 Sourcing Materials ..........................................................88 4.3.2.2 Grafting ...........................................................................89 4.3.2.3 Beech Maintenance .........................................................94 4.3.2.4 Refinement of Methods...................................................95 4.4 Results ............................................................................................................95 4.4.1 Resistant Trees ..................................................................................95 4.4.2 Propagation .......................................................................................98 4.4.3 Refinement of Methods...................................................................100 4.5 Discussion ....................................................................................................101 4.5.1 Resistant Trees ................................................................................101 4.5.2 Propagation .....................................................................................102 4.5.3 Refinement of Methods...................................................................103 v 4.6 Conclusions ..................................................................................................103 4.7 Resources ......................................................................................................104 5 A Pilot Study in Transplanting Methods for Wildling American beech (Fagus grandifolia) ......................................................................................................................107 5.1 Abstract ........................................................................................................107 5.2 Study Implications ........................................................................................107
Recommended publications
  • 1 Etiology, Epidemiology and Management of Fruit Rot Of
    Etiology, Epidemiology and Management of Fruit Rot of Deciduous Holly in U.S. Nursery Production Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Shan Lin Graduate Program in Plant Pathology The Ohio State University 2018 Dissertation Committee Dr. Francesca Peduto Hand, Advisor Dr. Anne E. Dorrance Dr. Laurence V. Madden Dr. Sally A. Miller 1 Copyrighted by Shan Lin 2018 2 Abstract Cut branches of deciduous holly (Ilex spp.) carrying shiny and colorful fruit are popularly used for holiday decorations in the United States. Since 2012, an emerging disease causing the fruit to rot was observed across Midwestern and Eastern U.S. nurseries. A variety of other symptoms were associated with the disease, including undersized, shriveled, and dull fruit, as well as leaf spots and early plant defoliation. The disease causal agents were identified by laboratory processing of symptomatic fruit collected from nine locations across four states over five years by means of morphological characterization, multi-locus phylogenetic analyses and pathogenicity assays. Alternaria alternata and a newly described species, Diaporthe ilicicola sp. nov., were identified as the primary pathogens associated with the disease, and A. arborescens, Colletotrichum fioriniae, C. nymphaeae, Epicoccum nigrum and species in the D. eres species complex were identified as minor pathogens in this disease complex. To determine the sources of pathogen inoculum in holly fields, and the growth stages of host susceptibility to fungal infections, we monitored the presence of these pathogens in different plant tissues (i.e., dormant twigs, mummified fruit, leaves and fruit), and we studied inoculum dynamics and assessed disease progression throughout the growing season in three Ohio nurseries exposed to natural inoculum over two consecutive years.
    [Show full text]
  • Conservation Assessment for Butternut Or White Walnut (Juglans Cinerea) L. USDA Forest Service, Eastern Region
    Conservation Assessment for Butternut or White walnut (Juglans cinerea) L. USDA Forest Service, Eastern Region 2003 Jan Schultz Hiawatha National Forest Forest Plant Ecologist (906) 228-8491 This Conservation Assessment was prepared to compile the published and unpublished information on Juglans cinerea L. (butternut). This is an administrative review of existing information only and does not represent a management decision or direction by the U. S. Forest Service. Though the best scientific information available was gathered and reported in preparation of this document, then subsequently reviewed by subject experts, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if the reader has information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service Threatened and Endangered Species Program at 310 Wisconsin Avenue, Milwaukee, Wisconsin 53203. Conservation Assessment for Butternut or White walnut (Juglans cinerea) L. 2 Table Of Contents EXECUTIVE SUMMARY .....................................................................................5 INTRODUCTION / OBJECTIVES.......................................................................7 BIOLOGICAL AND GEOGRAPHICAL INFORMATION..............................8 Species Description and Life History..........................................................................................8 SPECIES CHARACTERISTICS...........................................................................9
    [Show full text]
  • Ecology of Forest Insect Invasions
    Biol Invasions (2017) 19:3141–3159 DOI 10.1007/s10530-017-1514-1 FOREST INVASION Ecology of forest insect invasions E. G. Brockerhoff . A. M. Liebhold Received: 13 March 2017 / Accepted: 14 July 2017 / Published online: 20 July 2017 Ó Springer International Publishing AG 2017 Abstract Forests in virtually all regions of the world trade. The dominant invasion ‘pathways’ are live plant are being affected by invasions of non-native insects. imports, shipment of solid wood packaging material, We conducted an in-depth review of the traits of ‘‘hitchhiking’’ on inanimate objects, and intentional successful invasive forest insects and the ecological introductions of biological control agents. Invading processes involved in insect invasions across the insects exhibit a variety of life histories and include universal invasion phases (transport and arrival, herbivores, detritivores, predators and parasitoids. establishment, spread and impacts). Most forest insect Herbivores are considered the most damaging and invasions are accidental consequences of international include wood-borers, sap-feeders, foliage-feeders and seed eaters. Most non-native herbivorous forest insects apparently cause little noticeable damage but some species have profoundly altered the composition and ecological functioning of forests. In some cases, Guest Editors: Andrew Liebhold, Eckehard Brockerhoff and non-native herbivorous insects have virtually elimi- Martin Nun˜ez / Special issue on Biological Invasions in Forests nated their hosts, resulting in major changes in forest prepared by a task force of the International Union of Forest composition and ecosystem processes. Invasive preda- Research Organizations (IUFRO). tors (e.g., wasps and ants) can have major effects on forest communities. Some parasitoids have caused the Electronic supplementary material The online version of this article (doi:10.1007/s10530-017-1514-1) contains supple- decline of native hosts.
    [Show full text]
  • Non Standardized Allergenic Extracts Pollens, Molds, Epidermals, Insects, Dusts, Foods, and Miscellaneous Inhalants
    BIRCH POLLEN MIX- betula lenta, betula nigra and betula populifolia solution CENTRAL EASTERN 4 TREE POLLEN MIX- ulmus americana, acer negundo, carya illinoinensis and quercus virginiana solution EASTERN OAK POLLEN MIX- quercus velutina, quercus rubra and quercus alba solution ELM POLLEN MIX- ulmus americana and ulmus pumila solution HICKORY POLLEN MIX- carya glabra, carya ovata, carya laciniosa and carya tomentosa solution HICKORY-PECAN POLLEN MIX- carya illinoinensis and carya ovata solution JUNIPER POLLEN MIX- juniperus monosperma and juniperus scopulorum solution PINE POLLEN MIX- pinus taeda, pinus strobus and pinus echinata solution WESTERN 3 TREE POLLEN MIX- olea europaea, ulmus pumila and platanus racemosa solution MAPLE-BOX ELDER POLLEN MIX- acer saccharum and acer negundo solution WESTERN 10 TREE POLLEN MIX- acacia dealbata, acer negundo, populus fremontii, olea europaea, ulmus pumila, betula occidentalis, juniperus occidentalis, platanus racemosa, quercus garryana and morus alba solution EASTERN 6 TREE POLLEN MIX- fagus grandifolia, populus deltoides, quercus rubra, betula nigra, carya ovata and fraxinus americana solution 11 TREE POLLEN MIX- fagus grandifolia, platanus occidentalis, ulmus americana, juglans nigra, salix nigra, populus deltoides, quercus rubra, betula nigra, carya ovata, acer saccharum and fraxinus americana solution 2 MAPLE POLLEN MIX- acer rubrum and acer saccharum solution WESTERN OAK POLLEN MIX- quercus kelloggii, quercus agrifolia and quercus garryana solution 11 TREE POLLEN MIX- fagus grandifolia, platanus
    [Show full text]
  • York Campus Trees for Sale: 1.& 2
    York Campus Trees for Sale: 1.& 2. Ginkgo biloba ‘Princeton Sentry’ Common Name– Ginkgo 3. Prunus Snow Fountains Common Name: Weeping higan cherry 1 4. Picea orientalis ‘Gowdy’ 2 Common Name -Oriental spruce 5&6. Hamamelis virginiana Commmon Name— Common Witch-Hazel 7. Fagus grandifolia Common Name—American beech 8. & 9. Gladitzia triacanthos Common Name —Honey locust 3 10. Cornus kousa 9 Common Name: Kousa dogwood 8 4 11. Acer palmatum ‘Sango-kaku’ 5 & 6 Common Name –Japanese coral bark maple ‘Sango-kaku’ 10 11 7 12 12, & 13. Lagerstroemia indica ‘Pink Velour’ Common Name-– Crape myrtle ‘Pink Velour’ 13 14 14. Cercis canidensis ‘Pink Heartbreaker’ 15 Commn Name—Weeping redbud ‘Pink Heartbreaker’ 15. Acer palmatum var. dissectum ‘Tamukeyama’ Common Name-Japanese maple Tamukeyama’ 16 16. Acer rubrum 17 Common Name—Red Maple 18 17.Ulmus americana Commn Name—Jefferson elm 18. Prunus pendula— Common Name- Weeping cherry 19. Quercus phellos Common Name- Willow oak 19 Location # Common name Botanical name Location Status Y 1 Ginkgo “Princeton Sentry” Ginkgo biloba ‘Princeton Sentry’ Cytec Building Available Y 2 Ginkgo “Princeton Sentry” Ginkgo biloba ‘Princeton Sentry’ Cytec Building Available Y 3 Weeping higan cherry Prunus Snow Fountains William F Goodling Center Available Y 4 Oriental spruce “Gowdy” Picea orientalis ‘Gowdy’ William F Goodling Center Available Y 5 Witch Hazel Hamamelis virginiana William F Goodling Center Available Y 6 Witch Hazel Hamamelis virginiana William F Goodling Center Available Y 7 American beech Fagus grandifolia
    [Show full text]
  • AMERICAN BEECH a Tree in Trouble
    Hiawatha National Forest WARNING! While there are no pure beech stands on the AMERICAN Hiawatha National Forest (HNF), many of Wind in the Trees the hardwood stands include a significant BEECH component of beech. HNF has included The Forest Service is making every effort A Tree in Trouble these areas in the BBD Project Environmen- to identify and remove hazardous trees tal Analysis. These stands are within the ad- vancing front of the BBD and many of the from developed areas as quickly as possi- stands already have the beech scale present, ble. However, all visitors - but particularly particularly in the north and east portions of hikers and overnight backcountry campers the project area. Areas that have not yet been - should be alert for trees that are weak- infested will likely be infested within 1-3 ened, have large dead limbs or are com- years. Safety is the number one concern. Dy- ing beech trees will need to be removed in all pletely dead, especially in windy condi- high use public areas to prevent them from tions. becoming a safety hazard. The recreation Be alert. Look up. Choose your team on the HNF is assessing these areas campsites carefully. (including parking areas, campsites, trails, and The American beech (Fagus grandifolia) is a day use areas) to determine what the poten- tall, stately tree with smooth grey bark and tial hazards will be and the best way to deal Hiawatha National Forest a graceful arching crown. Its dark green, with them. Munising Ranger District shiny leaves, tapered at both ends, turn 400 East Munising Avenue golden in the fall and cling to its branches throughout the winter.
    [Show full text]
  • Report on Beetles (Coleoptera) Collected from the Dartington Hall Estate, 2013 by Dr Martin Luff
    Report on beetles (Coleoptera) collected from the Dartington Hall Estate, 2013 by Dr Martin Luff. 1. Introduction This year has been a particularly busy one for my work on the beetles of the Estate. I recorded numbers of species on 11 separate dates from April (at the end of the cold spring) through to mid- November. The generally warm and dry summer enabled me to record much more by sweeping herbaceous vegetation around field margins, especially in Hill Park. At the end of May I was assisted by an old friend of mine, and former fellow student, Dr Colin Welch (RCW), who is an authority on the Staphylinidae (rove beetles). I was also provided with the contents of the nest boxes from Dartington Hills in February and September, thanks to Will Wallis and Mike Newby. Finally Mary Bartlett again encouraged me to examine the fauna of her compost heap in November. 2. Results A total of 201 beetle species from 35 families were recorded. This is considerably more than in any previous year that I have collected at Dartington. Of these, 85 species were not recorded in my earlier lists (Luff, 2010-12). The overall number of species that I have recorded from the Estate is now 369, which is almost 10% of the entire British beetle fauna. The bird nest boxes yielded 13 species, with over half being new to the Estate, despite having examined the boxes in previous years; the contents of the boxes were also rather different between spring and autumn, with only four species common to both.
    [Show full text]
  • Leaf-Inhabiting Genera of the Gnomoniaceae, Diaporthales
    Studies in Mycology 62 (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales M.V. Sogonov, L.A. Castlebury, A.Y. Rossman, L.C. Mejía and J.F. White CBS Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales STUDIE S IN MYCOLOGY 62, 2008 Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. EXECUTIVE EDITOR Prof. dr Robert A. Samson, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] LAYOUT EDITOR Marianne de Boeij, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SCIENTIFIC EDITOR S Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Prof. dr Pedro W. Crous, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802. E-mail: [email protected] Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A.
    [Show full text]
  • Published Version
    8 Damage to stems, branches and twigs of broadleaf woody plants M. Kacprzyk, I. Matsiakh, D.L. Musolin, A.V. Selikhovkin, Y.N. Baranchikov, D. Burokiene, T. Cech, V. Talgø, A.M. Vettraino, A. Vannini, A. Zambounis and S. Prospero 8.1. Root and stem rot Description: External, aboveground symptoms on individual trees are variable and may include suppressed growth, reduced vigour, discoloured or smaller than average-sized foliage, premature leaf shedding, branch dieback, crown thinning, bleeding lesions on the lower stem and root collar, wilting and eventual death of trees. It is common for root and butt rots to remain unnoticed until annual or perennial (conks) fruiting bodies appear on branches or the main trunk. Possible cause of damage: Oomycetes (water moulds: Figs. 8.1.1 – 8.1.3); Fungi: Basidiomycota (Figs. 8.1.4 – 8.1.7) and Ascomycota (Fig. 8.1.8). Fig. 8.1.1. Root collar of European beech Fig. 8.1.2. Stem of grey alder (Alnus (Fagus sylvatica) with a bleeding bark lesion incana) with bark lesion caused by an caused by an Oomycete (Phytophthora Oomycete (Phytophthora x alni). Tyrol, cambivora). Bavaria, Germany, TC. Austria, TC. ©CAB International 2017. Field Guide for the Identification of Damage on Woody Sentinel Plants (eds A. Roques, M. Cleary, I. Matsiakh and R. Eschen) Damage to stems, branches and twigs of broadleaf woody plants 105 Fig. 8.1.3. European chestnut (Castanea Fig. 8.1.4. Collar of European beech sativa) showing bark lesion caused by an (Fagus sylvatica) with fungal fruiting Oomycete (Phytophthora cinnamomi). bodies (Polyporus squamosus).
    [Show full text]
  • American Beech
    Conservation Gap Analysis of American Beech August 2021 Emily Beckman1, Abby Meyer2, David Pivorunas3, Sean Hoban1 and Murphy Westwood1,4 1The Morton Arboretum 2Botanic Gardens Conservation International, U.S. 3USDA Forest Service 4Botanic Gardens Conservation International Fagus grandifolia Ehrh. (American beech) THE MORTON ARBORETUM is an internationally recognized outdoor tree museum and tree research center located in Lisle, Illinois. As the champion of trees, the Arboretum is committed to scientifically informed action, both locally and globally, and encouraging the planting and conservation of trees for a greener, healthier, more beautiful world. The Morton Arboretum welcomes more than 1.3 million visitors annually to explore its 1,700 acres with 222,000 plant specimens representing 4,650 different kinds of plants. The Arboretum’s Global Tree Conservation Program works to prevent tree extinctions around the world by generating resources, fostering cross-sector collaborations, and engaging local partners in conservation projects. The Center for Tree Science seeks to create the scientific knowledge and technical expertise necessary to sustain trees, in all their diversity, in built environments, natural landscapes, and living collections. The Arboretum also hosts and coordinates ArbNet, the interactive, collaborative, international community of arboreta and tree-focused professionals. BOTANIC GARDENS CONSERVATION INTERNATIONAL ACKNOWLEDGEMENTS (BGCI) is the world’s largest plant conservation network, comprising more than 600 botanic gardens in over 100 countries, and provides First and foremost, many thanks to the hundreds of institutions who the secretariat to the IUCN/SSC Global Tree Specialist Group. BGCI shared their ex situ accessions data and/or reported conservation was established in 1987 and is a registered charity with offices in activities.
    [Show full text]
  • The Danger Within: Implications of Firewood Transport in Invasive Forest Insect and Disease Spread
    Clemson University TigerPrints All Theses Theses May 2021 The Danger Within: Implications of Firewood Transport in Invasive Forest Insect and Disease Spread Angelica Solano Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Solano, Angelica, "The Danger Within: Implications of Firewood Transport in Invasive Forest Insect and Disease Spread" (2021). All Theses. 3524. https://tigerprints.clemson.edu/all_theses/3524 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. THE DANGER WITHIN: IMPLICATIONS OF FIREWOOD TRASNPORT IN INVASIVE FOREST INSECT AND DISEASE SPREAD A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Wildlife and Fisheries Biology by Angelica Solano May 2021 Accepted by Dr. Shari Rodriguez, Committee Chair Dr. David R. Coyle Dr. Patrick J. Rosopa ABSTRACT Invasive forest insects and diseases are a problem affecting North American forests, and their intracontinental spread can be aggravated through the movement of contaminated firewood. We conducted a scoping review to assess trends and gaps in the existing literature, as well as patterns in behavior related to forest pest dispersal through firewood movement in North America. Of the 76 documents identified through our search, 24 met the inclusion criteria and were categorized based on five identified themes: 1) insect incidence in firewood, 2) insect dispersal via firewood, 3) recreational firewood movement, 4) firewood treatments, and 5) behavior and rule compliance.
    [Show full text]
  • Fungi and Their Potential As Biological Control Agents of Beech Bark Disease
    Fungi and their potential as biological control agents of Beech Bark Disease By Sarah Elizabeth Thomas A thesis submitted for the degree of Doctor of Philosophy School of Biological Sciences Royal Holloway, University of London 2014 1 DECLARATION OF AUTHORSHIP I, Sarah Elizabeth Thomas, hereby declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others, this is always clearly stated. Signed: _____________ Date: 4th May 2014 2 ABSTRACT Beech bark disease (BBD) is an invasive insect and pathogen disease complex that is currently devastating American beech (Fagus grandifolia) in North America. The disease complex consists of the sap-sucking scale insect, Cryptococcus fagisuga and sequential attack by Neonectria fungi (principally Neonectria faginata). The scale insect is not native to North America and is thought to have been introduced there on seedlings of F. sylvatica from Europe. Conventional control strategies are of limited efficacy in forestry systems and removal of heavily infested trees is the only successful method to reduce the spread of the disease. However, an alternative strategy could be the use of biological control, using fungi. Fungal endophytes and/or entomopathogenic fungi (EPF) could have potential for both the insect and fungal components of this highly invasive disease. Over 600 endophytes were isolated from healthy stems of F. sylvatica and 13 EPF were isolated from C. fagisuga cadavers in its centre of origin. A selection of these isolates was screened in vitro for their suitability as biological control agents. Two Beauveria and two Lecanicillium isolates were assessed for their suitability as biological control agents for C.
    [Show full text]