research communications

The crystal structures of two isomers of 5-(phenyl- isothiazolyl)-1,3,4-oxathiazol-2-one

ISSN 2056-9890 Shuguang Zhu,a Melbourne J. Schriver,b* Arthur D. Hendsbeec and Jason D. Masudac

aTeva Pharmaceuticals, 3333 N Torrey Pines Ct, Suite 400, La Jolla, CA 92130, bDepartment of Chemistry, Crandall c Received 14 September 2017 University, PO Box 6004, Moncton, New Brunswick, E1C 9L7, Canada, and The Atlantic Centre for Green Chemistry Accepted 16 October 2017 and the Department of Chemistry, Saint Mary’s University, Halifax, Nova Scotia, B3H 3C3, Canada. *Correspondence e-mail: [email protected]

Edited by W. T. A. Harrison, University of The syntheses and crystal structures of two isomers of phenyl isothiazolyl

Aberdeen, Scotland oxathiazolone, C11H6N2O2S2, are described [systematic names: 5-(3-phenyliso- thiazol-5-yl)-1,3,4-oxathiazol-2-one, (I), and 5-(3-phenylisothiazol-4-yl)-1,3,4- Keywords: crystal structure; isothiazoyl; oxa- oxathiazol-2-one, (II)]. There are two almost planar (r.m.s. deviations = 0.032 thiazolone; conjugation; ; - and 0.063 A˚ ) molecules of isomer (I) in the asymmetric unit, which form stacking. centrosymmetric tetramers linked by strong SÁÁÁN [3.072 (2) A˚ ]andSÁÁÁO ˚ CCDC references: 1580338; 1580337 contacts [3.089 (1) A]. The tetramers are -stacked parallel to the a-axis direction. The single molecule in the asymmetric unit of isomer (II) is twisted Supporting information: this article has into a non-planar conformation by steric repulsion [dihedral angles between the supporting information at journals.iucr.org/e central isothiazolyl ring and the pendant oxathiazolone and phenyl rings are 13.27 (6) and 61.18 (7), respectively], which disrupts the -conjugation between the heteroaromatic isothiazoloyl ring and the non-aromatic oxathiazolone heterocycle. In the crystal of isomer (II), the strong SÁÁÁO [3.020 (1) A˚ ]and SÁÁÁC contacts [3.299 (2) A˚ ] and the non-planar structure of the molecule lead to a form of -stacking not observed in isomer (I) or other oxathiazolone derivatives.

1. Chemical context Compounds containing the isothiazolyl moiety are well known in organic and pharmacological research, with extensive reviews on the synthesis and chemistry of the ring (Abdel- Sattar & Elgazwy, 2003) and the medicinal and industrial uses of compounds containing the isothiazolyl heterocycle (Kaberdin & Potkin 2002). The solid-state structural features of isothiazole derivatives have been reviewed (Abdel-Sattar & Elgazwy, 2003). In general, the isothiazolyl ring is recognised as a heteroaromatic ring with extensive -delocalization (incorporating the empty sulfur 3d-orbitals) within the ring leading to almost planar heterocycles. Derivatives of the oxathiazolone heterocycle have been known since their first preparation fifty years ago (Muhlbauer & Weiss, 1967). The facile synthesis of the heterocycle from commercially available reacting with chlorocarbonyl sulfenyl chloride under a range of conditions has resulted in the publication of significant libraries of substituted oxathia- zolone compounds (Senning & Rasmussen, 1973; Howe et al., 1978; Lin et al., 2009; Fordyce et al., 2010; Russo et al., 2015) leading to hundreds of known oxathiazolone derivatives. The predominant chemistry of the heterocycle has been the thermal cycloreversion to the short lived nitrile sulfide [R— C N(+)—S(À)] , a propargyl allenyl 1,3-dipole, which can be

1726 https://doi.org/10.1107/S2056989017015067 Acta Cryst. (2017). E73, 1726–1731 research communications trapped by electron-deficient bonds in reasonable yield to give families of new heterocycles (Paton, 1989), including isothiazole derivatives. As a result of the electronic properties of the short-lived nitrile sulfide intermediates, optimal condi- tions for cyclization require trapping reactions with electron- deficient dipolariphiles. Industrially, various derivatives of the oxathiazolone heterocycle have been reported as potential fungicides (Klaus et al., 1965), pesticides (Ho¨lzl, 2004) and as polymer additives (Crosby 1978). More recently, the medicinal properties of the oxathiazolone heterocycle have been explored as selective inhibitors for tuberculosis (Lin et al., 2009), inflammatory diseases (Fan et al., 2014) and as inhibitors (Russo et al., 2015). In previous structural studies on oxathiazolone compounds, the non-aromatic heterocyclic rings were found to be planar with largely localized C N and C O double bonds. The extent of -delocalization within the oxathiazolone ring and to the substituent group and the effect on the structure and chemical properties have been discussed spectroscopically (Markgraf et al., 2007) and structurally (Krayushkin et al., 2010a,b). Our interest in this system was prompted by the possibility that catenated systems of isothiazolone hetero- Figure 1 The molecular structure of (I), showing 50% probability displacement cycles may have useful electronic properties as the number of ellipsoids. systems is increased. analysis, we will restrict our discussion to the first molecule in the asymmetric unit. The asymmetric unit of (II) is shown in Fig. 2. The bond distances and angles within the terminal phenyl rings in compounds (I) and (II) are not significantly different from the those reported for related compounds (Schriver & Zaworotko, 1995; Krayushkin et al., 2010a,b). The sum of the endocyclic bond angles in the isothiazole moieties for both (I) and (II) (540.0) is consistent with planar (ideal sum = 540) -delocalized five-membered rings, as expected. The bond lengths of the endocyclic bonds in the isothiazolyl moieties in (I) and (II) are not significantly ( >3) different from the

2. Structural commentary There are two independent molecules in the asymmetric unit of (I) (Fig. 1). In general, the two molecules are not signifi- cantly different with the exception of the C—S bonds in the oxathiazolone rings. In one of the molecules, the C1—S1 distance [1.762 (2) A˚ ] is longer than the same bond in the second molecule, C12—S3 [1.746 (2) A˚ ]. The difference may arise from the nature of the intermolecular contacts to the sulfur atoms, with a strong pair of co-planar SÁÁÁN contacts [3.086 (2) A˚ ] in the first molecule but only one SÁÁÁN contact [3.072 (2) A˚ ] in the second molecule (which is also twisted out of the plane of the molecule). These differences are due to the Figure 2 position of the independent molecules in the tetramer that will The molecular structure of (II), showing 50% probability displacement be described below. For the purposes of further structural ellipsoids.

 Acta Cryst. (2017). E73, 1726–1731 Zhu et al. C11H6N2O2S2 and C11H6N2O2S2 1727 research communications statistical averages from previous structural studies (Bridson the pendant oxathiazolone and phenyl rings being 3.06 (11) et al., 1994, 1995). While the C N bonds in the isothiazolyl and 1.10 (12), respectively, for the S1 molecule and 2.62 (9) rings of (I) [1.327 (3) A˚ ] and (II) [1.321 (2) A˚ ] and the C C and 6.84 (10), respectively, for the S3 molecule. Overall r.m.s. bonds in (I) [1.361 (3) A˚ ] and (II) [1.374 (2) A˚ ] are mostly deviations for the S1 and S3 molecules are 0.032 and 0.063 A˚ , longer than the statistical averages for C N [1.308 Æ 0.016 A˚ ] respectively. In contrast to the near planarity of both asym- and C C bonds [1.369 Æ 0.002 A˚ ], the differences are not metric molecules of (I), the single molecule of (II) features sufficient to warrant an assessment of their cause or their significant twists between the central isothiazolyl ring and the effect on the structure. pendant oxathiazolone and phenyl rings [dihedral angles of The bond distances and angles within the oxathiazolone 13.27 (6) and 61.18 (7), respectively], which may be ascribed rings in compounds (I) and (II) are not significantly different to steric crowding. It has been argued, based on spectroscopic (  3) from the statistical averages for published crystal and structural evidence, that -delocalization extends structures (Schriver & Zaworotko, 1995; Bridson et al. 1994, between the rings of oxathiazolone heterocycles attached to 1995; Vorontsova et al., 1996; McMillan et al., 2006; aromatic rings, resulting in observable differences (Schriver & Krayushkin et al., 2010a,b; Nason et al., 2017). The sum of the Zaworotko, 1995; Krayushkin et al., 2010a,b; Markgraf et al., endocyclic bond angles in the oxathiazolone rings for both (I) 2007). In this work it can be seen that nearly identical mol- and (II) (540.0) is consistent with planar rings (ideal sum = ecules result, even when torsion angles are present that would 540). The S—N bonds in the oxathiazolone rings of (I) effectively disrupt any conjugation between the rings, ˚ ˚ [1.685 (2) A] and (II) [1.682 (1) A], the Csub—O bonds in (I) suggesting that the presence or absence of inter-ring delo- [1.364 (2) A˚ ] and (II) [1.375 (1) A˚ ] and the inter-ring Csp2— calization does not have a significant effect on the structure of Csp2 bonds in (I) [1.449 (3) A˚ ] and (II) [1.451 (2) A˚ ] are all the molecules. consistently shorter than the statistical averages for S—N ˚ ˚ [1.696 Æ 0.022 A], Csub—O [1.392 Æ 0.030 A] and C C bonds [1.461 Æ 0.025 A˚ ]. These differences, however, are not suffi- 3. Supramolecular features cient to warrant an assessment of their cause or their effect on In all previous reports on the solid-state structures of the structure. compounds containing the oxathiazolone heterocycle, the The three rings in the molecules of (I) are nearly co-planar, intermolecular interactions have been ignored or described as with the dihedral angles between central isothiazolyl ring and insignificant, with the exception of the recent observation of

Figure 3 A packing diagram of (I) showing – stacking parallel to the a-axis direction (top). Co-planar paired head-to-head molecules [green lines, SÁÁÁN distance of 3.086 (2) A˚ ] and paired molecules separated by out-of-plane contacts [blue lines, SÁÁÁN distance of 3.072 (2) A˚ ], violet lines SÁÁÁO distance of 3.089 (1) A˚ ].

 1728 Zhu et al. C11H6N2O2S2 and C11H6N2O2S2 Acta Cryst. (2017). E73, 1726–1731 research communications

[3.100 (2) A˚ ] (Fig. 4). The C4ÁÁÁO2 contact, while significantly shorter than the sum of van der Waals radii for the atoms, is to some extent, the result of the adjacent stronger S2ÁÁÁO2 contact. The geometry of the molecule (II) reduces the opportunity for the formation of -stacks but it is observed that the centroid of the terminal phenyl ring is 3.632 (2) A˚ above and parallel to the nearly planar portion of an adjacent molecule formed by the two heterocyclic rings (Fig. 4).

3.1. Database survey A search of the Cambridge Structural Database (Version 5.38; Groom et al., 2016) revealed that eleven crystal structures of oxathiazolone derivatives in peer-reviewed journals have been reported previously (Bridson et al., 1994, 1995; Schriver & Zaworotko, 1995; Vorontsova et al., 1996; McMillan et al., 2006; Krayushkin et al., 2010a,b; Nason et al., 2017), which have been partially reviewed (McMillan et al., 2006 and Krayushkin et al., 2010a,b). An additional five X-ray oxa- thiazolone crystal structures have been reported in theses (Demas, 1982; Zhu, 1997). There are also two published gas- Figure 4 phase electron-diffraction structures of oxathiazolone deri- A packing diagram of (II) within the unit cell showing molecular pairs vatives (Bak et al., 1978, 1982). The structures fall into two linked by SÁÁÁO contacts of 3.020 (1) A˚ . groups: those that feature a Csp2—Csp3 bond between the heterocycle and the saturated organic substituent and those 2 2 -stacking in the styryl derivative (Nason et al., 2017). The that feature a Csp —Csp bond between the heterocycle and strongest intermolecular contacts in (I) are S3ÁÁÁN3 the unsaturated organic substituent (either a phenyl group, [3.086 (2) A˚ ], S1ÁÁÁN4 [3.072 (2) A˚ ] and S4ÁÁÁO1 [3.089 (1) A˚ ] heterocyclic ring or alkenyl moiety). (Fig. 3). The S3ÁÁÁN3 contacts assist in the formation of a co- planar pair of identical molecules within the asymmetric unit. The other molecules in the asymmetric unit are connected via 4. Synthesis and crystallization the S1ÁÁÁN4 [3.072 (2) A˚ ] and S4ÁÁÁO1 [3.089 (1) A˚ ] contacts. Compound (I) was prepared following a local variation of Taken together, the contacts between two pairs of identical literature methods (Howe et al., 1978). 3-Phenylisothiazole-4- molecules in the asymmetric unit form a centrosymmetric carbonamide (Zhu, 1997) (2.90 g, 14.2 mmol) was placed in tetramer that in turn form -stacks parallel to the a axis. The 50 ml of under nitrogen and chlorocarbonyl sulfenyl intermolecular contacts between sulfur and nitrogen and chloride (4.20 g, 32.0 mmol, approximately 2 Â molar excess) oxygen have been observed in another oxathiazolone ring that was added dropwise to the stirred solution. The resulting also resulted in -stacking of the planar molecules (Nason et mixture was heated (363–373 K) under nitrogen for 1.5 h and al., 2017). allowed to evaporate to a solid residue. The evaporate was The strongest intermolecular contacts in (II) are S2ÁÁÁO2 recrystallized from toluene solution to give colourless needle- [3.020 (1) A˚ ], S1ÁÁÁC10 [3.299 (2) A˚ ] and C4ÁÁÁO2 shaped crystals (Fig. 5) (3.20 g, 12.2 mmol, 86%). Elemental

Figure 5 Figure 6 A photograph of crystals of (I) (5 Â 5 mm background grid). A photograph of crystals of (II) (5 Â 5 mm background grid).

 Acta Cryst. (2017). E73, 1726–1731 Zhu et al. C11H6N2O2S2 and C11H6N2O2S2 1729 research communications

Table 1 Experimental details. (I) (II)

Crystal data Chemical formula C11H6N2O2S2 C11H6N2O2S2 Mr 262.30 262.30 Crystal system, space group Triclinic, P1 Monoclinic, P21/c Temperature (K) 296 296 a, b, c (A˚ ) 7.2739 (7), 11.2713 (11), 14.6909 (15) 9.7202 (6), 9.9723 (6), 11.2165 (7) , , () 87.562 (1), 78.341 (1), 71.624 (1) 90, 90.399 (1), 90 V (A˚ 3) 1119.16 (19) 1087.22 (12) Z 44 Radiation type Mo K Mo K (mmÀ1) 0.46 0.48 Crystal size (mm) 0.49 Â 0.25 Â 0.14 0.48 Â 0.43 Â 0.37

Data collection Diffractometer Bruker APEXII CCD Bruker APEXII CCD Absorption correction Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008) Tmin, Tmax 0.804, 0.936 0.719, 0.837 No. of measured, independent and 7476, 3862, 3485 8041, 2362, 2228 observed [I >2(I)] reflections Rint 0.015 0.017 ˚ À1 (sin /)max (A ) 0.595 0.639

Refinement R[F 2 >2(F 2)], wR(F 2), S 0.031, 0.106, 1.04 0.030, 0.083, 1.02 No. of reflections 3862 2362 No. of parameters 308 155 H-atom treatment H-atom parameters constrained H-atom parameters constrained ˚ À3 Ámax, Ámin (e A ) 0.33, À0.23 0.37, À0.28

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).

analysis: calculated % (Found %): 50.35 (50.2); H 2.3 (2.4); N NMR (100MHz, CDCl3, p.p.m.): 171.5, 167.9, 150.7, 150.5, 10.7 (10.7). IR (KBr): 3100 (w), 1812 (w), 1749 (s), 1735 (s), 133.4, 129.9, 128.9, 126.8, 122.5. MS (EI): C11H6N2O2S2 1598 (s), 1182 (m), 1088 (m), 1014 (w), 959 (s), 884 (ms). requires (M+), 262.301, found m/e (%, assign.): 262 (52, M+), 1 834 (ms), 765 (s), 734 (s), 692 (ms). H NMR (400 MHz, 218 (3, M-CO2), 188 (100, M–CONS), 160 (9, M–COCONS), 13 CDCl3, p.p.m.): 9.28 (5, 1H), 7.61 (m, 2H), 7.46 (m, 3H). C 135 (2, M–HC–CCOCONS). UV–visible spectroscopy (hexa- NMR (100 MHz, CDCl3, p.p.m.): 172.7,167.0, 154.1, 152.1, ne) xax (log ") : 283 nm (4.25), 248 nm (4.36), 203 nm (94.49). 134.0, 129.6, 129.0, 128.2, 123.3. MS (EI): C11H6N2O2S2 requires (M+), 262.301, found m/e (%, assign.): 262 (22, M+), 218 (2, M--CO2), 188 (78, M–CONS), 186 (100, 5. Refinement C H [CCCNS)CN), 160 (1 3, M–COCONS), 135 (26, 6 5 Crystal data, data collection and structure refinement details C H CNS), 103 (13, C H CN), 77 (29, C H ). UV–visible 6 5 6 5 6 5 are summarized in Table 1. H atoms were positioned geome- spectroscopy (hexane) (log ") : 275–230 nm (4.11), 197 nm xax trically (C—H = 0.93 A˚ ) and refined as riding with U (H) = (4.72). iso 1.2U (C). Compound (II) prepared following a local variation of eq literature methods (Howe et al., 1978). 3-Phenylisothiazole-5- carbonamide (Zhu, 1997) (4.08 g, 20.0 mmol) was placed in Acknowledgements 50 ml of toluene under nitrogen and chlorocarbonyl sulfenyl SZ and MJS thank John Bridson and David Miller of the chloride (6.50 g, 50.0 mmol, approximately 2.5 Â molar Chemistry Department of Memorial University for preli- excess) was added dropwise to the stirred solution. The minary crystallographic work. MS would like to acknowledge resulting mixture was heated (363–373 K) under nitrogen for the work of many student co-workers in the course Chemistry 8.5 h and allowed to evaporate to a solid residue (6.093 g). The 2113 who worked on the oxathiazolone synthesis and char- evaporate was recrystallized from toluene solution to give acterization project, and the support of Crandall University. colourless block-shaped crystals (Fig. 6) (4.20 g, 20.6 mmol, MS would like to acknowledge the Stephen and Ella Steeves 83%), Elemental analysis: calculated % (found%) 50.35 Research Fund for operating funds. JDM would like to (50.0); H 2.3 (2.35); N 10.7 (10.5). IR (KBr): 3097 (w), acknowledge the Canadian Foundation for Innovation 3066 (w), 3032 (w), 1813 (ms), 1759 (s), 1738 (s), 1600 (ms), Leaders Opportunity fund (CFI–LFO) for upgrades to the 1590 (ms), 1517 (s), 1496 (s), 1055 (ms), 973 (s), 902 (s), diffractometer, the Natural Science and Engineering Council À1. 1 776 (s), 695 (s)cm H NMR (400 MHz, CDCl3, p.p.m.): of Canada (NSERC) for operating funds and Saint Mary’s 7.425–7.487 (m, 3H), 7.906–7.937 (m, 2H), 7.976 (5, 1H). 13C University for support.

 1730 Zhu et al. C11H6N2O2S2 and C11H6N2O2S2 Acta Cryst. (2017). E73, 1726–1731 research communications

Klaus, S., Ludwig, E. & Richard, W. (1965). US Patent No. 3182068. References Washington, DC: US Patent and Trademark Office. Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010a). Chem. Bak, B., Nielsen, O., Svanholt, H., Almenningen, A., Bastiansen, O., Heterocycl. C. 46, 484–489. Braathen, G., Fernholt, L., Gundersen, G., Nielsen, C. J., Cyvin, Krayushkin, M. M., Kalik, M. A. & Vorontsova, L. G. (2010b). Khim. B. N. & Cyvin, S. J. (1982). Acta Chem. Scand. 36a, 283–295. Geterotsikl. Soedin. 2010, 610–617. Bak, B., Nielsen, O., Svanholt, H., Almenningen, A., Bastiansen, O., Lin, G., Li, D., de Carvalho, L. P. S., Deng, H., Tao, H., Vogt, G., Wu, Fernholt, L., Gundersen, G., Nielsen, C. J., Cyvin, B. N. & Cyvin, K., Schneider, J., Chidawanyika, T., Warren, J. D., Li, H. & Nathan, S. J. (1978). Acta Chem. Scand. 32a, 1005–1016. C. (2009). Nature, 461, 621–626. Bridson, J. N., Copp, S. B., Schriver, M. J., Zhu, S. & Zaworotko, M. J. Markgraf, J. H., Hong, L., Richardson, D. P.& Schofield, M. H. (2007). (1994). Can. J. Chem. 72, 1143–1153. Magn. Reson. Chem. 45, 985–988. Bridson, J. N., Schriver, M. J. & Zhu, S. (1995). Can. J. Chem. 73, 212– McMillan, K. G., Tackett, M. N., Dawson, A., Fordyce, E. & Paton, 222. R. M. (2006). Carbohydr. Res. 341, 41–48. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Muhlbauer, E. & Weiss, W. (1967). UK Patent 1079348. Madison, Wisconsin, USA. Nason, T. R., Schriver, M. J., Hendsbee, A. D. & Masuda, J. D. (2017). Crosby, J. (1978). US Patent No. 4067862. Washington, DC: US Acta Cryst. E73, 1298–1301. Patent and Trademark Office. Paton, R. M. (1989). Chem. Soc. Rev. 18, 33–52. Demas, A. (1982). PhD thesis, University Edinburgh, Edinburgh. Russo, F., Gising, J., A˚ kerbladh, L., Roos, A. K., Naworyta, A., Elgazwy, A. S. H. (2003). Tetrahedron, 59, 7445–7463. Mowbray, S. L., Sokolowski, A., Henderson, I., Alling, T., Bailey, Fan, H., Angelo, N. G., Warren, J. D., Nathan, C. F. & Lin, G. (2014). M. A., Files, M., Parish, T., Karlen, A. & Larhed, M. (2015). ACS Med. Chem. Lett. 5, 405–410. Chemistry Open, 4, 342–362. Fordyce, E. A., Morrison, A. J., Sharp, R. D. & Paton, R. M. (2010). Schriver, M. J. & Zaworotko, M. J. (1995). J. Chem. Crystallogr. 25, Tetrahedron, 66, 7192–7197. 25–28. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Senning, A., Rasmussen, J. S., Olsen, J. H., Pajunen, P., Koskikallio, J. Cryst. B72, 171–179. & Swahn, C. (1973). Acta Chem. Scand. 27, 2161–2170. Ho¨lzl, W. & Schnyder, M. (2004). US Patent No. 6689372. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Washington, DC: US Patent and Trademark Office. Sheldrick, G. M. (2015). Acta Cryst.C71, 3–8. Howe, R. K., Gruner, T. A., Carter, L. G., Black, L. L. & Franz, J. E. Vorontsova, L. G., Kurella, M. G., Kalik, M. A. & Krayushkin, M. M. (1978). J. Org. Chem. 43, 3736–3742. (1996). Crystallogr. Rep. 41, 362–364. Kaberdin, R. V. & Potkin, V. I. (2002). Russ. Chem. Rev. 71, 673– Zhu, S. (1997). PhD thesis, Memorial University of Newfoundland, 694. St. John’s, Canada.

 Acta Cryst. (2017). E73, 1726–1731 Zhu et al. C11H6N2O2S2 and C11H6N2O2S2 1731 supporting information supporting information

Acta Cryst. (2017). E73, 1726-1731 [https://doi.org/10.1107/S2056989017015067] The crystal structures of two isomers of 5-(phenylisothiazolyl)-1,3,4-oxathia- zol-2-one

Shuguang Zhu, Melbourne J. Schriver, Arthur D. Hendsbee and Jason D. Masuda

Computing details For both structures, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

5-(3-Phenylisothiazol-5-yl)-1,3,4-oxathiazol-2-one (I)

Crystal data

C11H6N2O2S2 Z = 4 Mr = 262.30 F(000) = 536 −3 Triclinic, P1 Dx = 1.557 Mg m a = 7.2739 (7) Å Mo Kα radiation, λ = 0.71073 Å b = 11.2713 (11) Å Cell parameters from 5699 reflections c = 14.6909 (15) Å θ = 2.4–28.6° α = 87.562 (1)° µ = 0.46 mm−1 β = 78.341 (1)° T = 296 K γ = 71.624 (1)° Needle, colourless V = 1119.16 (19) Å3 0.49 × 0.25 × 0.14 mm

Data collection Bruker APEXII CCD 3862 independent reflections diffractometer 3485 reflections with I > 2σ(I) Radiation source: fine-focus sealed tube Rint = 0.015 φ and ω scans θmax = 25.0°, θmin = 1.9° Absorption correction: multi-scan h = −5→8 (SADABS; Bruker, 2008) k = −13→13 Tmin = 0.804, Tmax = 0.936 l = −17→17 7476 measured reflections Refinement Refinement on F2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from wR(F2) = 0.106 neighbouring sites S = 1.04 H-atom parameters constrained 2 2 2 3862 reflections w = 1/[σ (Fo ) + (0.0697P) + 0.2729P] 2 2 308 parameters where P = (Fo + 2Fc )/3 0 restraints (Δ/σ)max < 0.001 −3 Δρmax = 0.33 e Å

Acta Cryst. (2017). E73, 1726-1731 sup-1 supporting information

−3 Δρmin = −0.23 e Å Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.031 (3) Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyz Uiso*/Ueq S1 0.85294 (8) 0.03895 (4) 0.15683 (4) 0.05223 (17) O1 0.8238 (2) 0.18576 (13) 0.30252 (9) 0.0593 (4) N1 0.8263 (3) 0.12000 (15) 0.05875 (12) 0.0510 (4) C1 0.8229 (3) 0.17293 (17) 0.22295 (13) 0.0446 (4) S2 0.77918 (10) 0.29901 (5) −0.10629 (4) 0.05823 (18) O2 0.7971 (2) 0.27252 (11) 0.16249 (8) 0.0443 (3) N2 0.7537 (3) 0.44255 (17) −0.14107 (11) 0.0541 (4) C2 0.8016 (3) 0.23440 (17) 0.07498 (12) 0.0415 (4) S3 0.59888 (8) 0.83750 (5) 0.55508 (4) 0.05152 (17) O3 0.6679 (3) 0.59670 (16) 0.59752 (14) 0.0797 (5) N3 0.4193 (2) 0.89051 (14) 0.49359 (11) 0.0454 (4) C3 0.7806 (3) 0.33109 (18) 0.00604 (12) 0.0415 (4) S4 0.09624 (8) 0.94818 (4) 0.37616 (4) 0.05119 (17) O4 0.4345 (2) 0.68529 (12) 0.51338 (9) 0.0472 (3) N4 −0.0487 (3) 0.89146 (15) 0.33086 (11) 0.0479 (4) C4 0.7628 (3) 0.45417 (17) 0.01441 (12) 0.0419 (4) H4B 0.7607 0.4931 0.0693 0.050* C5 0.7479 (3) 0.51552 (18) −0.07130 (12) 0.0410 (4) C6 0.7266 (3) 0.64887 (18) −0.08776 (13) 0.0425 (4) C7 0.7228 (3) 0.72818 (19) −0.01704 (14) 0.0503 (5) H7A 0.7348 0.6969 0.0418 0.060* C8 0.7015 (3) 0.8528 (2) −0.03326 (18) 0.0604 (6) H8A 0.6980 0.9050 0.0149 0.073* C9 0.6854 (3) 0.9007 (2) −0.12035 (19) 0.0652 (6) H9A 0.6719 0.9847 −0.1312 0.078* C10 0.6895 (4) 0.8231 (2) −0.19106 (17) 0.0658 (6) H10A 0.6784 0.8551 −0.2498 0.079* C11 0.7101 (3) 0.6982 (2) −0.17573 (15) 0.0553 (5) H11A 0.7129 0.6467 −0.2242 0.066* C12 0.5796 (3) 0.68671 (19) 0.56116 (15) 0.0526 (5) C13 0.3557 (3) 0.80060 (16) 0.47969 (12) 0.0396 (4) C14 0.2024 (3) 0.81178 (16) 0.42756 (12) 0.0399 (4) C15 0.1224 (3) 0.72317 (17) 0.40912 (12) 0.0411 (4) H15A 0.1576 0.6415 0.4299 0.049* C16 −0.0219 (3) 0.77277 (16) 0.35387 (12) 0.0400 (4)

Acta Cryst. (2017). E73, 1726-1731 sup-2 supporting information

C17 −0.1434 (3) 0.70474 (18) 0.32326 (12) 0.0430 (4) C18 −0.2967 (3) 0.7675 (2) 0.27896 (14) 0.0523 (5) H18A −0.3229 0.8525 0.2681 0.063* C19 −0.4109 (3) 0.7038 (2) 0.25083 (15) 0.0595 (6) H19A −0.5127 0.7462 0.2207 0.071* C20 −0.3750 (3) 0.5778 (2) 0.26715 (16) 0.0622 (6) H20A −0.4528 0.5355 0.2485 0.075* C21 −0.2239 (4) 0.5153 (2) 0.31101 (18) 0.0665 (6) H21A −0.1988 0.4303 0.3219 0.080* C22 −0.1083 (3) 0.5782 (2) 0.33915 (16) 0.0551 (5) H22A −0.0063 0.5351 0.3690 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23 S1 0.0666 (4) 0.0408 (3) 0.0557 (3) −0.0208 (2) −0.0206 (2) 0.0026 (2) O1 0.0852 (11) 0.0496 (8) 0.0412 (8) −0.0173 (7) −0.0144 (7) 0.0018 (6) N1 0.0606 (11) 0.0476 (9) 0.0501 (9) −0.0188 (8) −0.0199 (8) −0.0004 (7) C1 0.0459 (10) 0.0403 (9) 0.0471 (11) −0.0130 (8) −0.0093 (8) 0.0029 (8) S2 0.0818 (4) 0.0563 (3) 0.0435 (3) −0.0271 (3) −0.0187 (3) −0.0022 (2) O2 0.0543 (8) 0.0386 (7) 0.0404 (7) −0.0131 (6) −0.0127 (6) 0.0008 (5) N2 0.0673 (11) 0.0586 (10) 0.0407 (9) −0.0234 (9) −0.0148 (8) 0.0033 (7) C2 0.0387 (9) 0.0452 (10) 0.0420 (9) −0.0133 (8) −0.0108 (7) −0.0007 (7) S3 0.0545 (3) 0.0546 (3) 0.0554 (3) −0.0224 (2) −0.0255 (2) 0.0045 (2) O3 0.0906 (13) 0.0567 (10) 0.1022 (14) −0.0145 (9) −0.0602 (11) 0.0188 (9) N3 0.0500 (9) 0.0432 (8) 0.0505 (9) −0.0191 (7) −0.0202 (7) 0.0050 (7) C3 0.0358 (9) 0.0496 (10) 0.0399 (9) −0.0125 (8) −0.0105 (7) 0.0008 (7) S4 0.0666 (3) 0.0398 (3) 0.0594 (3) −0.0221 (2) −0.0330 (3) 0.0094 (2) O4 0.0534 (8) 0.0396 (7) 0.0538 (8) −0.0150 (6) −0.0225 (6) 0.0052 (6) N4 0.0575 (10) 0.0443 (9) 0.0500 (9) −0.0191 (7) −0.0244 (7) 0.0048 (7) C4 0.0408 (10) 0.0469 (10) 0.0387 (9) −0.0130 (8) −0.0099 (7) −0.0016 (7) C5 0.0322 (9) 0.0530 (10) 0.0381 (9) −0.0136 (7) −0.0070 (7) −0.0002 (8) C6 0.0329 (9) 0.0512 (10) 0.0434 (9) −0.0129 (7) −0.0084 (7) 0.0039 (8) C7 0.0424 (10) 0.0569 (12) 0.0515 (11) −0.0151 (9) −0.0098 (8) 0.0013 (9) C8 0.0518 (12) 0.0536 (12) 0.0756 (15) −0.0155 (10) −0.0120 (11) −0.0060 (10) C9 0.0525 (13) 0.0535 (12) 0.0885 (17) −0.0163 (10) −0.0142 (11) 0.0128 (12) C10 0.0649 (15) 0.0684 (14) 0.0657 (14) −0.0224 (11) −0.0186 (11) 0.0252 (12) C11 0.0554 (12) 0.0638 (13) 0.0487 (11) −0.0201 (10) −0.0139 (9) 0.0073 (9) C12 0.0551 (12) 0.0499 (11) 0.0563 (12) −0.0133 (9) −0.0248 (9) 0.0056 (9) C13 0.0423 (10) 0.0378 (9) 0.0394 (9) −0.0129 (7) −0.0094 (7) 0.0012 (7) C14 0.0419 (10) 0.0391 (9) 0.0399 (9) −0.0125 (7) −0.0115 (7) 0.0016 (7) C15 0.0418 (10) 0.0377 (9) 0.0456 (10) −0.0134 (7) −0.0119 (8) 0.0033 (7) C16 0.0411 (10) 0.0416 (9) 0.0380 (9) −0.0139 (7) −0.0081 (7) 0.0002 (7) C17 0.0419 (10) 0.0496 (10) 0.0391 (9) −0.0179 (8) −0.0046 (7) −0.0051 (7) C18 0.0532 (12) 0.0622 (12) 0.0491 (11) −0.0252 (10) −0.0164 (9) 0.0030 (9) C19 0.0531 (12) 0.0857 (16) 0.0502 (11) −0.0313 (11) −0.0171 (9) −0.0032 (11) C20 0.0600 (14) 0.0822 (16) 0.0566 (12) −0.0385 (12) −0.0090 (10) −0.0175 (11) C21 0.0719 (16) 0.0575 (13) 0.0790 (16) −0.0310 (11) −0.0153 (12) −0.0107 (11)

Acta Cryst. (2017). E73, 1726-1731 sup-3 supporting information

C22 0.0540 (12) 0.0494 (11) 0.0671 (13) −0.0195 (9) −0.0170 (10) −0.0051 (9)

Geometric parameters (Å, º)

S1—N1 1.6845 (17) C7—C8 1.380 (3) S1—C1 1.7616 (19) C7—H7A 0.9300 O1—C1 1.185 (2) C8—C9 1.380 (3) N1—C2 1.271 (2) C8—H8A 0.9300 C1—O2 1.391 (2) C9—C10 1.376 (4) S2—N2 1.6406 (18) C9—H9A 0.9300 S2—C3 1.7071 (18) C10—C11 1.382 (3) O2—C2 1.364 (2) C10—H10A 0.9300 N2—C5 1.327 (2) C11—H11A 0.9300 C2—C3 1.449 (3) C13—C14 1.447 (3) S3—N3 1.6790 (16) C14—C15 1.365 (3) S3—C12 1.746 (2) C15—C16 1.417 (3) O3—C12 1.187 (3) C15—H15A 0.9300 N3—C13 1.278 (2) C16—C17 1.479 (3) C3—C4 1.361 (3) C17—C22 1.386 (3) S4—N4 1.6457 (17) C17—C18 1.387 (3) S4—C14 1.7084 (18) C18—C19 1.384 (3) O4—C13 1.361 (2) C18—H18A 0.9300 O4—C12 1.385 (2) C19—C20 1.380 (4) N4—C16 1.329 (2) C19—H19A 0.9300 C4—C5 1.417 (3) C20—C21 1.371 (4) C4—H4B 0.9300 C20—H20A 0.9300 C5—C6 1.476 (3) C21—C22 1.386 (3) C6—C7 1.390 (3) C21—H21A 0.9300 C6—C11 1.398 (3) C22—H22A 0.9300

N1—S1—C1 93.13 (8) C9—C10—H10A 119.6 C2—N1—S1 109.43 (14) C11—C10—H10A 119.6 O1—C1—O2 122.21 (17) C10—C11—C6 120.3 (2) O1—C1—S1 131.23 (16) C10—C11—H11A 119.9 O2—C1—S1 106.56 (13) C6—C11—H11A 119.9 N2—S2—C3 94.78 (9) O3—C12—O4 122.3 (2) C2—O2—C1 111.28 (14) O3—C12—S3 130.15 (18) C5—N2—S2 110.54 (13) O4—C12—S3 107.58 (13) N1—C2—O2 119.58 (17) N3—C13—O4 120.27 (17) N1—C2—C3 124.86 (17) N3—C13—C14 123.90 (17) O2—C2—C3 115.55 (16) O4—C13—C14 115.82 (16) N3—S3—C12 93.31 (9) C15—C14—C13 128.92 (17) C13—N3—S3 108.63 (13) C15—C14—S4 109.41 (14) C4—C3—C2 129.89 (17) C13—C14—S4 121.66 (14) C4—C3—S2 108.82 (14) C14—C15—C16 110.62 (16) C2—C3—S2 121.28 (14) C14—C15—H15A 124.7 N4—S4—C14 94.50 (9) C16—C15—H15A 124.7 C13—O4—C12 110.20 (15) N4—C16—C15 115.12 (16)

Acta Cryst. (2017). E73, 1726-1731 sup-4 supporting information

C16—N4—S4 110.35 (13) N4—C16—C17 119.36 (16) C3—C4—C5 111.36 (16) C15—C16—C17 125.51 (16) C3—C4—H4B 124.3 C22—C17—C18 118.80 (18) C5—C4—H4B 124.3 C22—C17—C16 120.93 (18) N2—C5—C4 114.50 (17) C18—C17—C16 120.26 (17) N2—C5—C6 119.40 (16) C19—C18—C17 120.2 (2) C4—C5—C6 126.10 (16) C19—C18—H18A 119.9 C7—C6—C11 118.40 (19) C17—C18—H18A 119.9 C7—C6—C5 121.30 (17) C20—C19—C18 120.6 (2) C11—C6—C5 120.29 (18) C20—C19—H19A 119.7 C8—C7—C6 120.7 (2) C18—C19—H19A 119.7 C8—C7—H7A 119.7 C21—C20—C19 119.5 (2) C6—C7—H7A 119.7 C21—C20—H20A 120.2 C7—C8—C9 120.5 (2) C19—C20—H20A 120.2 C7—C8—H8A 119.7 C20—C21—C22 120.3 (2) C9—C8—H8A 119.7 C20—C21—H21A 119.8 C10—C9—C8 119.4 (2) C22—C21—H21A 119.8 C10—C9—H9A 120.3 C17—C22—C21 120.6 (2) C8—C9—H9A 120.3 C17—C22—H22A 119.7 C9—C10—C11 120.7 (2) C21—C22—H22A 119.7

5-(3-Phenylisothiazol-4-yl)-1,3,4-oxathiazol-2-one (II)

Crystal data

C11H6N2O2S2 F(000) = 536 −3 Mr = 262.30 Dx = 1.602 Mg m Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å a = 9.7202 (6) Å Cell parameters from 6714 reflections b = 9.9723 (6) Å θ = 2.7–28.3° c = 11.2165 (7) Å µ = 0.48 mm−1 β = 90.399 (1)° T = 296 K V = 1087.22 (12) Å3 Block, colorless Z = 4 0.48 × 0.43 × 0.37 mm

Data collection Bruker APEXII CCD 2362 independent reflections diffractometer 2228 reflections with I > 2σ(I) φ and ω scans Rint = 0.017 Absorption correction: multi-scan θmax = 27.0°, θmin = 2.9° (SADABS; Bruker, 2008) h = −12→12 Tmin = 0.719, Tmax = 0.837 k = −12→9 8041 measured reflections l = −14→14

Refinement Refinement on F2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites R[F2 > 2σ(F2)] = 0.030 H-atom parameters constrained 2 2 2 2 wR(F ) = 0.083 w = 1/[σ (Fo ) + (0.0465P) + 0.4061P] 2 2 S = 1.02 where P = (Fo + 2Fc )/3 2362 reflections (Δ/σ)max = 0.001 −3 155 parameters Δρmax = 0.37 e Å −3 0 restraints Δρmin = −0.28 e Å

Acta Cryst. (2017). E73, 1726-1731 sup-5 supporting information

Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.018 (2)

Special details Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq S2 0.45224 (4) 0.17168 (4) 0.50567 (3) 0.04262 (13) S1 0.88687 (4) 0.63218 (4) 0.59213 (4) 0.04650 (14) O1 0.65815 (9) 0.53305 (10) 0.65111 (8) 0.0330 (2) C1 0.74809 (14) 0.63165 (15) 0.69017 (12) 0.0365 (3) C3 0.62185 (13) 0.35992 (13) 0.50912 (11) 0.0288 (3) O2 0.72696 (12) 0.69783 (14) 0.77664 (11) 0.0542 (3) C2 0.70630 (13) 0.47087 (13) 0.55025 (10) 0.0288 (3) N2 0.55493 (14) 0.18187 (13) 0.38899 (11) 0.0427 (3) N1 0.82008 (12) 0.51010 (13) 0.50596 (10) 0.0395 (3) C4 0.51836 (13) 0.30589 (14) 0.57667 (12) 0.0330 (3) H4 0.4894 0.3384 0.6501 0.040* C5 0.63936 (13) 0.28477 (14) 0.40146 (11) 0.0325 (3) C6 0.74116 (14) 0.31005 (14) 0.30578 (11) 0.0337 (3) C11 0.83741 (15) 0.21201 (15) 0.27851 (13) 0.0386 (3) H11A 0.8384 0.1317 0.3206 0.046* C7 0.73957 (18) 0.42883 (17) 0.24153 (14) 0.0472 (4) H7A 0.6757 0.4951 0.2595 0.057* C10 0.93225 (15) 0.23383 (18) 0.18830 (14) 0.0465 (4) H10A 0.9976 0.1687 0.1710 0.056* C9 0.92952 (19) 0.3518 (2) 0.12467 (15) 0.0530 (4) H9A 0.9927 0.3662 0.0641 0.064* C8 0.8330 (2) 0.4488 (2) 0.15076 (15) 0.0560 (4) H8A 0.8307 0.5280 0.1070 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23 S2 0.0448 (2) 0.0372 (2) 0.0460 (2) −0.01130 (15) 0.00795 (16) −0.00051 (15) S1 0.0414 (2) 0.0518 (3) 0.0465 (2) −0.01591 (16) 0.01521 (16) −0.01786 (17) O1 0.0314 (4) 0.0366 (5) 0.0311 (4) −0.0004 (4) 0.0070 (3) −0.0061 (4) C1 0.0343 (6) 0.0385 (7) 0.0368 (7) 0.0007 (5) 0.0045 (5) −0.0079 (6) C3 0.0290 (6) 0.0297 (6) 0.0277 (6) 0.0022 (5) 0.0018 (4) 0.0015 (5) O2 0.0487 (6) 0.0632 (7) 0.0508 (6) −0.0034 (5) 0.0123 (5) −0.0286 (6) C2 0.0309 (6) 0.0307 (6) 0.0248 (5) 0.0034 (5) 0.0032 (4) −0.0011 (5) N2 0.0485 (7) 0.0387 (7) 0.0409 (6) −0.0091 (5) 0.0072 (5) −0.0070 (5)

Acta Cryst. (2017). E73, 1726-1731 sup-6 supporting information

N1 0.0380 (6) 0.0447 (7) 0.0359 (6) −0.0089 (5) 0.0103 (5) −0.0122 (5) C4 0.0341 (6) 0.0325 (6) 0.0325 (6) 0.0005 (5) 0.0038 (5) 0.0025 (5) C5 0.0345 (6) 0.0321 (6) 0.0310 (6) 0.0003 (5) 0.0017 (5) −0.0014 (5) C6 0.0359 (7) 0.0375 (7) 0.0277 (6) −0.0039 (5) 0.0018 (5) −0.0069 (5) C11 0.0390 (7) 0.0394 (7) 0.0375 (7) −0.0018 (6) −0.0013 (5) −0.0091 (6) C7 0.0556 (9) 0.0439 (9) 0.0422 (8) 0.0062 (7) 0.0132 (7) 0.0012 (7) C10 0.0381 (7) 0.0568 (10) 0.0448 (8) −0.0001 (7) 0.0056 (6) −0.0179 (7) C9 0.0525 (9) 0.0679 (11) 0.0389 (8) −0.0095 (8) 0.0164 (7) −0.0097 (8) C8 0.0709 (11) 0.0543 (10) 0.0432 (8) −0.0021 (8) 0.0166 (8) 0.0065 (7)

Geometric parameters (Å, º)

S2—N2 1.6546 (13) C5—C6 1.4864 (18) S2—C4 1.6827 (14) C6—C7 1.386 (2) S1—N1 1.6820 (12) C6—C11 1.389 (2) S1—C1 1.7463 (14) C11—C10 1.391 (2) O1—C2 1.3750 (14) C11—H11A 0.9300 O1—C1 1.3849 (17) C7—C8 1.383 (2) C1—O2 1.1921 (17) C7—H7A 0.9300 C3—C4 1.3737 (18) C10—C9 1.376 (3) C3—C5 1.4324 (17) C10—H10A 0.9300 C3—C2 1.4511 (18) C9—C8 1.380 (3) C2—N1 1.2770 (17) C9—H9A 0.9300 N2—C5 1.3208 (18) C8—H8A 0.9300 C4—H4 0.9300

N2—S2—C4 95.45 (6) C3—C5—C6 127.12 (12) N1—S1—C1 93.61 (6) C7—C6—C11 119.48 (13) C2—O1—C1 111.27 (10) C7—C6—C5 121.01 (13) O2—C1—O1 122.58 (13) C11—C6—C5 119.50 (13) O2—C1—S1 130.46 (12) C6—C11—C10 120.07 (15) O1—C1—S1 106.96 (9) C6—C11—H11A 120.0 C4—C3—C5 110.58 (12) C10—C11—H11A 120.0 C4—C3—C2 122.58 (12) C8—C7—C6 120.03 (15) C5—C3—C2 126.64 (11) C8—C7—H7A 120.0 N1—C2—O1 118.86 (12) C6—C7—H7A 120.0 N1—C2—C3 126.82 (12) C9—C10—C11 120.04 (15) O1—C2—C3 114.23 (11) C9—C10—H10A 120.0 C5—N2—S2 109.98 (10) C11—C10—H10A 120.0 C2—N1—S1 109.27 (9) C10—C9—C8 119.98 (15) C3—C4—S2 109.25 (10) C10—C9—H9A 120.0 C3—C4—H4 125.4 C8—C9—H9A 120.0 S2—C4—H4 125.4 C9—C8—C7 120.40 (17) N2—C5—C3 114.74 (12) C9—C8—H8A 119.8 N2—C5—C6 118.14 (12) C7—C8—H8A 119.8

Acta Cryst. (2017). E73, 1726-1731 sup-7