Adaptive Circuit Learning for Quantum Metrology Ziqi Ma*1, Pranav Gokhale1, Tian-Xing Zheng2, Sisi Zhou2, Xiaofei Yu2, Liang Jiang2, Peter Maurer2, and Frederic T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantum Metrology with Bose-Einstein Condensates
Submitted in accordance with the requirements for the degree of Doctor of Philosophy SCHOOL OF PHYSICS & ASTRONOMY Quantum metrology with Bose-Einstein condensates Jessica Jane Cooper March 2011 The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that the appropriate credit has been given within the thesis where reference has been made to the work of others. Several chapters within this thesis are based on work from jointly-authored publi- cations as detailed below: Chapter 5 - Based on work published in Journal of Physics B 42 105301 titled ‘Scheme for implementing atomic multiport devices’. This work was completed with my supervisor Jacob Dunningham and a postdoctoral researcher David Hallwood. Chapter 6 - Based on work published in Physical Review A 81 043624 titled ‘Entan- glement enhanced atomic gyroscope’. Again, this work was completed with Jacob Dunningham and David Hallwood. Chapter 7 - The research presented in this chapter has recently been added to a pre-print server [arxiv:1101.3852] and will be soon submitted to a peer-reviewed journal. It is titled ‘Robust Heisenberg limited phase measurements using a multi- mode Hilbert space’ and was completed during a visit to Massey University where I collaborated with David Hallwood and his current supervisor Joachim Brand. Chapter 8 - Based on work completed with Jacob Dunningham which has recently been submitted to New Journal of Physics. It is titled ‘Towards improved interfer- ometric sensitivities in the presence of loss’. -
The Emergence of a Classical World in Bohmian Mechanics
The Emergence of a Classical World in Bohmian Mechanics Davide Romano Lausanne, 02 May 2014 Structure of QM • Physical state of a quantum system: - (normalized) vector in Hilbert space: state-vector - Wavefunction: the state-vector expressed in the coordinate representation Structure of QM • Physical state of a quantum system: - (normalized) vector in Hilbert space: state-vector; - Wavefunction: the state-vector expressed in the coordinate representation; • Physical properties of the system (Observables): - Observable ↔ hermitian operator acting on the state-vector or the wavefunction; - Given a certain operator A, the quantum system has a definite physical property respect to A iff it is an eigenstate of A; - The only possible measurement’s results of the physical property corresponding to the operator A are the eigenvalues of A; - Why hermitian operators? They have a real spectrum of eigenvalues → the result of a measurement can be interpreted as a physical value. Structure of QM • In the general case, the state-vector of a system is expressed as a linear combination of the eigenstates of a generic operator that acts upon it: 퐴 Ψ = 푎 Ψ1 + 푏|Ψ2 • When we perform a measure of A on the system |Ψ , the latter randomly collapses or 2 2 in the state |Ψ1 with probability |푎| or in the state |Ψ2 with probability |푏| . Structure of QM • In the general case, the state-vector of a system is expressed as a linear combination of the eigenstates of a generic operator that acts upon it: 퐴 Ψ = 푎 Ψ1 + 푏|Ψ2 • When we perform a measure of A on the system |Ψ , the latter randomly collapses or 2 2 in the state |Ψ1 with probability |푎| or in the state |Ψ2 with probability |푏| . -
Aspects of Loop Quantum Gravity
Aspects of loop quantum gravity Alexander Nagen 23 September 2020 Submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College London 1 Contents 1 Introduction 4 2 Classical theory 12 2.1 The ADM / initial-value formulation of GR . 12 2.2 Hamiltonian GR . 14 2.3 Ashtekar variables . 18 2.4 Reality conditions . 22 3 Quantisation 23 3.1 Holonomies . 23 3.2 The connection representation . 25 3.3 The loop representation . 25 3.4 Constraints and Hilbert spaces in canonical quantisation . 27 3.4.1 The kinematical Hilbert space . 27 3.4.2 Imposing the Gauss constraint . 29 3.4.3 Imposing the diffeomorphism constraint . 29 3.4.4 Imposing the Hamiltonian constraint . 31 3.4.5 The master constraint . 32 4 Aspects of canonical loop quantum gravity 35 4.1 Properties of spin networks . 35 4.2 The area operator . 36 4.3 The volume operator . 43 2 4.4 Geometry in loop quantum gravity . 46 5 Spin foams 48 5.1 The nature and origin of spin foams . 48 5.2 Spin foam models . 49 5.3 The BF model . 50 5.4 The Barrett-Crane model . 53 5.5 The EPRL model . 57 5.6 The spin foam - GFT correspondence . 59 6 Applications to black holes 61 6.1 Black hole entropy . 61 6.2 Hawking radiation . 65 7 Current topics 69 7.1 Fractal horizons . 69 7.2 Quantum-corrected black hole . 70 7.3 A model for Hawking radiation . 73 7.4 Effective spin-foam models . -
Quantum Mechanics As a Limiting Case of Classical Mechanics
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Quantum Mechanics As A Limiting Case provided by CERN Document Server of Classical Mechanics Partha Ghose S. N. Bose National Centre for Basic Sciences Block JD, Sector III, Salt Lake, Calcutta 700 091, India In spite of its popularity, it has not been possible to vindicate the conven- tional wisdom that classical mechanics is a limiting case of quantum mechan- ics. The purpose of the present paper is to offer an alternative point of view in which quantum mechanics emerges as a limiting case of classical mechanics in which the classical system is decoupled from its environment. PACS no. 03.65.Bz 1 I. INTRODUCTION One of the most puzzling aspects of quantum mechanics is the quantum measurement problem which lies at the heart of all its interpretations. With- out a measuring device that functions classically, there are no ‘events’ in quantum mechanics which postulates that the wave function contains com- plete information of the system concerned and evolves linearly and unitarily in accordance with the Schr¨odinger equation. The system cannot be said to ‘possess’ physical properties like position and momentum irrespective of the context in which such properties are measured. The language of quantum mechanics is not that of realism. According to Bohr the classicality of a measuring device is fundamental and cannot be derived from quantum theory. In other words, the process of measurement cannot be analyzed within quantum theory itself. A simi- lar conclusion also follows from von Neumann’s approach [1]. -
Coherent States and the Classical Limit in Quantum Mechanics
Coherent States And The Classical Limit In Quantum Mechanics 0 ħ ¡! Bram Merten Radboud University Nijmegen Bachelor’s Thesis Mathematics/Physics 2018 Department Of Mathematical Physics Under Supervision of: Michael Mueger Abstract A thorough analysis is given of the academical paper titled "The Classical Limit for Quantum Mechanical Correlation Functions", written by the German physicist Klaus Hepp. This paper was published in 1974 in the journal of Communications in Mathematical Physics [1]. The part of the paper that is analyzed summarizes to the following: "Suppose expectation values of products of Weyl operators are translated in time by a quantum mechanical Hamiltonian and are in coherent states 1/2 1/2 centered in phase space around the coordinates ( ¡ ¼, ¡ »), where (¼,») is ħ ħ an element of classical phase space, then, after one takes the classical limit 0, the expectation values of products of Weyl operators become ħ ¡! exponentials of coordinate functions of the classical orbit in phase space." As will become clear in this thesis, authors tend to omit many non-trivial intermediate steps which I will precisely include. This could be of help to any undergraduate student who is willing to familiarize oneself with the reading of academical papers, but could also target any older student or professor who is doing research and interested in Klaus Hepp’s work. Preliminary chapters which will explain all the prerequisites to this paper are given as well. Table of Contents 0 Preface 1 1 Introduction 2 1.1 About Quantum Mechanics . .2 1.2 About The Wave function . .2 1.3 About The Correspondence of Classical and Quantum mechanics . -
Quantum Theory and the Structure of Space-Time
Quantum theory and the structure of space-time Tejinder Singh Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India ABSTRACT We argue that space and space-time emerge as a consequence of dynamical collapse of the wave function of macroscopic objects. Locality and separability are properties of our approximate, emergent universe. At the fundamental level, space-time is non-commutative, and dynamics is non-local and non-separable. I. SPACE-TIME IS NOT THE PERFECT ARENA FOR QUANTUM THEORY Space-time is absolute, in conventional classical physics. Its geometry is determined dy- namically by the distribution of classical objects in the universe. However, the underlying space-time manifold is an absolute given, providing the arena in which material bodies and fields exist. The same classical space-time arena is carried over to quantum mechanics and to quantum field theory, and it works beautifully there too. Well, almost! But not quite. In this essay we propose the thesis that the troubles of quantum theory arise because of the illegal carry-over of this classical arena. By troubles we mean the quantum measurement problem, the spooky action at a distance and the peculiar nature of quantum non-locality, the so-called problem of time in quantum theory, the extreme dependence of the theory on its classical limit, and the physical meaning of the wave function [1]. We elaborate on these in the next section. Then, in Section III, we propose that the correct arena for quantum theory is a non-commutative space-time: here there are no troubles. Classical space-time emerges as an approximation, as a consequence of dynamical collapse of the wave function. -
Path Integrals in Quantum Mechanics
Path Integrals in Quantum Mechanics Emma Wikberg Project work, 4p Department of Physics Stockholm University 23rd March 2006 Abstract The method of Path Integrals (PI’s) was developed by Richard Feynman in the 1940’s. It offers an alternate way to look at quantum mechanics (QM), which is equivalent to the Schrödinger formulation. As will be seen in this project work, many "elementary" problems are much more difficult to solve using path integrals than ordinary quantum mechanics. The benefits of path integrals tend to appear more clearly while using quantum field theory (QFT) and perturbation theory. However, one big advantage of Feynman’s formulation is a more intuitive way to interpret the basic equations than in ordinary quantum mechanics. Here we give a basic introduction to the path integral formulation, start- ing from the well known quantum mechanics as formulated by Schrödinger. We show that the two formulations are equivalent and discuss the quantum mechanical interpretations of the theory, as well as the classical limit. We also perform some explicit calculations by solving the free particle and the harmonic oscillator problems using path integrals. The energy eigenvalues of the harmonic oscillator is found by exploiting the connection between path integrals, statistical mechanics and imaginary time. Contents 1 Introduction and Outline 2 1.1 Introduction . 2 1.2 Outline . 2 2 Path Integrals from ordinary Quantum Mechanics 4 2.1 The Schrödinger equation and time evolution . 4 2.2 The propagator . 6 3 Equivalence to the Schrödinger Equation 8 3.1 From the Schrödinger equation to PI’s . 8 3.2 From PI’s to the Schrödinger equation . -
2. Classical Gases
2. Classical Gases Our goal in this section is to use the techniques of statistical mechanics to describe the dynamics of the simplest system: a gas. This means a bunch of particles, flying around in a box. Although much of the last section was formulated in the language of quantum mechanics, here we will revert back to classical mechanics. Nonetheless, a recurrent theme will be that the quantum world is never far behind: we’ll see several puzzles, both theoretical and experimental, which can only truly be resolved by turning on ~. 2.1 The Classical Partition Function For most of this section we will work in the canonical ensemble. We start by reformu- lating the idea of a partition function in classical mechanics. We’ll consider a simple system – a single particle of mass m moving in three dimensions in a potential V (~q ). The classical Hamiltonian of the system3 is the sum of kinetic and potential energy, p~ 2 H = + V (~q ) 2m We earlier defined the partition function (1.21) to be the sum over all quantum states of the system. Here we want to do something similar. In classical mechanics, the state of a system is determined by a point in phase space.Wemustspecifyboththeposition and momentum of each of the particles — only then do we have enough information to figure out what the system will do for all times in the future. This motivates the definition of the partition function for a single classical particle as the integration over phase space, 1 3 3 βH(p,q) Z = d qd pe− (2.1) 1 h3 Z The only slightly odd thing is the factor of 1/h3 that sits out front. -
Optimal Adaptive Control for Quantum Metrology with Time-Dependent Hamiltonians
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians Shengshi Pang1;2∗ and Andrew N. Jordan1;2;3 1Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA 2Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA and 3Institute for Quantum Studies, Chapman University, 1 University Drive, Orange, CA 92866, USA Quantum metrology has been studied for a wide range of systems with time-independent Hamilto- nians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time- dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal ex- ample of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T 2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T 4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. Precision measurement has been long pursued due to particularly in the time scaling of the Fisher information its vital importance in physics and other sciences. Quan- [46], and often requires quantum control to gain the high- tum mechanics supplies this task with two new elements. -
Radiometric Characterization of a Triggered Narrow-Bandwidth Single- Photon Source and Its Use for the Calibration of Silicon Single-Photon Avalanche Detectors
Metrologia PAPER • OPEN ACCESS Radiometric characterization of a triggered narrow-bandwidth single- photon source and its use for the calibration of silicon single-photon avalanche detectors To cite this article: Hristina Georgieva et al 2020 Metrologia 57 055001 View the article online for updates and enhancements. This content was downloaded from IP address 130.149.177.113 on 19/10/2020 at 14:06 Metrologia Metrologia 57 (2020) 055001 (10pp) https://doi.org/10.1088/1681-7575/ab9db6 Radiometric characterization of a triggered narrow-bandwidth single-photon source and its use for the calibration of silicon single-photon avalanche detectors Hristina Georgieva1, Marco Lopez´ 1, Helmuth Hofer1, Justus Christinck1,2, Beatrice Rodiek1,2, Peter Schnauber3, Arsenty Kaganskiy3, Tobias Heindel3, Sven Rodt3, Stephan Reitzenstein3 and Stefan Kück1,2 1 Physikalisch-Technische Bundesanstalt, Braunschweig, Germany 2 Laboratory for Emerging Nanometrology, Braunschweig, Germany 3 Institut für Festkörperphysik, Technische Universit¨at Berlin, Berlin, Germany E-mail: [email protected] Received 5 May 2020, revised 10 June 2020 Accepted for publication 17 June 2020 Published 07 September 2020 Abstract The traceability of measurements of the parameters characterizing single-photon sources, such as photon flux and optical power, paves the way towards their reliable comparison and quantitative evaluation. In this paper, we present an absolute measurement of the optical power of a single-photon source based on an InGaAs quantum dot under pulsed excitation with a calibrated single-photon avalanche diode (SPAD) detector. For this purpose, a single excitonic line of the quantum dot emission with a bandwidth below 0.1 nm was spectrally filtered by using two tilted interference filters. -
How Classical Particles Emerge from the Quantum World
Foundations of Physics manuscript No. (will be inserted by the editor) Dennis Dieks and Andrea Lubberdink How Classical Particles Emerge From the Quantum World Received: date / Accepted: date Abstract The symmetrization postulates of quantum mechanics (symmetry for bosons, antisymmetry for fermions) are usually taken to entail that quantum parti- cles of the same kind (e.g., electrons) are all in exactly the same state and therefore indistinguishable in the strongest possible sense. These symmetrization postulates possess a general validity that survives the classical limit, and the conclusion seems therefore unavoidable that even classical particles of the same kind must all be in the same state—in clear conflict with what we know about classical parti- cles. In this article we analyze the origin of this paradox. We shall argue that in the classical limit classical particles emerge, as new entities that do not correspond to the “particle indices” defined in quantum mechanics. Put differently, we show that the quantum mechanical symmetrization postulates do not pertain to particles, as we know them from classical physics, but rather to indices that have a merely for- mal significance. This conclusion raises the question of whether the discussions about the status of identical quantum particles have not been misguided from the very start. Keywords identical quantum particles ¢ indistinguishability ¢ classical particles ¢ emergence ¢ classical limit of quantum mechanics PACS 03.65+b 1 Introduction In classical physics, particles are the example par excellence of distinguishable individuals. No two classical particles can be in exactly the same physical state: in D. Dieks Institute for the History and Foundations of Science, Utrecht University P.O.Box 80.010, 3508 TA Utrecht, The Netherlands E-mail: [email protected] 2 Newtonian spacetime different particles will at least occupy different spatial po- sitions at any moment, because of their impenetrability. -
Weyl Quantization and Wigner Distributions on Phase Space
faculteit Wiskunde en Natuurwetenschappen Weyl quantization and Wigner distributions on phase space Bachelor thesis in Physics and Mathematics June 2014 Student: R.S. Wezeman Supervisor in Physics: Prof. dr. D. Boer Supervisor in Mathematics: Prof. dr H. Waalkens Abstract This thesis describes quantum mechanics in the phase space formulation. We introduce quantization and in particular the Weyl quantization. We study a general class of phase space distribution functions on phase space. The Wigner distribution function is one such distribution function. The Wigner distribution function in general attains negative values and thus can not be interpreted as a real probability density, as opposed to for example the Husimi distribution function. The Husimi distribution however does not yield the correct marginal distribution functions known from quantum mechanics. Properties of the Wigner and Husimi distribution function are studied to more extent. We calculate the Wigner and Husimi distribution function for the energy eigenstates of a particle trapped in a box. We then look at the semi classical limit for this example. The time evolution of Wigner functions are studied by making use of the Moyal bracket. The Moyal bracket and the Poisson bracket are compared in the classical limit. The phase space formulation of quantum mechanics has as advantage that classical concepts can be studied and compared to quantum mechanics. For certain quantum mechanical systems the time evolution of Wigner distribution functions becomes equivalent to the classical time evolution stated in the exact Egerov theorem. Another advantage of using Wigner functions is when one is interested in systems involving mixed states. A disadvantage of the phase space formulation is that for most problems it quickly loses its simplicity and becomes hard to calculate.