Ontology Applications in Systems Biology: a Machine Learning Approach

Total Page:16

File Type:pdf, Size:1020Kb

Ontology Applications in Systems Biology: a Machine Learning Approach Ontology Applications in Systems Biology: a Machine Learning Approach by Elma Hussanna Akand Master of Information Technology, University of Queensland, Australia, 2001. BSc. Electrical & Electronic Engineering, Bangladesh University of Engineering & Technology, 1999. A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy in the Faculty of Engineering School of Computer Science and Engineering The University of New South Wales July 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Akand First name: Elma Other name/s: Hussanna Abbreviation for degree as given in the University calendar : PhD School: School of Computer Science and Engineering Faculty: Faculty of Engineering Title: Ontology Applications in Systems Biology: a Machine Learning Approach Abstract 350 words maximum: (PLEASE TYPE) Biology is flooded with an overwhelming accumulation of data and biologists require methods to apply their knowledge to explain biological networks of interacting genes or proteins in comprehensible terms. Therefore the focus of modern bioinformatics has shifted towards systems-wide analysis to understand mechanisms such as those underlying important diseases. Knowledge acquisition from such exponentially growing, inherently noisy and unstructured data is only likely to be achieved by combining bioinformatics, machine learning and semantic technologies such as ontologies. The major contribution of this thesis is on novel ontology applications to integrate complex multi-relational data towards learning models of biological systems. First we examined machine learning using ontology annotations to integrate heterogeneous data on systems biology. A series of propositional learning tasks to learn predictive models of intra-cellular expression in cells showed that feature construction and selection improved performance. Learning to predict phenotype is harder than predicting protein or gene expression, since identifying systems responses requires the integration of multiple potential causes and effects. In this thesis we applied Formal Concept Analysis (FCA) to integrate multiple experiments and identify common subsets of genes that share common systemic behaviour. Visual analytics was then applied to enable users to navigate concept lattices and generate training sets for further analysis by Inductive Logic Programming (ILP). This showed learned rules with biological background knowledge contained potentially interesting relations when validated. However, these rules are not always verifiable by humans. To address this issue a novel method called “visual closure", by analogy to the closure of formal concepts, was implemented. Rules, viewed as concepts, can be expanded by conversion to Datalog queries which then are used to search for additional knowledge in biological databases. The visual closure technique is then applied to complete these expanded concepts for visualization by domain specialists. This thesis has demonstrated novel ontology applications in systems biology. However, the question of how to acquire ontologies remains. Ontologies in systems biology often require relational representations due to the importance of network structures. Therefore, as our final step, an initial version of automated ontology construction in a first order representation is demonstrated. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only). …………………………………………………………… ……………………………………..……………… ……….……………………...…….… Signature Witness Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. FOR OFFICE USE ONLY Date of completion of requirements for Award: THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International (this is applicable to doctoral theses only). I have either used no substantial portions of copyright material in my thesis or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation.' Signed ……………………………………………........................... Date ……………………………………………........................... AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of content has occurred and if there are any minor variations in formatting, they are the result of the conversion to digital format.’ Signed ……………………………………………........................... Date ……………………………………………........................... ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. \Research ! A mere excuse for idleness; it has never achieved, and will never achieve any results of the slightest value." Benjamin Jowett Abstract Biology is flooded with an overwhelming accumulation of data and biologists require methods to apply their knowledge to explain biological networks of interacting genes or proteins in comprehensible terms. Therefore the focus of modern bioinformatics has shifted towards systems-wide analysis to understand mechanisms such as those underlying important diseases. Knowledge acquisition from such exponentially growing, inherently noisy and unstructured data is only likely to be achieved by combining bioinformatics, machine learning and semantic technologies such as ontologies. The major contribution of this thesis is on novel ontology applications to integrate complex multi-relational data towards learning models of biological systems. First we examined machine learning using ontology annotations to integrate hetero- geneous data on systems biology. A series of propositional learning tasks to learn predictive models of intra-cellular expression in cells showed that feature construction and selection improved performance. Learning to predict phenotype is harder than predicting protein or gene expression, since identifying systems responses requires the integration of multiple potential causes and effects. In this thesis we applied Formal Concept Analysis (FCA) to integrate multiple experiments and identify common subsets of genes that share common sys- temic behaviour. Visual analytics was then applied to enable users to navigate concept lattices and generate training sets for further analysis by Inductive Logic Programming (ILP). This showed learned rules with biological background knowledge contained po- tentially interesting relations when validated. However, these rules are not always verifiable by humans. To address this issue a novel method called \visual closure", by analogy to the closure of formal concepts, was implemented. Rules, viewed as concepts, can be expanded by conversion to Datalog queries which then are used to search for additional knowledge in biological databases. The visual closure technique is then applied to complete these expanded concepts for visualization by domain specialists. This thesis has demonstrated novel ontology applications in systems biology. However, the question of how to acquire ontologies remains. Ontologies in systems biology often require relational representations due to the importance of network structures. There- fore, as our final step, an initial version of automated ontology construction in a first order representation is demonstrated.
Recommended publications
  • Unicarbkb: Building a Standardised and Scalable Informatics Platform for Glycosciences Research
    Platforms EOI: UniCarbKB: Building a Standardised and Scalable Informatics Platform for Glycosciences Research 20 September 2019 at 13:02 Project title UniCarbKB: Building a Standardised and Scalable Informatics Platform for Glycosciences Research Field of Research code(s) 03 CHEMICAL SCIENCES 06 BIOLOGICAL SCIENCES 08 INFORMATION AND COMPUTING SCIENCES 11 MEDICAL AND HEALTH SCIENCES EOI Lead Name Matthew Campbell EOI lead Research Group Institute for Glycomics EOI lead Organisation Institute for Glycomics, Griffith University EOI lead Email Collaborator details Name Research Group Organisation Malcolm Wolski eResearch Services Griffith University Project description Over the last few years the glycomics knowledge platform UniCarbKB has contributed to the growth of international glycoinformatics resources by providing access to data collections, web services and software applications supported by biocuration activities. However, UniCarbKB has continued to develop as a single monolithic resource. This proposed project will improve the growth and scalability of UniCarbKB by breaking down the platform into smaller and composable pieces. This will be achieved through the adoption of a more decentralised approach and a microservice architecture that will allow components of the platform to scale at different rates. This architecture will allow us is to build an extendable and cross-disciplinary resource by integrating existing data with new analysis tools. The adoption of international resources (e.g. NIH GlyGen), will allow not just mapping of glycan data to genes and proteins but also pathways, gene ontology, publications and a wide variety of data from EBI, NCBI and other sources. Additionally, we propose to integrate glycan array data and develop ontologies that can serve as tools for integration and subsequently analysis of glycan-associated Existing technology Adopt The proposed project will adopt a multi-tier application architecture in which applications will be developed and deployed as microservices.
    [Show full text]
  • Molecular Basis for the Distinct Cellular Functions of the Lsm1-7 and Lsm2-8 Complexes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.055376; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Molecular basis for the distinct cellular functions of the Lsm1-7 and Lsm2-8 complexes Eric J. Montemayor1,2, Johanna M. Virta1, Samuel M. Hayes1, Yuichiro Nomura1, David A. Brow2, Samuel E. Butcher1 1Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. 2Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA. Correspondence should be addressed to E.J.M. ([email protected]) and S.E.B. ([email protected]). Abstract Eukaryotes possess eight highly conserved Lsm (like Sm) proteins that assemble into circular, heteroheptameric complexes, bind RNA, and direct a diverse range of biological processes. Among the many essential functions of Lsm proteins, the cytoplasmic Lsm1-7 complex initiates mRNA decay, while the nuclear Lsm2-8 complex acts as a chaperone for U6 spliceosomal RNA. It has been unclear how these complexes perform their distinct functions while differing by only one out of seven subunits. Here, we elucidate the molecular basis for Lsm-RNA recognition and present four high-resolution structures of Lsm complexes bound to RNAs. The structures of Lsm2-8 bound to RNA identify the unique 2′,3′ cyclic phosphate end of U6 as a prime determinant of specificity. In contrast, the Lsm1-7 complex strongly discriminates against cyclic phosphates and tightly binds to oligouridylate tracts with terminal purines.
    [Show full text]
  • Hierarchical Classification of Gene Ontology Terms Using the Gostruct
    Hierarchical classification of Gene Ontology terms using the GOstruct method Artem Sokolov and Asa Ben-Hur Department of Computer Science, Colorado State University Fort Collins, CO, 80523, USA Abstract Protein function prediction is an active area of research in bioinformatics. And yet, transfer of annotation on the basis of sequence or structural similarity remains widely used as an annotation method. Most of today's machine learning approaches reduce the problem to a collection of binary classification problems: whether a protein performs a particular function, sometimes with a post-processing step to combine the binary outputs. We propose a method that directly predicts a full functional annotation of a protein by modeling the structure of the Gene Ontology hierarchy in the framework of kernel methods for structured-output spaces. Our empirical results show improved performance over a BLAST nearest-neighbor method, and over algorithms that employ a collection of binary classifiers as measured on the Mousefunc benchmark dataset. 1 Introduction Protein function prediction is an active area of research in bioinformatics [25]; and yet, transfer of annotation on the basis of sequence or structural similarity remains the standard way of assigning function to proteins in newly sequenced organisms [20]. The Gene Ontology (GO), which is the current standard for annotating gene products and proteins, provides a large set of terms arranged in a hierarchical fashion that specify a gene-product's molecular function, the biological process it is involved in, and its localization to a cellular component [12]. GO term prediction is therefore a hierarchical classification problem, made more challenging by the thousands of annotation terms available.
    [Show full text]
  • Gene Ontology Analysis with Cytoscape
    Introduction to Systems Biology Exercise 6: Gene Ontology Analysis Overview: Gene Ontology (GO) is a useful resource in bioinformatics and systems biology. GO defines a controlled vocabulary of terms in biological process, molecular function, and cellular location, and relates the terms in a somewhat-organized fashion. This exercise outlines the resources available under Cytoscape to perform analyses for the enrichment of gene annotation (GO terms) in networks or sub-networks. In this exercise you will: • Learn how to navigate the Cytoscape Gene Ontology wizard to apply GO annotations to Cytoscape nodes • Learn how to look for enriched GO categories using the BiNGO plugin. What you will need: • The BiNGO plugin, developed by the Computational Biology Division, Dept. of Plant Systems Biology, Flanders Interuniversitary Institute for Biotechnology (VIB), described in Maere S, et al. Bioinformatics. 2005 Aug 15;21(16):3448-9. Epub 2005 Jun 21. • galFiltered.sif used in the earlier exercises and found under sampleData. Please download any missing files from http://www.cbs.dtu.dk/courses/27041/exercises/Ex3/ Download and install the BiNGO plugin, as follows: 1. Get BiNGO from the course page (see above) or go to the BiNGO page at http://www.psb.ugent.be/cbd/papers/BiNGO/. (This site also provides documentation on BiNGO). 2. Unzip the contents of BiNGO.zip to your Cytoscape plugins directory (make sure the BiNGO.jar file is in the plugins directory and not in a subdirectory). 3. If you are currently running Cytoscape, exit and restart. First, we will load the Gene Ontology data into Cytoscape. 1. Start Cytoscape, under Edit, Preferences, make sure your default species, “defaultSpeciesName”, is set to “Saccharomyces cerevisiae”.
    [Show full text]
  • To Find Information About Arabidopsis Genes Leonore Reiser1, Shabari
    UNIT 1.11 Using The Arabidopsis Information Resource (TAIR) to Find Information About Arabidopsis Genes Leonore Reiser1, Shabari Subramaniam1, Donghui Li1, and Eva Huala1 1Phoenix Bioinformatics, Redwood City, CA USA ABSTRACT The Arabidopsis Information Resource (TAIR; http://arabidopsis.org) is a comprehensive Web resource of Arabidopsis biology for plant scientists. TAIR curates and integrates information about genes, proteins, gene function, orthologs gene expression, mutant phenotypes, biological materials such as clones and seed stocks, genetic markers, genetic and physical maps, genome organization, images of mutant plants, protein sub-cellular localizations, publications, and the research community. The various data types are extensively interconnected and can be accessed through a variety of Web-based search and display tools. This unit primarily focuses on some basic methods for searching, browsing, visualizing, and analyzing information about Arabidopsis genes and genome, Additionally we describe how members of the community can share data using TAIR’s Online Annotation Submission Tool (TOAST), in order to make their published research more accessible and visible. Keywords: Arabidopsis ● databases ● bioinformatics ● data mining ● genomics INTRODUCTION The Arabidopsis Information Resource (TAIR; http://arabidopsis.org) is a comprehensive Web resource for the biology of Arabidopsis thaliana (Huala et al., 2001; Garcia-Hernandez et al., 2002; Rhee et al., 2003; Weems et al., 2004; Swarbreck et al., 2008, Lamesch, et al., 2010, Berardini et al., 2016). The TAIR database contains information about genes, proteins, gene expression, mutant phenotypes, germplasms, clones, genetic markers, genetic and physical maps, genome organization, publications, and the research community. In addition, seed and DNA stocks from the Arabidopsis Biological Resource Center (ABRC; Scholl et al., 2003) are integrated with genomic data, and can be ordered through TAIR.
    [Show full text]
  • Identification of Novel Branch Points Reveals Insights Into RNA Processing
    Identification of Novel Branch Points Reveals Insights into RNA Processing by Genevieve Michelle Gould B.A. Molecular and Cell Biology with an emphasis in Genetics, Genomics, and Development University of California, Berkeley (2009) Submitted to the Department of Biology in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2015 © Massachusetts Institute of Technology 2015. All rights reserved. Signature of Author .................................................................................................................................................... Department of Biology August 31, 2015 Certified by .................................................................................................................................................................... Christopher B. Burge Professor of Biology Thesis Supervisor Accepted by.................................................................................................................................................................... Michael Hemann Associate Professor of Biology Co-Chair, Biology Graduate Committee 1 2 Identification of Novel Branch Points Reveals Insights into RNA Processing by Genevieve Michelle Gould Submitted to the Department of Biology on August 31, 2015 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology Abstract Pre-mRNA splicing is a ubiquitous process necessary for the production of functional eukaryotic mRNAs. The branch
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Use and Misuse of the Gene Ontology Annotations
    Nature Reviews Genetics | AOP, published online 13 May 2008; doi:10.1038/nrg2363 REVIEWS Use and misuse of the gene ontology annotations Seung Yon Rhee*, Valerie Wood‡, Kara Dolinski§ and Sorin Draghici|| Abstract | The Gene Ontology (GO) project is a collaboration among model organism databases to describe gene products from all organisms using a consistent and computable language. GO produces sets of explicitly defined, structured vocabularies that describe biological processes, molecular functions and cellular components of gene products in both a computer- and human-readable manner. Here we describe key aspects of GO, which, when overlooked, can cause erroneous results, and address how these pitfalls can be avoided. The accumulation of data produced by genome-scale FIG. 1b). These characteristics of the GO structure enable research requires explicitly defined vocabularies to powerful grouping, searching and analysis of genes. describe the biological attributes of genes in order to allow integration, retrieval and computation of the Fundamental aspects of GO annotations data1. Arguably, the most successful example of system- A GO annotation associates a gene with terms in the atic description of biology is the Gene Ontology (GO) ontologies and is generated either by a curator or project2. GO is widely used in biological databases, automatically through predictive methods. Genes are annotation projects and computational analyses (there associated with as many terms as appropriate as well as are 2,960 citations for GO in version 3.0 of the ISI Web of with the most specific terms available to reflect what is Knowledge) for annotating newly sequenced genomes3, currently known about a gene.
    [Show full text]
  • Wormbase Curation Interfaces and Tools
    Wormbase Curation Interfaces And Tools Xiaodong Wang, Paul Sternberg and the WormBase Consortium Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA Abstract Cellular Component GO curation form Antibody OA Gene ontology OA Curating biological information from the published literature can be time- and labor-intensive especially without automated tools. WormBase1 has adopted several curation interfaces and tools, most of which were built in-house, to help curators recognize and extract data more efficiently from the literature. These tools range from simple computer interfaces for data entry to employing scripts that take advantage of complex text extraction algorithms, which automatically identify specific objects in a paper and presents them to the curator for curation. By using these in-house tools, we Go term are also able to tailor the tool to the individual needs and preferences of the curator. For example, C.elegans protein Cellular Gene Ontology Cellular Component and gene-gene interaction curators employ the text mining Component software Textpresso2 to indentify, retrieve, and extract relevant sentences from the full text of an Category terms article. The curators then use a web-based curation form to enter the data into our local database. Wormbase has developed our own Ontology Annotator tool based on the publicly available Phenote ontology annotation curation interface (developed by the Berkeley Bioinformatics Open-Source Ontology Annotator Projects (BBOP)), which we have adapted with datatype specific configurations. Currently, we have Autocomple4on field eight data s, including antibody, GO, gene regulation, interaction, molecule, people, phenotype and with ontology Transgene OA transgene are using or will use OA for routine literature curation.
    [Show full text]
  • The Biogrid Interaction Database
    D470–D478 Nucleic Acids Research, 2015, Vol. 43, Database issue Published online 26 November 2014 doi: 10.1093/nar/gku1204 The BioGRID interaction database: 2015 update Andrew Chatr-aryamontri1, Bobby-Joe Breitkreutz2, Rose Oughtred3, Lorrie Boucher2, Sven Heinicke3, Daici Chen1, Chris Stark2, Ashton Breitkreutz2, Nadine Kolas2, Lara O’Donnell2, Teresa Reguly2, Julie Nixon4, Lindsay Ramage4, Andrew Winter4, Adnane Sellam5, Christie Chang3, Jodi Hirschman3, Chandra Theesfeld3, Jennifer Rust3, Michael S. Livstone3, Kara Dolinski3 and Mike Tyers1,2,4,* 1Institute for Research in Immunology and Cancer, Universite´ de Montreal,´ Montreal,´ Quebec H3C 3J7, Canada, 2The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada, 3Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA, 4School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK and 5Centre Hospitalier de l’UniversiteLaval´ (CHUL), Quebec,´ Quebec´ G1V 4G2, Canada Received September 26, 2014; Revised November 4, 2014; Accepted November 5, 2014 ABSTRACT semi-automated text-mining approaches, and to en- hance curation quality control. The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein in- INTRODUCTION teractions curated from the primary biomedical lit- Massive increases in high-throughput DNA sequencing erature for all major model organism species and technologies (1) have enabled an unprecedented level of humans. As of September 2014, the BioGRID con- genome annotation for many hundreds of species (2–6), tains 749 912 interactions as drawn from 43 149 pub- which has led to tremendous progress in the understand- lications that represent 30 model organisms.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Summary Visualisations of Gene Ontology Terms with GO-Figure!
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.02.408534; this version posted December 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Summary Visualisations of Gene Ontology Terms with GO-Figure! Maarten JMF Reijnders1*, Robert M Waterhouse1* 1Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland * Correspondence: [email protected] (MJMFR), [email protected] (RMW) Keywords: functional genomics, Python software, redundancy reduction, semantic similarity, GO term enrichment Abstract The Gene Ontology (GO) is a cornerstone of functional genomics research that drives discoveries through knowledge-informed computational analysis of biological data from large- scale assays. Key to this success is how the GO can be used to support hypotheses or conclusions about the biology or evolution of a study system by identifying annotated functions that are overrepresented in subsets of genes of interest. Graphical visualisations of such GO term enrichment results are critical to aid interpretation and avoid biases by presenting researchers with intuitive visual data summaries. Amongst current visualisation tools and resources there is a lack of standalone open-source software solutions that facilitate systematic comparisons of multiple lists of GO terms. To address this we developed GO-Figure!, an open-source Python software for producing user-customisable semantic similarity scatterplots of redundancy-reduced GO term lists. The lists are simplified by grouping together GO terms with similar functions using their quantified information contents and semantic similarities, with user-control over grouping thresholds.
    [Show full text]