Evaluating Natural Language Understanding Services for Conversational Question Answering Systems

Total Page:16

File Type:pdf, Size:1020Kb

Evaluating Natural Language Understanding Services for Conversational Question Answering Systems Evaluating Natural Language Understanding Services for Conversational Question Answering Systems Daniel Braun Adrian Hernandez Mendez Florian Matthes Manfred Langen Technical University of Munich Siemens AG Department of Informatics Corporate Technology daniel.braun,adrian.hernandez,matthes manfred.langen { @tum.de } @siemens.com Abstract Advances in machine learning (ML) • Natural Language Understanding (NLU) as a Conversational interfaces recently gained • a lot of attention. One of the reasons service for the current hype is the fact that chat- In this paper, we focus on the latter. As we bots (one particularly popular form of con- will show in Section2, NLU services are already versational interfaces) nowadays can be used by a number of researchers for building con- created without any programming knowl- versational interfaces. However, due to the lack edge, thanks to different toolkits and so- of a systematic evaluation of theses services, the called Natural Language Understanding decision why one services was prefered over an- (NLU) services. While these NLU ser- other, is usually not well justified. With this paper, vices are already widely used in both, in- we want to bridge this gap and enable both, re- dustry and science, so far, they have not searchers and companies, to make more educated been analysed systematically. In this pa- decisions about which service they should use. We per, we present a method to evaluate the describe the functioning of NLU services and their classification performance of NLU ser- role within the general architecture of chatbots. vices. Moreover, we present two new cor- We explain, how NLU services can be evaluated pora, one consisting of annotated ques- and conduct an evaluation, based on two different tions and one consisting of annotated corpora consisting of nearly 500 annotated ques- questions with the corresponding answers. tions, of the most popular services. Based on these corpora, we conduct an evaluation of some of the most popular 2 Related Work NLU services. Thereby we want to enable Recent publications have discussed the usage of both, researchers and companies to make NLU services in different domains and for differ- more educated decisions about which ser- ent purposes, e.g. question answering for localized vice they should use. search (McTear et al., 2016), form-driven dialogue systems (Stoyanchev et al., 2016), dialogue man- 1 Introduction agement (Schnelle-Walka et al., 2016), and the in- Long before the terms conversational interface ternet of things (Kar and Haldar, 2016). or chatbot were coined, Turing(1950) described However, none of these publications explicitly them as the ultimate test for artificial intelligence. discuss, why they choose one particular NLU ser- Despite their long history, there is a recent hype vice over another and how this decision may have about chatbots in both, the scientific community influenced the performance of their system and (cf. e.g. Ferrara et al.(2016)) and industry (Gart- hence their results. Moreover, to the best of our ner, 2016). While there are many related rea- knowledge, so far there exists no systematic evalu- sons for this development, we think that three key ation of a particular NLU service, let alone a com- changes were particularly important: parison of multiple services. Dale(2015) lists five NLP cloud services and Rise of universal chat platforms (like Tele- describes their capabilities, but without conduct- • gram, Facebook Messenger, Slack, etc.) ing an evaluation. In the domain of spoken dialog 174 Proceedings of the SIGDIAL 2017 Conference, pages 174–185, Saarbrucken,¨ Germany, 15-17 August 2017. c 2017 Association for Computational Linguistics systems, similar evaluations have been conducted bels to messages or parts of messages. At the time for automatic speech recognizer services, e.g. by of writing, among the most popular NLU services Twiefel et al.(2014) and Morbini et al.(2013). are: Speaking about chatbots in general, Shawar and LUIS1 Atwell(2007) present an approach to conduct end- • to-end evaluations, however, they do not take into Watson Conversation2 account the single elements of a system. Resnik • and Lin(2010) provide a good overview and eval- API.ai3 • uation of Natural Language Processing (NLP) sys- wit.ai4 tems in general. Many of the principals they • apply for their evaluation (e.g. inter-annotator Amazon Lex5 agreement and partitioning of data) play an impor- • tant role in our evaluation too. A comprehensive Moreover, there is a popular open source alter- and extensive survey of question answering tech- native which is called RASA6. RASA offers the nologies was presented by Kolomiyets and Moens same functionality, while lacking the advantages (2011). However, there has been a lot of progress of cloud-based solutions (managed hosting, scal- since 2011, including the here presented NLU ser- ability, etc). On the other hand, it offers the typi- vices. cal advantages of self-hosted open source software One of our two corpora was labelled using (adaptability, data control, etc). Amazon Mechanical Turk (AMT, cf. Section Table1 shows a comparison of the basic func- 5.2), while there have been long discussions about tionality offered by the different services. All of whether or not AMT can replace the work of ex- them, except for Amazon Lex, share the same perts for labelling linguistic data, the recent con- basic concept: Based on example data, the user sensus is that, given enough annotators, crowd- can train a classifier to classify so-called intents sourced labels from AMT are as reliable as ex- (which represent the intent of the whole message pert data. (Snow et al., 2008; Munro et al., 2010; and are not bound to a certain position within the Callison-Burch, 2009) message) and entities (which can consist of a sin- gle or multiple characters). 3 Chatbot Architecture Service Intents Entities Batch import In order to understand the role of NLU services LUIS + + + for chatbots, one first has to look at the general ar- Watson + + + chitecture of chatbots. While there exist different API.ai + + + documented chatbot architectures for concrete use wit.ai + + O cases, no universal model of how a chatbot should Lex + O - be designed has emerged yet. Our proposal for a RASA + + + universal chatbot architecture is shown in Figure 1. It consists of three main parts: Request Inter- Table 1: Comparison basic functionality of NLU pretation, Response Retrieval and Message Gener- services ation. The Message Generation follows the classi- cal Natural Language Generation (NLG) pipeline Figure2 shows a labelled sentence in the LUIS described by Reiter and Dale(2000). In the con- web interface. The intent of this sentence was text of Request Interpretation, a “request” is not classified as FindConnection, with a confidence of necessarily a question, but can also be any user in- 97%. The labelled entities are: (next, Criterion), put like “My name is John”. Equally, a “response” (train, Vehicle), (Universitat,¨ StationStart), (Max- to this input could e.g. be “What a nice name”. Weber-Platz, StationDest). Amazon Lex shares 4 NLU Services 1https://www.luis.ai 2https://www.ibm.com/watson/ The general goal of NLU services is the extraction developercloud/conversation.html 3https://www.api.ai of structured, semantic information from unstruc- 4https://www.wit.ai tured natural language input, e.g. chat messages. 5https://aws.amazon.com/lex They mainly do this by attaching user-defined la- 6https://www.rasa.ai 175 Discourse Manager Contextual Information Request Interpretation Response Retrieval Message Generation Analysis Candidate Retrieval Text Planning Query Generation Candidate Selection Sentence Planning Linguistic Realizer Knowledge Base Figure 1: General Architecture for Chatbots the concept of intents with the other services, but The exception in this case is, of course, RASA, instead of entities, Lex is using so-called slots, which can either use MITIE (Geyer et al., 2016) which are not trained by concrete examples, but or spaCy (Choi et al., 2015) as ML backend. example patterns like “When is the Criterion { } Vehicle to StationDest ”. Moreover, all ser- 5 Data Corpus { } { } vices, except for Amazon Lex, also offer an export Our evaluation is based on two very different and import functionality which uses a json-format data corpora. The Chatbot Corpus (cf. Sec- to export and import the training data. While wit.ai tion 5.1) is based on questions gathered by a offers this functionality, as of today, it only works Telegram chatbot in production use, answering reliably for creating backups and restoring them, questions about public transport connections. but not importing new data7. The StackExchange Corpus (cf. Section 5.2) is based on data from two StackExchange8 platforms: ask ubuntu9 and Web Applications10. Both corpora are available on GitHub under the Creative Commons CC BY-SA 3.0 license11: https://github.com/sebischair/ Figure 2: Labelled sentence with intent and enti- NLU-Evaluation-Corpora. ties in Microsoft LUIS 5.1 Chatbot Corpus When it comes to the core of the services, The Chatbot Corpus consists of 206 questions, the machine learning algorithms and the data on which were manually labelled by the authors. which they are initially trained, all services are There are two different intents (Departure Time, very secretive. None of them gives specific infor- mation about the used technologies and datasets. 8https://www.stackexchange.com 9https://www.askubuntu.com 7cf. e.g. https://github.com/wit-ai/wit/ 10https://webapps.stackexchange.com issues?q=is%3Aopen+is%3Aissue+label% 11https://creativecommons.org/licenses/ 3Aimport by-sa/3.0/ 176 Find Connection) in the corpus and five different our evaluation, we included them in our corpus, entity types (StationStart, StationDest, Criterion, in order to create a corpus that is not only useful Vehicle, Line). The general language of the ques- for this particular evaluation, but also for research tions was English, however, mixed with German on question answering in general.
Recommended publications
  • Handling Ambiguity Problems of Natural Language Interface For
    IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012 ISSN (Online): 1694-0814 www.IJCSI.org 17 Handling Ambiguity Problems of Natural Language InterfaceInterface for QuesQuesQuestQuestttionionionion Answering Omar Al-Harbi1, Shaidah Jusoh2, Norita Norwawi3 1 Faculty of Science and Technology, Islamic Science University of Malaysia, Malaysia 2 Faculty of Science & Information Technology, Zarqa University, Zarqa, Jordan 3 Faculty of Science and Technology, Islamic Science University of Malaysia, Malaysia documents processing, and answer processing [9], [10], Abstract and [11]. The Natural language question (NLQ) processing module is considered a fundamental component in the natural language In QA, a NLQ is the primary source through which a interface of a Question Answering (QA) system, and its quality search process is directed for answers. Therefore, an impacts the performance of the overall QA system. The most accurate analysis to the NLQ is required. One of the most difficult problem in developing a QA system is so hard to find an exact answer to the NLQ. One of the most challenging difficult problems in developing a QA system is that it is problems in returning answers is how to resolve lexical so hard to find an answer to a NLQ [22]. The main semantic ambiguity in the NLQs. Lexical semantic ambiguity reason is most QA systems ignore the semantic issue in may occurs when a user's NLQ contains words that have more the NLQ analysis [12], [2], [14], and [15]. To achieve a than one meaning. As a result, QA system performance can be better performance, the semantic information contained negatively affected by these ambiguous words.
    [Show full text]
  • The Chatbot Revolution
    The chatbot revolution Moving beyond the hype and maximizing customer experience Ready for a digital 2% 2017 conversation? 25% 2020 Consumers have higher expectations than ever when it comes to interacting with brands. By 2020, 25% of customer They demand personalized service, easily accessible support options, a quick response after reaching out, and successful resolutions on a tight turnaround. service operations will use To meet these needs, companies are increasing their use of digital channels to chatbot or virtual assistant communicate with customers – in fact, by 2022, 70% of all customer interactions will involve technology like messaging applications, social platforms, or chatbots. technologies, an increase Let’s take a closer look at chatbots. Their functions range from answering simple from just 2% in 2017. questions like informing customers of store hours or location to more advanced ones, like handling a credit card charge dispute. According to Gartner, by 2020, 25% of customer service operations will use chatbot or virtual assistant technologies, an increase from just 2% in 2017. When trying to balance staffing budgets, round- the-clock service availability and a preference for digital platforms, chatbots on paper seem like the obvious – and inevitable – choice to engage customers through automation. But how inevitable is it really? 1. Gartner Magic Quadrant for Customer Engagement Center, Michael Maoz, Brian Manusama, 16 May 2018 www.pega.com The chatbot revolution 01 Why the digital hold up? Consumers and businesses have concerns. Despite Gartner predictions and the obvious excitement around chatbots, overall adoption has been slow. Currently most chatbots are programmed to follow predetermined conversational flows—thus limiting their usefulness for solving complex problems or picking up conversational subtleties.
    [Show full text]
  • Voice Interfaces
    VIEW POINT VOICE INTERFACES Abstract A voice-user interface (VUI) makes human interaction with computers possible through a voice/speech platform in order to initiate an automated service or process. This Point of View explores the reasons behind the rise of voice interface, key challenges enterprises face in voice interface adoption and the solution to these. Are We Ready for Voice Interfaces? Let’s get talking! IO showed the new promise of voice offering integrations with their Voice interfaces. Assistants. Since Apple integration with Siri, voice interfaces has significantly Almost all the big players (Google, Apple, As per industry forecasts, over the next progressed. Echo and Google Home Microsoft) have ‘office productivity’ decade, 8 out of every 10 people in the have demonstrated that we do not need applications that are being adopted by world will own a device (a smartphone or a user interface to talk to computers businesses (Microsoft and their Office some kind of assistant) which will support and have opened-up a new channel for Suite already have a big advantage here, voice based conversations in native communication. Recent demos of voice but things like Google Docs and Keynote language. Just imagine the impact! based personal assistance at Google are sneaking in), they have also started Voice Assistant Market USD~7.8 Billion CAGR ~39% Market Size (USD Billion) 2016 2017 2018 2019 2020 2021 2022 2023 The Sudden Interest in Voice Interfaces Although voice technology/assistants Voice Recognition Accuracy Convenience – speaking vs typing have been around in some shape or form Voice Recognition accuracy continues to Humans can speak 150 words per minute for many years, the relentless growth of improve as we now have the capability to vs the typing speed of 40 words per low-cost computational power—and train the models using neural networks minute.
    [Show full text]
  • The Question Answering System Using NLP and AI
    International Journal of Scientific & Engineering Research Volume 7, Issue 12, December-2016 ISSN 2229-5518 55 The Question Answering System Using NLP and AI Shivani Singh Nishtha Das Rachel Michael Dr. Poonam Tanwar Student, SCS, Student, SCS, Student, SCS, Associate Prof. , SCS Lingaya’s Lingaya’s Lingaya’s Lingaya’s University, University,Faridabad University,Faridabad University,Faridabad Faridabad Abstract: (ii) QA response with specific answer to a specific question The Paper aims at an intelligent learning system that will take instead of a list of documents. a text file as an input and gain knowledge from the given text. Thus using this knowledge our system will try to answer questions queried to it by the user. The main goal of the 1.1. APPROCHES in QA Question Answering system (QAS) is to encourage research into systems that return answers because ample number of There are three major approaches to Question Answering users prefer direct answers, and bring benefits of large-scale Systems: Linguistic Approach, Statistical Approach and evaluation to QA task. Pattern Matching Approach. Keywords: A. Linguistic Approach Question Answering System (QAS), Artificial Intelligence This approach understands natural language texts, linguistic (AI), Natural Language Processing (NLP) techniques such as tokenization, POS tagging and parsing.[1] These are applied to reconstruct questions into a correct 1. INTRODUCTION query that extracts the relevant answers from a structured IJSERdatabase. The questions handled by this approach are of Factoid type and have a deep semantic understanding. Question Answering (QA) is a research area that combines research from different fields, with a common subject, which B.
    [Show full text]
  • Intellibot: a Domain-Specific Chatbot for the Insurance Industry
    IntelliBot: A Domain-specific Chatbot for the Insurance Industry MOHAMMAD NURUZZAMAN A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy UNSW Canberra at Australia Defence Force Academy (ADFA) School of Business 20 October 2020 ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institute, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed Date To my beloved parents Acknowledgement Writing a thesis is a great process to review not only my academic work but also the journey I took as a PhD student. I have spent four lovely years at UNSW Canberra in the Australian Defence Force Academy (ADFA). Throughout my journey in graduate school, I have been fortunate to come across so many brilliant researchers and genuine friends. It is the people who I met shaped who I am today. This thesis would not have been possible without them. My gratitude goes out to all of them.
    [Show full text]
  • The Inner Circle Guide to AI, Chatbots & Machine Learning
    The Inner Circle Guide to AI, Chatbots & Machine Learning Sponsored by The Inner Circle Guide to AI, Chatbots and Machine Learning © ContactBabel 2019 Please note that all information is believed correct at the time of publication, but ContactBabel does not accept responsibility for any action arising from errors or omissions within the report, links to external websites or other third-party content. 2 Understand the customer experience with the power of AI Employees Customers Businesses Increase agent Elevate customer Gain improved engagement experience VoC insights Artificial Customer Machine Intelligence surveys learning Recorded CRM VoC calls notes analytics Social media Chatbots Surveys opentext.com/explore CONTENTS Contents ..................................................................................................................................................... 4 Table of Figures ........................................................................................................................................... 6 About the Inner Circle Guides ..................................................................................................................... 7 AI: Definitions and Terminology ................................................................................................................. 9 Definitions............................................................................................................................................. 11 Use Cases for AI in the Contact Centre ....................................................................................................
    [Show full text]
  • Quester: a Speech-Based Question Answering Support System for Oral Presentations Reza Asadi, Ha Trinh, Harriet J
    Quester: A Speech-Based Question Answering Support System for Oral Presentations Reza Asadi, Ha Trinh, Harriet J. Fell, Timothy W. Bickmore Northeastern University Boston, USA asadi, hatrinh, fell, [email protected] ABSTRACT good support for speakers who want to deliver more Current slideware, such as PowerPoint, reinforces the extemporaneous talks in which they dynamically adapt their delivery of linear oral presentations. In settings such as presentation to input or questions from the audience, question answering sessions or review lectures, more evolving audience needs, or other contextual factors such as extemporaneous and dynamic presentations are required. varying or indeterminate presentation time, real-time An intelligent system that can automatically identify and information, or more improvisational or experimental display the slides most related to the presenter’s speech, formats. At best, current slideware only provides simple allows for more speaker flexibility in sequencing their indexing mechanisms to let speakers hunt through their presentation. We present Quester, a system that enables fast slides for material to support their dynamically evolving access to relevant presentation content during a question speech, and speakers must perform this frantic search while answering session and supports nonlinear presentations led the audience is watching and waiting. by the speaker. Given the slides’ contents and notes, the system ranks presentation slides based on semantic Perhaps the most common situations in which speakers closeness to spoken utterances, displays the most related must provide such dynamic presentations are in Question slides, and highlights the corresponding content keywords and Answer (QA) sessions at the end of their prepared in slide notes. The design of our system was informed by presentations.
    [Show full text]
  • A Survey on Different Algorithms Used in Chatbot
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072 A survey on Different Algorithms used in Chatbot Siddhi Pardeshi1, Suyasha Ovhal2, Pranali Shinde3, Manasi Bansode4, Anandkumar Birajdar5 1Siddhi Pardeshi, Student, Dept. of Computer Engineering, Pimpri Chinchwad College of Engineering, Pune Maharashtra, India 2Suyasha Ovhal, Student, Dept. of Computer Engineering, Pimpri Chinchwad College of Engineering, Pune Maharashtra, India 3Pranali Shinde, Student, Dept. of Computer Engineering, Pimpri Chinchwad College of Engineering, Pune Maharashtra, India 4Manasi Bansode, Student, Dept. of Computer Engineering, Pimpri Chinchwad College of Engineering, Pune Maharashtra, India 5Professor, Dept. of Computer Engineering, Pimpri Chinchwad College of Engineering, Pune, Maharashtra, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract - Machines are working similar to humans Rule-based/Command based: In these types of chatbots, because of advanced technological concepts. Best example is predefined rules are stored which includes questions and chatbot which depends on advanced concepts in computer answers. Based on what question has requested by the user science. Chatbots serve as a medium for the communication chatbot searches for an answer. But this gives limitations on between human and machine. There are a number of chatbots the type of questions and answers to be stored. and design techniques available in market that perform Intelligent Chatbots/AI Chatbots: To overcome the issue different function and can be implemented in sectors like faced by rule based chatbots intelligent chatbots are business sector, medical sector, farming etc. The technology developed. As these are based on advanced machine learning used for the advancement of conversational agent is natural concepts, they have the ability to learn on their own language processing (NLP).
    [Show full text]
  • Ontology-Based Approach to Semantically Enhanced Question Answering for Closed Domain: a Review
    information Review Ontology-Based Approach to Semantically Enhanced Question Answering for Closed Domain: A Review Ammar Arbaaeen 1,∗ and Asadullah Shah 2 1 Department of Computer Science, Faculty of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia 2 Faculty of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia; [email protected] * Correspondence: [email protected] Abstract: For many users of natural language processing (NLP), it can be challenging to obtain concise, accurate and precise answers to a question. Systems such as question answering (QA) enable users to ask questions and receive feedback in the form of quick answers to questions posed in natural language, rather than in the form of lists of documents delivered by search engines. This task is challenging and involves complex semantic annotation and knowledge representation. This study reviews the literature detailing ontology-based methods that semantically enhance QA for a closed domain, by presenting a literature review of the relevant studies published between 2000 and 2020. The review reports that 83 of the 124 papers considered acknowledge the QA approach, and recommend its development and evaluation using different methods. These methods are evaluated according to accuracy, precision, and recall. An ontological approach to semantically enhancing QA is found to be adopted in a limited way, as many of the studies reviewed concentrated instead on Citation: Arbaaeen, A.; Shah, A. NLP and information retrieval (IR) processing. While the majority of the studies reviewed focus on Ontology-Based Approach to open domains, this study investigates the closed domain.
    [Show full text]
  • A Question-Driven News Chatbot
    What’s The Latest? A Question-driven News Chatbot Philippe Laban John Canny Marti A. Hearst UC Berkeley UC Berkeley UC Berkeley [email protected] [email protected] [email protected] Abstract a set of essential questions and link each question with content that answers it. The motivating idea This work describes an automatic news chat- is: two pieces of content are redundant if they an- bot that draws content from a diverse set of news articles and creates conversations with swer the same questions. As the user reads content, a user about the news. Key components of the system tracks which questions are answered the system include the automatic organization (directly or indirectly) with the content read so far, of news articles into topical chatrooms, inte- and which remain unanswered. We evaluate the gration of automatically generated questions system through a usability study. into the conversation, and a novel method for The remainder of this paper is structured as fol- choosing which questions to present which lows. Section2 describes the system and the con- avoids repetitive suggestions. We describe the algorithmic framework and present the results tent sources, Section3 describes the algorithm for of a usability study that shows that news read- keeping track of the conversation state, Section4 ers using the system successfully engage in provides the results of a usability study evaluation multi-turn conversations about specific news and Section5 presents relevant prior work. stories. The system is publicly available at https:// newslens.berkeley.edu/ and a demonstration 1 Introduction video is available at this link: https://www.
    [Show full text]
  • Natural Language Processing with Deep Learning Lecture Notes: Part Vii Question Answering 2 General QA Tasks
    CS224n: Natural Language Processing with Deep 1 Learning 1 Course Instructors: Christopher Lecture Notes: Part VII Manning, Richard Socher 2 Question Answering 2 Authors: Francois Chaubard, Richard Socher Winter 2019 1 Dynamic Memory Networks for Question Answering over Text and Images The idea of a QA system is to extract information (sometimes pas- sages, or spans of words) directly from documents, conversations, online searches, etc., that will meet user’s information needs. Rather than make the user read through an entire document, QA system prefers to give a short and concise answer. Nowadays, a QA system can combine very easily with other NLP systems like chatbots, and some QA systems even go beyond the search of text documents and can extract information from a collection of pictures. There are many types of questions, and the simplest of them is factoid question answering. It contains questions that look like “The symbol for mercuric oxide is?” “Which NFL team represented the AFC at Super Bowl 50?”. There are of course other types such as mathematical questions (“2+3=?”), logical questions that require extensive reasoning (and no background information). However, we can argue that the information-seeking factoid questions are the most common questions in people’s daily life. In fact, most of the NLP problems can be considered as a question- answering problem, the paradigm is simple: we issue a query, and the machine provides a response. By reading through a document, or a set of instructions, an intelligent system should be able to answer a wide variety of questions. We can ask the POS tags of a sentence, we can ask the system to respond in a different language.
    [Show full text]
  • MULTILINGUAL CHATBOT with HUMAN CONVERSATIONAL ABILITY [1] Aradhana Bisht, [2] Gopan Doshi, [3] Bhavna Arora, [4] Suvarna Pansambal [1][2] Student, Dept
    International Journal of Future Generation Communication and Networking Vol. 13, No. 1s, (2020), pp. 138- 146 MULTILINGUAL CHATBOT WITH HUMAN CONVERSATIONAL ABILITY [1] Aradhana Bisht, [2] Gopan Doshi, [3] Bhavna Arora, [4] Suvarna Pansambal [1][2] Student, Dept. of Computer Engineering,[3][4] Asst. Prof., Dept. of Computer Engineering, Atharva College of Engineering, Mumbai, India Abstract Chatbots - The chatbot technology has become very fascinating to people around the globe because of its ability to communicate with humans. They respond to the user query and are sometimes capable of executing sundry tasks. Its implementation is easier because of wide availability of development platforms and language libraries. Most of the chatbots support English language only and very few have the skill to communicate in multiple languages. In this paper we are proposing an idea to build a chatbot that can communicate in as many languages as google translator supports and also the chatbot will be capable of doing humanly conversation. This can be done by using various technologies such as Natural Language Processing (NLP) techniques, Sequence To Sequence Modeling with encoder decoder architecture[12]. We aim to build a chatbot which will be like virtual assistant and will have the ability to have conversations more like human to human rather than human to bot and will also be able to communicate in multiple languages. Keywords: Chatbot, Multilingual, Communication, Human Conversational, Virtual agent, NLP, GNMT. 1. Introduction A chatbot is a virtual agent for conversation, which is capable of answering user queries in the form of text or speech. In other words, a chatbot is a software application/program that can chat with a user on any topic[5].
    [Show full text]