Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease

Total Page:16

File Type:pdf, Size:1020Kb

Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease G C A T T A C G G C A T genes Review Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease Oriana Strianese 1,2, Francesca Rizzo 2 , Michele Ciccarelli 3 , Gennaro Galasso 3, Ylenia D’Agostino 2, Annamaria Salvati 2 , Carmine Del Giudice 1, Paola Tesorio 4 and Maria Rosaria Rusciano 1,3,* 1 Clinical Research and Innovation, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy; [email protected] (O.S.); [email protected] (C.D.G.) 2 Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; [email protected] (F.R.); [email protected] (Y.D.); [email protected] (A.S.) 3 Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; [email protected] (M.C.); [email protected] (G.G.) 4 Unit of Cardiology, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy; [email protected] * Correspondence: [email protected] Received: 18 June 2020; Accepted: 2 July 2020; Published: 6 July 2020 Abstract: Life expectancy has gradually grown over the last century. This has deeply affected healthcare costs, since the growth of an aging population is correlated to the increasing burden of chronic diseases. This represents the interesting challenge of how to manage patients with chronic diseases in order to improve health care budgets. Effective primary prevention could represent a promising route. To this end, precision, together with personalized medicine, are useful instruments in order to investigate pathological processes before the appearance of clinical symptoms and to guide physicians to choose a targeted therapy to manage the patient. Cardiovascular and neurodegenerative diseases represent suitable models for taking full advantage of precision medicine technologies applied to all stages of disease development. The availability of high technology incorporating artificial intelligence and advancement progress made in the field of biomedical research have been substantial to understand how genes, epigenetic modifications, aging, nutrition, drugs, microbiome and other environmental factors can impact health and chronic disorders. The aim of the present review is to address how precision and personalized medicine can bring greater clarity to the clinical and biological complexity of these types of disorders associated with high mortality, involving tremendous health care costs, by describing in detail the methods that can be applied. This might offer precious tools for preventive strategies and possible clues on the evolution of the disease and could help in predicting morbidity, mortality and detecting chronic disease indicators much earlier in the disease course. This, of course, will have a major effect on both improving the quality of care and quality of life of the patients and reducing time efforts and healthcare costs. Keywords: precision medicine; personalized medicine; clinical application; genomics 1. Introduction Over the last century, there has been a gradual increase in average life expectancy [1]. Today, for the first time in history, most people can expect to live into their sixties and beyond. Population aging represents one of the most important demographic features worldwide [2] and it is poised to become one of the most significant social transformations of the twenty-first century, Genes 2020, 11, 747; doi:10.3390/genes11070747 www.mdpi.com/journal/genes Genes 2020, 11, x; doi: FOR PEER REVIEW 2 of 24 poised to become one of the most significant social transformations of the twenty-first century, with implications in all aspects of society [3,4]. One of the major consequences of a rapidly aging Genespopulation2020, 11, 747[5] is the increasing burden of chronic diseases associated with age and related healthcare 2 of 24 costs [6]. The most common chronic diseases linked to an aging society are the following: cardiovascular disease; diabetes; neurodegenerative diseases; most cancers [7]. The management of withcomplex implications chronic diseases in all aspects is becoming of society a serious [3, 4social]. One and of economic the major trouble consequences for the world's of a elderly rapidly aging populationpopulation [ 5and] is represents the increasing a huge burden challenge of chronicfor national diseases and international associated health with age care and budgets related [8]. healthcare costs [6The]. The general most consensus common is chronic that these diseases types linkedof disorders to an agingcan be society best tackled are the by following: effective primary cardiovascular disease;prevention diabetes;, demonstrating neurodegenerative that pathologica diseases;l processes most cancersbegin years [7]. before The management the appearance of of complex clinical chronic diseasessymptoms. is becoming Effective primary a serious prevention social and can economic be challenging. trouble The for growing the world’s investment elderly in genomic population and representsresearch has a huge raised challenge great expectations for national concerning and international its effects on healthbiomedicine care budgetsto study susceptibility [8]. to cancer and other chronic diseases and to promote new preventive interventions [9]. An ambitious The general consensus is that these types of disorders can be best tackled by effective primary challenge for medicine is to guarantee targeted care paths beginning with more personalized prevention, demonstrating that pathological processes begin years before the appearance of clinical approaches. To achieve this goal, in the genomic era we have already approached an exciting period symptoms.of medicine, Effective where primarya convergence prevention of genomics, can be challenging. bioinformatics The growingand new investment molecular intechniques, genomic research haspromises raised greatto improve expectations our understanding concerning of its the effects genetic on basis biomedicine of many diseases to study, as susceptibility shown in Figure to cancer 1. and otherWith chronic this greater diseases understanding and to promote comes the new possibility preventive of redefining interventions disease [9]. mechanism An ambitiouss at higher challenge for medicineresolution iss to and guarantee, along with targeted this, caretargeting paths with beginning more precise with more therapy personalized [10] (e.g., preventing approaches. its To onset achieve this goal,andin enabling the genomic early detection, era we have as well already as tailoring approached therapy an to exciting patients period’ characteristics of medicine, [11] where). a convergence of genomics,Among bioinformaticsage-related degenerative and new molecularconditions, techniques, cardiovascular promises and neurodegenerative to improve our understanding diseases of theaccount genetic for basis the majority of many of diseases, hospitalizations, as shown healthcare in Figure spending1. With and this mortality greater understandingworldwide. Due comesto the the large number of people who are potentially affected by these conditions, this puts pressure on possibility of redefining disease mechanisms at higher resolutions and, along with this, targeting with more health systems, increasing the demand for care, services and technologies to prevent and treat these precise therapy [10] (e.g., preventing its onset and enabling early detection, as well as tailoring therapy to types of non-communicable diseases [12]. patients’ characteristics [11]). PRECISION MEDICINE PERSONALIZED MEDICINE Clinical phenotype (blood pressureweight, height, clinical features) Enviroment (lifestyle, diet, medication, nutrition, pollution) Molecular analysis (epigenomics, genomics, metabolomics, proteomics, lipidomics, transcriptomics) FigureFigure1. 1. AnAn ambitious challenge challenge for for medicine medicine is to is guarantee to guarantee targeted targeted care paths care, paths,beginning beginning with with moremore personalized personalized approaches. approaches. To Toachieve achieve this thisgoal, goal, it is necessary it is necessary to have to a have multi a-level multi-level approach approach towardstowards patients. patients.At At molecular molecular level level the the multi multi omics omics approach approach (transcriptomic, (transcriptomic, metabolomics, metabolomics, genomic, proteomics,genomic, proteomics, epigonomics) epigonomics) provides prov a deeperides a deeper understanding understanding ofpatient of patient conditions conditions from from thethe original causesoriginal of cause diseasess of disease to the functionals to the functional consequences. consequences. This This information information should should be be integrated integrated with with the study ofthe the study “exposome”, of the “exposome”, defined asdefined the totality as the totality of exposure of exposure experienced experienced by anby an individual individual during during their life their life and the health impact of those exposures (Wild CP. Complementing the genome with an and the health impact of those exposures (Wild CP. Complementing the genome with an “exposome”: “exposome”: The outstanding challenge of environmental exposure measurement in molecular The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer epidemiology. Cancer Epidemiol Biomarkers Prev. 2005; 14(8):1847–1850). Together with the study of Epidemiol Biomarkers Prev.
Recommended publications
  • Preparing Pathology for Personalized Medicine: Possibilities for Improvement of the Pre-Analytical Phase
    Preparing pathology for personalized medicine: possibilities for improvement of the pre-analytical phase. Patricia Jta Groenen, Willeke A Blokx, Coos Diepenbroek, Lambert Burgers, Franco Visinoni, Pieter Wesseling, Han van Krieken To cite this version: Patricia Jta Groenen, Willeke A Blokx, Coos Diepenbroek, Lambert Burgers, Franco Visinoni, et al.. Preparing pathology for personalized medicine: possibilities for improvement of the pre-analytical phase.. Histopathology, Wiley, 2011, 59 (1), pp.1. 10.1111/j.1365-2559.2010.03711.x. hal-00630795 HAL Id: hal-00630795 https://hal.archives-ouvertes.fr/hal-00630795 Submitted on 11 Oct 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Histopathology Preparing pathology for personalized medicine: possibilities for improvement of the pre-analytical phase. For Peer Review Journal: Histopathology Manuscript ID: HISTOP-08-10-0429 Wiley - Manuscript type: Review Date Submitted by the 06-Aug-2010 Author: Complete List of Authors: Groenen, Patricia; Radboud University Nijmegen Medical Centre, Pathology Blokx,
    [Show full text]
  • AMP Molecular Genetic Pathology Recommended Review Books
    ASSOCIATION FOR MOLECULAR PATHOLOGY Education. Innovation & Improved Patient Care. Advocacy. 6120 Executive Blvd. Suite 700, Rockville, MD 20852 Tel: 301-634-7939 | Fax: 301-634-7995 | [email protected] | www.amp.org AMP Molecular Genetic Pathology : RECOMMENDED REVIEW BOOKS Updated: March, 2021 The following books are suggested for those preparing for the Molecular Genetic Pathology board exam administered by the American Board of Medical Genetics and the American Board of Pathology. This list represents the recommendations of the MGP Review Course faculty and the AMP Training and Education Committee; endorsement by the ABMG or the ABP is not implied. GENERAL MOLECULAR PATHOLOGY Thompson & Thompson Genetics in Medicine, 8th edition Nussbaum RL et al., eds. Elsevier, 2015 Molecular Pathology: The Molecular Basis of Human Diseases 2nd edition Coleman WB and Tsongalis GJ, eds. Elsevier, 2018 Diagnostic Molecular Pathology: A Guide to Applied Molecular Testing Coleman WB and Tsongalis GJ, eds. Elsevier, 2016 Molecular Basis of Human Cancer, 2nd edition Coleman WB and Tsongalis GJ, eds. Elsevier, 2017 Molecular Diagnostics: Fundamentals, Methods, and Clinical Applications 3rd edition Buckingham L. ASCP, 2021 Genomic Medicine: A Practical Guide Tafe LJ and Arcila ME, eds. Springer, 2020 CYTOGENETICS Gardner and Sutherland’s Chromosome Abnormalities and Genetic Counseling, 5th edition McKinlay Gardner RJ, Amor DJ. Oxford University Press, 2018 The Principles of Clinical Cytogenetics, 3rd edition Gersen SL and Keagle MB, eds. Human Press, 2013 Human Chromosomes, 4th edition Miller OJ and Therman E, eds. Springer Press, 2000 Vance GH, Khan WA. Utility of Fluorescence In Situ Hybridization in Clinical and Research Applications. Advances in Molecular Pathology 2020; 3:65-75.
    [Show full text]
  • Personalized Medicine: Definitions, History, and Implications for the OT Profession
    The Open Journal of Occupational Therapy Volume 3 Issue 4 Fall 2015 Article 1 October 2015 Personalized medicine: Definitions, history, and implications for the OT profession Diane Powers Dirette Western Michigan University - USA, [email protected] Follow this and additional works at: https://scholarworks.wmich.edu/ojot Part of the Occupational Therapy Commons Recommended Citation Dirette, D. P. (2015) "Personalized medicine: Definitions, history, and implications for the OT profession," The Open Journal of Occupational Therapy: Vol. 3: Iss. 4, Article 1. Available at: https://doi.org/10.15453/ 2168-6408.1213 This document has been accepted for inclusion in The Open Journal of Occupational Therapy by the editors. Free, open access is provided by ScholarWorks at WMU. For more information, please contact wmu- [email protected]. Personalized medicine: Definitions, history, and implications for the OT profession Keywords individualized medicine, personalized medicine, precision medicine, stratified medicine, paradigm shifts Credentials Display Diane Powers Dirette, Ph.D., OTL Copyright transfer agreements are not obtained by The Open Journal of Occupational Therapy (OJOT). Reprint permission for this Letter from the Editor should be obtained from the corresponding author(s). Click here to view our open access statement regarding user rights and distribution of this Letter from the Editor. DOI: 10.15453/2168-6408.1213 This letter from the editor is available in The Open Journal of Occupational Therapy: https://scholarworks.wmich.edu/ ojot/vol3/iss4/1 Dirette: Personalized medicine in OT That dreaded phone call comes from your treatment of leukemia, cystic fibrosis, liver cancer physician in the middle of the day informing you of (Kaiser, 2015), lung cancer (Eisenstein, 2014), the results of your biopsy that was ordered amyotrophic lateral sclerosis (Cashman & Ospri, following an abnormal mammogram.
    [Show full text]
  • Personalized Medicine: the Impact of Molecular Testing on Patient Care
    Personalized Medicine: The Impact of Molecular Testing on Patient Care Mini-Elective Spring 2020 University Course Dates: January 17, 24, 31, February 7, 14 Fridays, 2:30-4:30 PM of Pittsburgh Maximum Students: 5 School of Class Year: MS1 and MS2 Medicine Course Directors: Simion Chiosea, MD Professor of Pathology Somak Roy, MD Assistant Professor of Pathology Contact Information: Lynn Wolkenstein 412-647-7065 [email protected] Jessica Tebbets 412-802-6797 [email protected] Registration: Betsy Nero, Office of Medical Education [email protected] Description: Personalized medicine applies knowledge of molecular data for early disease detection, targeted treatment, and detection of person’s predisposition to a particular disease. It improves diagnosis and treatment of a disease and advances effectiveness of healthcare. This mini-elective is based in the Department of Pathology and will introduce students to principles and current applications of personalized medicine. During mini-elective students will be able to observe and discuss the principles of molecular testing, become familiar with the clinical interpretation of molecular results in all areas of medicine, including oncology, neuro-oncology, endocrinology, and gastroenterology. The training will be conducted in the clinical Molecular and Genomic Pathology (MGP) laboratory, Department of Pathology, University of Pittsburgh. MGP laboratory is one of the largest laboratories in the US focused on molecular diagnostics of solid tumors. It processes over 22,000 samples each year using high-throughput technologies, such as Next Generation Sequencing (NGS) and a variety of the conventional molecular biology techniques. It performs molecular testing for all hospitals of the UPMC system and serves as reference laboratory for other medical centers across the United States.
    [Show full text]
  • Assessment of Pharmacist's Knowledge and Perception Toward
    pharmacy Article Assessment of Pharmacist’s Knowledge and Perception toward 3D Printing Technology as a Dispensing Method for Personalized Medicine and the Readiness for Implementation Mohammed S. Algahtani Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 1988, Saudi Arabia; [email protected]; Tel.: +966-17-458-7200 Abstract: The main user of three dimensional (3D) printing for drug dispensing will be the hospital pharmacist. Yet despite the tremendous amount of research and industrial initiatives, there is no evaluation of the pharmacist’s knowledge and opinion of this technology. The present study aimed to assess knowledge and attitude among pharmacists about 3D printing technology as an innovative dispensing method for personalized medicine and the barriers to implementation in Saudi Arabia. We found that 53% of participants were aware of 3D printing technology in general, but only 14–16% of pharmacists were aware of the specific application of 3D printing in drug dispensing. Participants showed a positive perception regarding the concept of personalized medicine and that 3D printing could provide a promising solution to formulate and dispense personalized medicine in the pharmacy. It was also found that 67% of pharmacists were encouraged to adopt this new technology for drug dispensing, reflecting their willingness to learn new innovations. However, the technology cost, regulation, and the shortage of practicing pharmacists were also reported as the top barriers for Citation: Algahtani, M.S. Assessment of Pharmacist’s implementation. Facilitating the implementation of this technology in the pharmacy practice will Knowledge and Perception toward require a strategic plan in which pharmacists collaborate with regulatory bodies and 3D printing 3D Printing Technology as a engineers to overcome challenges and barriers to implement such promising technology.
    [Show full text]
  • Leave Policy for Residents and Fellows.Pdf
    Leave Policy for Residents and Fellows The following policy outlines indications and training modifications to accommodate leave during accredited training for certification in all of the ABMGG specialties. Candidates for certification are required to successfully complete training in one of the following programs: ACGME-accredited Programs: 24 months (2 years) • Medical Genetics and Genomics Residency • Clinical Biochemical Genetics Postdoctoral Fellowship • Laboratory Genetics and Genomics Postdoctoral Fellowship Approved Combined Residency Programs: 48 months (4 years) • Medical Genetics and Genomics/Internal Medicine • Medical Genetics and Genomics/Pediatrics • Medical Genetics and Genomics/Maternal Fetal Medicine • Medical Genetics and Genomics/Reproductive Endocrinology and Infertility Subspecialty Fellowship Programs: 12 months (1 year) • Medical Biochemical Genetics • Molecular Genetic Pathology (cosponsored with American Board of Pathology) General Leave Policy: All candidates are allotted 4 weeks leave per year, which may be accrued or averaged through the duration of training for any indication. All candidates must take at least one week off per year as designated vacation time. Leave time cannot be forfeited to shorten training duration. Parental, Caregiver, and Medical Leave Policy: This policy refers to leave for the following indications: parental leave (the birth and care of a newborn including adopted and foster children for either partner), caregiver leave (care for an immediate (first degree) family member or partner with a serious health condition), or medical leave for significant personal medical needs. For Parental, Caregiver, and Medical leave, the ABMGG will allow up to 6 weeks leave during an academic year to occur once during the training program. For trainees who take indicated leave, they must still take at least one additional week for vacation during the same training year.
    [Show full text]
  • The Economic Impact and Functional Applications of Human Genetics and Genomics
    The Economic Impact and Functional Applications of Human Genetics and Genomics Commissioned by the American Society of Human Genetics Produced by TEConomy Partners, LLC. Report Authors: Simon Tripp and Martin Grueber May 2021 TEConomy Partners, LLC (TEConomy) endeavors at all times to produce work of the highest quality, consistent with our contract commitments. However, because of the research and/or experimental nature of this work, the client undertakes the sole responsibility for the consequence of any use or misuse of, or inability to use, any information or result obtained from TEConomy, and TEConomy, its partners, or employees have no legal liability for the accuracy, adequacy, or efficacy thereof. Acknowledgements ASHG and the project authors wish to thank the following organizations for their generous support of this study. Invitae Corporation, San Francisco, CA Regeneron Pharmaceuticals, Inc., Tarrytown, NY The project authors express their sincere appreciation to the following indi- viduals who provided their advice and input to this project. ASHG Government and Public Advocacy Committee Lynn B. Jorde, PhD ASHG Government and Public Advocacy Committee (GPAC) Chair, President (2011) Professor and Chair of Human Genetics George and Dolores Eccles Institute of Human Genetics University of Utah School of Medicine Katrina Goddard, PhD ASHG GPAC Incoming Chair, Board of Directors (2018-2020) Distinguished Investigator, Associate Director, Science Programs Kaiser Permanente Northwest Melinda Aldrich, PhD, MPH Associate Professor, Department of Medicine, Division of Genetic Medicine Vanderbilt University Medical Center Wendy Chung, MD, PhD Professor of Pediatrics in Medicine and Director, Clinical Cancer Genetics Columbia University Mira Irons, MD Chief Health and Science Officer American Medical Association Peng Jin, PhD Professor and Chair, Department of Human Genetics Emory University Allison McCague, PhD Science Policy Analyst, Policy and Program Analysis Branch National Human Genome Research Institute Rebecca Meyer-Schuman, MS Human Genetics Ph.D.
    [Show full text]
  • Department of Molecular Biology and Immunology
    Genetics Student Handbook 2020-2021 The information provided in this document serves to supplement the requirements of the Graduate School of Biomedical Sciences detailed in the UNTHSC Catalog with requirements specific to the Genetics discipline. Genetics Discipline (8/6/20) 1 Table of Contents Page Description of the Genetics Discipline ............................................ 3 Graduate Faculty and Their Research ............................................. 5 Requirements ................................................................................... 9 Required Courses ....................................................................... 9 Journal Club and Seminar Courses ............................................ 9 Elective Courses ......................................................................... 9 Sample Degree Plans ..................................................................... 11 Advancement to Candidacy ........................................................... 14 Genetics Discipline (8/6/20) 2 1. Description of the Genetics Discipline John V. Planz, Ph.D., Graduate Advisor Center for BioHealth, Rm 360 Phone: 817-735-2397 E-mail: [email protected] Program website: www.unthsc.edu/graduate-school-of-biomedical-sciences/genetics/ Graduate Faculty: Allen; Barber; Budowle; Cihlar; Coble; Ge; Phillips; Planz; Woerner Genetics is a broad interdisciplinary field that unites biochemistry, microbial and cellular biology, molecular processes, biotechnology, computational biology, biogeography and human disease
    [Show full text]
  • Importance of Medical Genetics Research in Medicine
    cs an eti d D n N e A G f R Journal of Genetics and DNA o e l s a e a n Sboui S, Tabbabi A, J Genet DNA Res 2018, 2:1 r r c u h o J Research Short Communication Open Access Importance of Medical Genetics Research in Medicine Sajida Sboui1 and Ahmed Tabbabi2* 1Faculty of Medicine of Monastir, Monastir University, Monastir, Tunisia 2Department of Hygiene and Environmental Protection, Ministry of Public Health, Tunis, Tunisia *Corresponding author: Ahmed Tabbabi, Department of Hygiene and Environmental Protection, Ministry of Public Health, Tunis, Tunisia, Tel: +216 71 577 115; +216 71 577 302; E-mail: [email protected] Received date: February 09, 2018, Accepted date: February 20, 2018, Published date: February 27, 2018 Copyright: © 2018 Sboui S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Keywords: Chromosome; Genes; Cleft lip; Transforming growth In medical genetics, the work diagnosis includes molecular analyzes factors (DNA, proteins and chromosomes) and clinical manisfestations of conditions, including malformations birth. If monogenic diseases are Short Communication rare, those caused by the gene/environment interaction are common and include many diseases. Prevention in medical genetics involves for About millions of families are affected by hereditary diseases around common pathologies the identification of subjects with high risk, with the world. Statistics analysis showed that about 5% of all pregnancies the intention of preventing the disease (e.g.
    [Show full text]
  • Paving the Way for Personalized Medicine
    OCTOBER 2013 Paving the Way for Personalized Medicine FDA’s Role in a New Era of Medical Product Development U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES U.S. FOOD AND DRUG ADMINISTRATION Paving the Way for Personalized Medicine: FDA’s Role in a New Era of Medical Product Development COMMISSIONER’S MESSAGE 2 I. INTRODUCTION 3 II. PERSONALIZED MEDICINE FROM A REGULATORY PERSPECTIVE 5 1. DEFINING PERSONALIZED MEDICINE 5 2. FDA’S UNIQUE ROLE AND RESPONSIBILITIES IN PERSONALIZED MEDICINE 11 III. DRIVING TOWARD AND RESPONDING TO SCIENTIFIC ADVANCES 14 1. BUILDING THE INFRASTRUCTURE TO SUPPORT PERSONALIZED MEDICINE 16 2. RECENT ORGANIZATIONAL EFFORTS 20 IV. DEFINING AND CLARIFYING REGULATORY PATHWAYS AND POLICIES 23 1. ENSURING THE AVAILABILITY OF SAFE AND EFFECTIVE DIAGNOSTICS 29 2. PRODUCT INTERDEPENDENCY 32 3. PRODUCT LABELING 36 4. POST-MARKET SURVEILLANCE 40 V. ADVANCING REGULATORY SCIENCE IN SUPPORT OF PERSONALIZED MEDICINE 42 1. DEVELOPING REGULATORY STANDARDS, RESEARCH METHODS, AND TOOLS 42 2. CONDUCTING AND COLLABORATING IN RESEARCH 47 VI. A NEW ERA OF MEDICAL PRODUCT DEVELOPMENT: OPPORTUNITIES AND CHALLENGES AHEAD 54 GLOSSARY OF TERMS 58 ENDNOTES 60 ver the past few years, a number of products that signal a new era of medical product development have entered the market or come on the horizon. In just the last two years, the FDA approved four cancer drugs for use in patients whose tumors have specific genetic characteristics that Oare identified by a companion diagnostic test. Last year, FDA approved a new therapy for use in certain cystic fibrosis patients with a specific genetic mutation. Earlier this year, three-dimensional (3D) printing was used to create a bioresorbable tracheal splint for treating a critically-ill infant.
    [Show full text]
  • Verification Activities: Sonia Salas
    Verification Activities: New and Emerging Technologies Sonia Salas Verification Activities: New and Emerging Technologies • Verification: Methods, procedures, tests and other evaluations, in addition to monitoring, to determine whether a control measure or combination of control measures is or has been operating as intended and to establish the validity of the food safety plan (Source: FDA Industry Guidance: Control of Listeria monocytogenes in RTE Foods) • Verification activities include: validation, verification that monitoring is being conducted as required, verification of implementation and effectiveness, verification that appropriate decisions about corrective actions are being made and reanalysis (Source: PC Rule §117.155) Verification Activities: New and Emerging Technologies What new and emerging technologies can assist the produce sector in determining whether Listeria preventive controls are or have been operating as intended in a food safety plan? Verification Activities: New and Emerging Technologies Listeria controls (Source: FDA Industry Guidance: Control of Listeria monocytogenes in RTE Foods) • Controls on personnel • Design, construction and operation of a plant • Design, construction and maintenance of equipment • Sanitation • Storage practices and time/temperature controls • Transportation • Training • Controls on raw materials and ingredients • Process control based on formulating a RTE food • Listericial process control Verification Activities: New and Emerging Technologies – Whole Genome Sequencing (WGS) – Nanotechnology
    [Show full text]
  • Clinical Whole Genome Sequencing
    PRODUCT DATASHEET CLIA Certified and College of American Clinical Whole Pathologists (CAP) accredited Genome Built around our tried and tested PCR-Free Sequencing whole genome sequencing process OVERVIEW WHAT’S INCLUDED Clinical Human Whole Genome Sequencing provides validated, high quality sequence data generated through the same pro- • Sample receipt and nucleic acid extraction from blood cesses that have produced >100,000 research genomes - in- • QC & plating, sample preparation cluding genomes that have been included in large resource • Sample fidelity QC (96 SNP fingerprinting) datasets such as TOPMed and GnoMAD. Our in-house devel- oped, PCR-Free library construction process produces ex- • 2x150bp paired sequencing reads tremely even coverage of the entire genome, including exonic, • Coverage of ≥95% of bases ≥20x intronic, GC-rich, and regulatory regions. • Data delivery through a secure online portal Whole genome sequencing offers several advantages over tra- • Turnaround time ≤28 days from sample receipt ditional approaches of genomic characterization. Targeted pan- el and exome approaches require amplification of genomic DNA PERFORMANCE METRICS which induces sequence-context specific bias. Analyses of panels and exomes is limited to targeted regions and content % Bases at 20X Target: ≥95% must be updated if new regions are identified for study. Sever- Mean Coverage Target for Genome: ≥30X WGS Coverage al classes of human variation including copy number profiling and structural variation calling are more easily and accurately % Contamination: ≤2.5% (typically less than 0.2%) determined from whole genome sequencing. PF HQ Aligned Bases: ≥8x1010 bases Technical performance specifications for our clinical whole genome were determined through pre-validation analysis of Estimated Library Size: ≥7x109 molecules >20,000 research genomes as well as through input received SNV Sensitivity: 98.8% from our medical and population genetics community.
    [Show full text]