Altcoins, Ethereum Projects, and More – Bonus Content
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterizing Ethereum's Mining Power Decentralization at a Deeper
Characterizing Ethereum’s Mining Power Decentralization at a Deeper Level Liyi Zeng∗§, Yang Chen†§, Shuo Chen†, Xian Zhang†, Zhongxin Guo†, Wei Xu∗, Thomas Moscibroda‡ ∗Institute for Interdisciplinary Information Sciences, Tsinghua University †Microsoft Research ‡Microsoft Azure §Contacts: [email protected], [email protected] Abstract—For proof-of-work blockchains such as Ethereum, than 50% of the total power has grown from several the mining power decentralization is an important discussion hundred to several thousand. Overall, the power is more point in the community. Previous studies mostly focus on the decentralized at the participant level than 4 years ago. aggregated power of the mining pools, neglecting the pool participants who are the source of the pools’ power. In this paper, However, we also find that this number varied signif- we present the first large-scale study of the pool participants icantly over time, which means it requires continuous in Ethereum’s mining pools. Pool participants are not directly tracking. Additionally, as our current data and method- observable because they communicate with their pools via private ology cannot de-anonymize the participants, it’s possible channels. However, they leave “footprints” on chain as they that some participants split themselves into many smaller use Ethereum accounts to anonymously receive rewards from mining pools. For this study, we combine several data sources ones for various reasons, which could make our estima- to identify 62,358,646 pool reward transactions sent by 47 tion inaccurate if not completely off the target. Further pools to their participants over Ethereum’s entire near 5-year study to improve the estimation accuracy is important. -
Implementation of Smart Contracts for Blockchain Based Iot Applications
Implementation of smart contracts for blockchain based IoT applications Georgios Papadodimas, Georgios Palaiokrasas, Antoniοs Litke, Theodora Varvarigou Electrical and Computer Engineering Department National Technical University of Athens Athens, Greece [email protected], [email protected], [email protected], [email protected] Abstract—An increasing number of people, organizations [11], funding mechanisms [12] and many more. A milestone and corporations are expressing their interest in the for the course of blockchain technology was the development decentralization technology of the blockchain. The creation of of Ethereum project, offering new solutions by enabling smart the blockchain marks the time when we start building contracts’ implementation and execution. The Ethereum distributed peer-to-peer networks consisting of non-trusting blockchain is a Turing complete platform for executing smart members that interact with each other without a trusted contracts [13], [14], and not just a ledger serving financial intermediary but in a verifiable manner. In this paper, we transactions. It is a suite of tools and protocols for the creation propose a decentralized application (DApp) based on and operation of Decentralized Applications (DApps), blockchain technology for sharing Internet of Things (IoT) “applications that run exactly as programmed without any sensors’ data, and demonstrate various challenges addressed possibility of downtime, censorship, fraud or third-party during the development process. This application combines blockchain technology with IoT and operates through smart interference”. It also supports a contract-oriented, high-level, contracts that are executed on the Ethereum blockchain. More Turing-complete programming language [15], allowing specifically the application is a platform for sharing (buying and anyone to write smart contracts and create DApps. -
Crypto Research Report ‒ April 2019 Edition
April 2019 Edition VI. “When the Tide Goes Out…” Investments: Gold and Bitcoin, Stronger Together Technical Analysis: Spring Awakening? Cryptocurrency Mining in Theory and Practice Demelza Kelso Hays Mark J. Valek We would like to express our profound gratitude to our premium partners for supporting the Crypto Research Report: www.cryptofunds.li Contents Editorial ............................................................................................................................................... 4 In Case You Were Sleeping: When the Tide Goes Out…............................................................... 5 Back to the Roots ............................................................................................................................................. 6 How Long Will This Bear Market Last .............................................................................................................. 7 A Tragic Story Traverses the World ................................................................................................................. 9 When the tide goes out… ............................................................................................................................... 10 A State Cryptocurrency? ................................................................................................................................ 12 Support is Increasing ..................................................................................................................................... 14 -
Versus Decentralized Prediction Markets for Financial Assets
Wolfgang Pacher Centralized- versus Decentralized Prediction Markets for Financial Assets Are blockchain-based prediction market applications simply the better solution to forecasting financial assets? MASTER THESIS submitted in fulfilment of the requirements for the degree of Master of Science Programme: Master's programme Applied Business Administration Branch of study: General Management Alpen-Adria-Universität Klagenfurt Evaluator Assoc.Prof.Mag.Dr. Alexander Brauneis Alpen-Adria-Universität Klagenfurt Institut für Finanzmanagement Klagenfurt, May 2019 Affidavit I hereby declare in lieu of an oath that - the submitted academic paper is entirely my own work and that no auxiliary materials have been used other than those indicated, - I have fully disclosed all assistance received from third parties during the process of writing the thesis, including any significant advice from supervisors, - any contents taken from the works of third parties or my own works that have been included either literally or in spirit have been appropriately marked and the respective source of the information has been clearly identified with precise bibliographical references (e.g. in footnotes), - to date, I have not submitted this paper to an examining authority either in Austria or abroad and that - when passing on copies of the academic thesis (e.g. in bound, printed or digital form), I will ensure that each copy is fully consistent with the submitted digital version. I understand that the digital version of the academic thesis submitted will be used for the purpose of conducting a plagiarism assessment. I am aware that a declaration contrary to the facts will have legal consequences. Wolfgang Pacher m.p. -
GJR-GARCH Volatility Modeling Under NIG and ANN for Predicting Top Cryptocurrencies
Journal of Risk and Financial Management Article GJR-GARCH Volatility Modeling under NIG and ANN for Predicting Top Cryptocurrencies Fahad Mostafa 1,* , Pritam Saha 2, Mohammad Rafiqul Islam 3 and Nguyet Nguyen 4,* 1 Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA 2 Rawls College of Business, Texas Tech University, Lubbock, TX 79409, USA; [email protected] 3 Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA; [email protected] 4 Department of Mathematics and Statistics, Youngstown State University, Youngstown, OH 44555, USA * Correspondence: [email protected] (F.M.); [email protected] (N.N.) Abstract: Cryptocurrencies are currently traded worldwide, with hundreds of different currencies in existence and even more on the way. This study implements some statistical and machine learning approaches for cryptocurrency investments. First, we implement GJR-GARCH over the GARCH model to estimate the volatility of ten popular cryptocurrencies based on market capitalization: Bitcoin, Bitcoin Cash, Bitcoin SV, Chainlink, EOS, Ethereum, Litecoin, TETHER, Tezos, and XRP. Then, we use Monte Carlo simulations to generate the conditional variance of the cryptocurrencies using the GJR-GARCH model, and calculate the value at risk (VaR) of the simulations. We also estimate the tail-risk using VaR backtesting. Finally, we use an artificial neural network (ANN) for predicting the prices of the ten cryptocurrencies. The graphical analysis and mean square errors (MSEs) from the ANN models confirmed that the predicted prices are close to the market prices. For some cryptocurrencies, the ANN models perform better than traditional ARIMA models. Citation: Mostafa, Fahad, Pritam Saha, Mohammad Rafiqul Islam, and Keywords: artificial neural network; cryptocurrency; GJR-GARCH; NIG; Monte Carlo simulation; Nguyet Nguyen. -
Asymmetric Proof-Of-Work Based on the Generalized Birthday Problem
Equihash: Asymmetric Proof-of-Work Based on the Generalized Birthday Problem Alex Biryukov Dmitry Khovratovich University of Luxembourg University of Luxembourg [email protected] [email protected] Abstract—The proof-of-work is a central concept in modern Long before the rise of Bitcoin it was realized [20] that cryptocurrencies and denial-of-service protection tools, but the the dedicated hardware can produce a proof-of-work much requirement for fast verification so far made it an easy prey for faster and cheaper than a regular desktop or laptop. Thus the GPU-, ASIC-, and botnet-equipped users. The attempts to rely on users equipped with such hardware have an advantage over memory-intensive computations in order to remedy the disparity others, which eventually led the Bitcoin mining to concentrate between architectures have resulted in slow or broken schemes. in a few hardware farms of enormous size and high electricity In this paper we solve this open problem and show how to consumption. An advantage of the same order of magnitude construct an asymmetric proof-of-work (PoW) based on a compu- is given to “owners” of large botnets, which nowadays often tationally hard problem, which requires a lot of memory to gen- accommodate hundreds of thousands of machines. For prac- erate a proof (called ”memory-hardness” feature) but is instant tical DoS protection, this means that the early TLS puzzle to verify. Our primary proposal Equihash is a PoW based on the schemes [8], [17] are no longer effective against the most generalized birthday problem and enhanced Wagner’s algorithm powerful adversaries. -
Metamask Pre-Assignment
MMS 562F: Tech Driven Transformation MetaMask Pre-Assignment Campbell R. Harvey Duke University and NBER February 2021 Setup • Metamask is a cryptocurrency wallet that is used to interface with the Ethereum-based Apps • We will be setting up this Wallet on your mobile device (iOS or Android only) – If you are unable to use a mobile device, the end of this deck has a web browser tutorial (Page 19) – If you already have MetaMask on your browser, the end of this deck has a tutorial to link your Web Account to the Mobile App (Page 25) Campbell R. Harvey 2021 2 Setup • Download the Metamask app from the App Store or Google Play Store • Click Get Started • Click Create a new wallet • Create a new account by typing in a password of your choosing and pressing “Create” • Go through the prompts to secure your wallet • Store Secret Backup Phrase in a secure location, ideally paper or a password manager – not on your phone or computer. • Type in secret backup phrase Campbell R. Harvey 2021 3 1 Using MetaMask 1. Network • This determines which Ethereum Network you are using. Click on this to see all network options in a 2 dropdown. For this class we will only discuss or use the Main Ethereum Network and the Ropsten Test Network. 3 Campbell R. Harvey 2021 4 1 Using MetaMask 1. Network • The Ethereum Mainnet is where live ether (ETH) with real value exists and is 2 used for payment and applications. I will refer to this as the “main network” or the “mainnet” 3 Campbell R. -
Zcash Protocol Speci Cation
Zcash Protocol Specication Version 2018.0-beta-14 Daira Hopwood† Sean Bowe† — Taylor Hornby† — Nathan Wilcox† March 11, 2018 Abstract. Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash, with security xes and adjustments to terminology, functionality and performance. It bridges the exist- ing transparent payment scheme used by Bitcoin with a shielded payment scheme secured by zero- knowledge succinct non-interactive arguments of knowledge (zk-SNARKs). It attempts to address the problem of mining centralization by use of the Equihash memory-hard proof-of-work algorithm. This specication denes the Zcash consensus protocol and explains its differences from Zerocash and Bitcoin. Keywords: anonymity, applications, cryptographic protocols, electronic commerce and payment, nancial privacy, proof of work, zero knowledge. Contents 1 1 Introduction 5 1.1 Caution . .5 1.2 High-level Overview . .5 2 Notation 7 3 Concepts 8 3.1 Payment Addresses and Keys . .8 3.2 Notes...........................................................9 3.2.1 Note Plaintexts and Memo Fields . .9 3.3 The Block Chain . 10 3.4 Transactions and Treestates . 10 3.5 JoinSplit Transfers and Descriptions . 11 3.6 Note Commitment Trees . 11 3.7 Nullier Sets . 12 3.8 Block Subsidy and Founders’ Reward . 12 3.9 Coinbase Transactions . 12 † Zerocoin Electric Coin Company 1 4 Abstract Protocol 12 4.1 Abstract Cryptographic Schemes . 12 4.1.1 Hash Functions . 12 4.1.2 Pseudo Random Functions . 13 4.1.3 Authenticated One-Time Symmetric Encryption . 13 4.1.4 Key Agreement . 13 4.1.5 Key Derivation . 14 4.1.6 Signature . 15 4.1.6.1 Signature with Re-Randomizable Keys . -
OCC Interpretive Letter 1174: DLT and Stable Coins
OCC interpretive letter 1174: DLT and stable coins Author: Ousmène Jacques Mandeng, Senior Advisor, Blockchain and Multiparty Systems, Accenture Table of Contents OCC interpretive letter 1174: DLT and stable coins .................................................. 2 OCC’s position on DLT and stable coins ................................................................. 2 DLT-platforms .......................................................................................................... 3 Tokens ..................................................................................................................... 4 Stable coins ............................................................................................................. 4 Token payments ...................................................................................................... 5 Token networks ....................................................................................................... 5 Bank balance sheet tokenization ............................................................................ 6 Next steps ................................................................................................................. 7 Copyright © 2021 Accenture. All rights reserved. 1 United States OCC interpretive letter 1174: DLT and stable coins The United States Office of the Comptroller of the Currency (OCC), a federal supervisor of national banks and cooperative banks, issued new general guidance about stable coins and distributed ledger technology (DLT) -
Defending Against Malicious Reorgs in Tezos Proof-Of-Stake
Defending Against Malicious Reorgs in Tezos Proof-of-Stake Michael Neuder Daniel J. Moroz Harvard University Harvard University [email protected] [email protected] Rithvik Rao David C. Parkes Harvard University Harvard University [email protected] [email protected] ABSTRACT Conference on Advances in Financial Technologies (AFT ’20), October 21– Blockchains are intended to be immutable, so an attacker who is 23, 2020, New York, NY, USA. ACM, New York, NY, USA , 13 pages. https: //doi.org/10.1145/3419614.3423265 able to delete transactions through a chain reorganization (a ma- licious reorg) can perform a profitable double-spend attack. We study the rate at which an attacker can execute reorgs in the Tezos 1 INTRODUCTION Proof-of-Stake protocol. As an example, an attacker with 40% of the Blockchains are designed to be immutable in order to protect against staking power is able to execute a 20-block malicious reorg at an attackers who seek to delete transactions through chain reorga- average rate of once per day, and the attack probability increases nizations (malicious reorgs). Any attacker who causes a reorg of super-linearly as the staking power grows beyond 40%. Moreover, the chain could double-spend transactions, meaning they commit an attacker of the Tezos protocol knows in advance when an at- a transaction to the chain, receive some goods in exchange, and tack opportunity will arise, and can use this knowledge to arrange then delete the transaction, effectively robbing their counterparty. transactions to double-spend. We show that in particular cases, the Nakamoto [15] demonstrated that, in a Proof-of-Work (PoW) setting, Tezos protocol can be adjusted to protect against deep reorgs. -
Governance in Decentralized Networks
Governance in decentralized networks Risto Karjalainen* May 21, 2020 Abstract. Effective, legitimate and transparent governance is paramount for the long-term viability of decentralized networks. If the aim is to design such a governance model, it is useful to be aware of the history of decision making paradigms and the relevant previous research. Towards such ends, this paper is a survey of different governance models, the thinking behind such models, and new tools and structures which are made possible by decentralized blockchain technology. Governance mechanisms in the wider civil society are reviewed, including structures and processes in private and non-profit governance, open-source development, and self-managed organisations. The alternative ways to aggregate preferences, resolve conflicts, and manage resources in the decentralized space are explored, including the possibility of encoding governance rules as automatically executed computer programs where humans or other entities interact via a protocol. Keywords: Blockchain technology, decentralization, decentralized autonomous organizations, distributed ledger technology, governance, peer-to-peer networks, smart contracts. 1. Introduction This paper is a survey of governance models in decentralized networks, and specifically in networks which make use of blockchain technology. There are good reasons why governance in decentralized networks is a topic of considerable interest at present. Some of these reasons are ideological. We live in an era where detailed information about private individuals is being collected and traded, in many cases without the knowledge or consent of the individuals involved. Decentralized technology is seen as a tool which can help protect people against invasions of privacy. Decentralization can also be viewed as a reaction against the overreach by state and industry. -
Can Ethereum Classic Reach 1000 Dollars Update [06-07-2021] 42 Loss in the Last 24 Hours
1 Can Ethereum Classic Reach 1000 Dollars Update [06-07-2021] 42 loss in the last 24 hours. At that time Bitcoin reached its all-time high of 20,000 and so did Ethereum ETH which surpassed 1,000. 000 to reach 1; Tezos XTZ is priced at 2. In the unlikely event of a significant change for the worst, we expect the Bitcoin price to continue appreciating. ERC-721 started as a EIP draft written by dete and first came to life in the CryptoKitties project by Axiom Zen. ERC-721 A CLASS OF UNIQUE TOKENS. It does not mandate a standard for token metadata or restrict adding supplemental functions. Think of them like rare, one-of-a-kind collectables. The Standard. Institutions are mandating that they invest in clean green technologies and that s what ethereum is becoming, she said. Unlike bitcoin s so-called proof of work, which rewards miners who are competing against each other to use computers and energy to record and confirm transactions on its blockchain, ethereum plans to adopt the more efficient proof of stake model, which chooses a block validator at random based on how much ether it controls. Kaspar explained her thesis Friday on Yahoo Finance Live, citing new updates coming to the cryptocurrency s network later this year. 42 loss in the last 24 hours. At that time Bitcoin reached its all-time high of 20,000 and so did Ethereum ETH which surpassed 1,000. 000 to reach 1; Tezos XTZ is priced at 2. In the unlikely event of a significant change for the worst, we expect the Bitcoin price to continue appreciating.