Creating Augmented and Virtual Reality
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review About Augmented Reality Tools and Developing a Virtual Reality Application
Academic Journal of Science, CD-ROM. ISSN: 2165-6282 :: 03(02):139–146 (2014) $5(9,(:$%287$8*0(17('5($/,7<722/6$1' '(9(/23,1*$9,578$/5($/,7<$33/,&$7,21%$6('21 ('8&$7,21 0XVWDID8ODVDQG6DID0HUYH7DVFL )LUDW8QLYHULVLW\7XUNH\ Augmented Reality (AR) is a technology that gained popularity in recent years. It is defined as placement of virtual images over real view in real time. There are a lot of desktop applications which are using Augmented Reality. The rapid development of technology and easily portable mobile devices cause the increasing of the development of the applications on the mobile device. The elevation of the device technology leads to the applications and cause the generating of the new tools. There are a lot of AR Tool Kits. They differ in many ways such as used methods, Programming language, Used Operating Systems, etc. Firstly, a developer must find the most effective tool kits between them. This study is more of a guide to developers to find the best AR tool kit choice. The tool kit was examined under three main headings. The Parameters such as advantages, disadvantages, platform, and programming language were compared. In addition to the information is given about usage of them and a Virtual Reality application has developed which is based on Education. .H\ZRUGV Augmented reality, ARToolKit, Computer vision, Image processing. ,QWURGXFWLRQ Augmented reality is basically a snapshot of the real environment with virtual environment applications that are brought together. Basically it can be operated on every device which has a camera display and operation system. -
Google ARCORE
Google ARCORE Nisfu Asrul Sani @ Lab Langit 9 - PENS 20 - 22 November 2017 environtment Setting up your development environment Install the Android SDK version 7.0 (API Level 24) or higher. To install the Android SDK, install Android Studio. To update the Android SDK, use the Android SDK Manager tool in Android Studio. Install Unity 2017.2 Beta 11 or higher, with the Android Build Support component. For more info, see Downloading and Installing Unity. You will need to get the ARCore SDK for Unity. You can either: Download the SDK Preview for Unity and extract it. -or- Clone the repository with the following command: git clone https://github.com/google-ar/arcore-unity-sdk.git Prepare your device You must use a supported, physical device. ARCore does not support virtual devices such as the Android Emulator. To prepare your device: Enable developer options Enable USB debugging Install the ARCore Service on the device: Download the ARCore Service Connect your Android device to the development machine with a USB cable Install the service by running the following adb command: adb install -r -d arcore-preview.apk https://play.google.com/store/apps/details?id=com.un Additional ity3d.genericremote Supported Devices ARCore is designed to work on a wide variety of qualified Android phones running N and later. During the SDK preview, ARCore supports the following devices: Google Pixel, Pixel XL, Pixel 2, Pixel 2 XL Samsung Galaxy S8 (SM-G950U, SM-G950N, SM- G950F, SM-G950FD, SM-G950W, SM-G950U1) Initially, ARCore will only work with Samsung’s S8 and S8+ and Google’s Pixel phone, but by the end of the year, Google promised to have support for 100 million Android phones, including devices from LG, Huawei and Asus, among others. -
Augmented Reality (AR) Indoor Navigation Mobile Application
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sunway Institutional Repository Design of a Mobile Augmented Reality-based Indoor Navigation System Xin Hui Ng, Woan Ning Lim Research Centre for Human-Machine Collaboration Department of Computing and Information Systems School of Science and Technology Sunway University, Malaysia ( [email protected], [email protected] ) Abstract— GPS-based navigation technology has been widely immersive virtual navigation direction. A mobile application used in most of the commercial navigation applications prototype was developed in this project to provide navigation nowadays. However, its usage in indoor navigation is not as within Sunway University campus. effective as when it is used at outdoor environment. Much research and developments of indoor navigation technology II. RELATED WORK involve additional hardware installation which usually incur high An indoor navigation system is comprised of 3 important setup cost. In this paper, research and comparisons were done to components which are positioning, wayfinding, and route determine the appropriate techniques of indoor positioning, pathfinding, and route guidance for an indoor navigation guidance. Positioning refers to determining user’s current method. The aim of this project is to present a simple and cost- position, while wayfinding focuses on searching the route from effective indoor navigation system. The proposed system uses the user’s position to a specific destination. Route guidance is the existing built-in sensors embedded in most of the mobile devices navigation directions illustrating the route. to detect the user location, integrates with AR technology to A. Indoor Positioning Techniques provide user an immersive navigation experience. -
Augmented Reality & Virtual Reality Is Now a Reality for Enterprises
WHITE PAPER AUGMENTED REALITY & VIRTUAL REALITY IS NOW A REALITY FOR ENTERPRISES- THE FUTURE IS HERE! Abstract Innovation and next-generation technologies have completely changed the way we work, live and possibly even the way we think. AI, Augmented Reality (AR), Virtual Reality (VR), and Blockchain are just some of the technologies that have affected how we consume art, music, movies, and how we communicate, shop, and travel. We are in the midst of a complete digital revolution. This perspective paper illustrates a point of view on the use of mixed reality (MR) in today’s enterprise environment, and covers-- virtual reality and augmented reality, market trends, industry examples, and challenges within organizations that are adopting mixed reality. In short, it sheds light on what the future is expected to look like in the context of enterprise disruption with MR. Introduction Johnny Mnemonic, the Lawnmower Man, Minority Report, the Matrix, Minority Report, the Terminator 2, Ironman… Besides captivating audiences with their Everyone seems to know what VR headsets using special electronic equipment, such as stunning visual effects, these films all have are, and the popularity of Pokémon a helmet with an internal screen or gloves one thing in common - they showcase how Go almost allows omission of a basic fitted with sensors.” VR can digitally recreate MR technologies could be potentially used introduction to AR. Though they are often the environment around you, or give you in the future. used interchangeably, it is essential to clarify the impression you are somewhere entirely that AR and VR are not the same. -
Exploring How Bi-Directional Augmented Reality Gaze Visualisation Influences Co-Located Symmetric Collaboration
ORIGINAL RESEARCH published: 14 June 2021 doi: 10.3389/frvir.2021.697367 Eye See What You See: Exploring How Bi-Directional Augmented Reality Gaze Visualisation Influences Co-Located Symmetric Collaboration Allison Jing*, Kieran May, Gun Lee and Mark Billinghurst Empathic Computing Lab, Australian Research Centre for Interactive and Virtual Environment, STEM, The University of South Australia, Mawson Lakes, SA, Australia Gaze is one of the predominant communication cues and can provide valuable implicit information such as intention or focus when performing collaborative tasks. However, little research has been done on how virtual gaze cues combining spatial and temporal characteristics impact real-life physical tasks during face to face collaboration. In this study, we explore the effect of showing joint gaze interaction in an Augmented Reality (AR) interface by evaluating three bi-directional collaborative (BDC) gaze visualisations with three levels of gaze behaviours. Using three independent tasks, we found that all bi- directional collaborative BDC visualisations are rated significantly better at representing Edited by: joint attention and user intention compared to a non-collaborative (NC) condition, and Parinya Punpongsanon, hence are considered more engaging. The Laser Eye condition, spatially embodied with Osaka University, Japan gaze direction, is perceived significantly more effective as it encourages mutual gaze Reviewed by: awareness with a relatively low mental effort in a less constrained workspace. In addition, Naoya Isoyama, Nara Institute of Science and by offering additional virtual representation that compensates for verbal descriptions and Technology (NAIST), Japan hand pointing, BDC gaze visualisations can encourage more conscious use of gaze cues Thuong Hoang, Deakin University, Australia coupled with deictic references during co-located symmetric collaboration. -
Design and Evaluation of a Perceptually Adaptive Rendering System for Immersive Virtual Reality Environments Kimberly Ann Weaver Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 Design and evaluation of a perceptually adaptive rendering system for immersive virtual reality environments Kimberly Ann Weaver Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Cognitive Psychology Commons, and the Computer Sciences Commons Recommended Citation Weaver, Kimberly Ann, "Design and evaluation of a perceptually adaptive rendering system for immersive virtual reality environments" (2007). Retrospective Theses and Dissertations. 14895. https://lib.dr.iastate.edu/rtd/14895 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Design and evaluation of a perceptually adaptive rendering system for immersive virtual reality environments by Kimberly Ann Weaver A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Human Computer Interaction Program of Study Committee: Derrick Parkhurst (Major Professor) Chris Harding Shana Smith Iowa State University Ames, Iowa 2007 Copyright © Kimberly Ann Weaver, 2007. All rights reserved. UMI Number: 1449653 Copyright 2007 by Weaver, Kimberly Ann All rights reserved. UMI Microform 1449653 Copyright 2008 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. -
Evaluating Performance Benefits of Head Tracking in Modern Video
Evaluating Performance Benefits of Head Tracking in Modern Video Games Arun Kulshreshth Joseph J. LaViola Jr. Department of EECS Department of EECS University of Central Florida University of Central Florida 4000 Central Florida Blvd 4000 Central Florida Blvd Orlando, FL 32816, USA Orlando, FL 32816, USA [email protected] [email protected] ABSTRACT PlayStation Move, TrackIR 5) that support 3D spatial in- teraction have been implemented and made available to con- We present a study that investigates user performance ben- sumers. Head tracking is one example of an interaction tech- efits of using head tracking in modern video games. We nique, commonly used in the virtual and augmented reality explored four di↵erent carefully chosen commercial games communities [2, 7, 9], that has potential to be a useful ap- with tasks which can potentially benefit from head tracking. proach for controlling certain gaming tasks. Recent work on For each game, quantitative and qualitative measures were head tracking and video games has shown some potential taken to determine if users performed better and learned for this type of gaming interface. For example, Sko et al. faster in the experimental group (with head tracking) than [10] proposed a taxonomy of head gestures for first person in the control group (without head tracking). A game ex- shooter (FPS) games and showed that some of their tech- pertise pre-questionnaire was used to classify participants niques (peering, zooming, iron-sighting and spinning) are into casual and expert categories to analyze a possible im- useful in games. In addition, previous studies [13, 14] have pact on performance di↵erences. -
Virtual and Augmented Reality
Virtual and Augmented Reality Virtual and Augmented Reality: An Educational Handbook By Zeynep Tacgin Virtual and Augmented Reality: An Educational Handbook By Zeynep Tacgin This book first published 2020 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2020 by Zeynep Tacgin All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-4813-9 ISBN (13): 978-1-5275-4813-8 TABLE OF CONTENTS List of Illustrations ................................................................................... x List of Tables ......................................................................................... xiv Preface ..................................................................................................... xv What is this book about? .................................................... xv What is this book not about? ............................................ xvi Who is this book for? ........................................................ xvii How is this book used? .................................................. xviii The specific contribution of this book ............................. xix Acknowledgements ........................................................... -
The Application of Virtual Reality in Engineering Education
applied sciences Review The Application of Virtual Reality in Engineering Education Maged Soliman 1 , Apostolos Pesyridis 2,3, Damon Dalaymani-Zad 1,*, Mohammed Gronfula 2 and Miltiadis Kourmpetis 2 1 College of Engineering, Design and Physical Sciences, Brunel University London, London UB3 3PH, UK; [email protected] 2 College of Engineering, Alasala University, King Fahad Bin Abdulaziz Rd., Dammam 31483, Saudi Arabia; [email protected] (A.P.); [email protected] (M.G.); [email protected] (M.K.) 3 Metapower Limited, Northwood, London HA6 2NP, UK * Correspondence: [email protected] Abstract: The advancement of VR technology through the increase in its processing power and decrease in its cost and form factor induced the research and market interest away from the gaming industry and towards education and training. In this paper, we argue and present evidence from vast research that VR is an excellent tool in engineering education. Through our review, we deduced that VR has positive cognitive and pedagogical benefits in engineering education, which ultimately improves the students’ understanding of the subjects, performance and grades, and education experience. In addition, the benefits extend to the university/institution in terms of reduced liability, infrastructure, and cost through the use of VR as a replacement to physical laboratories. There are added benefits of equal educational experience for the students with special needs as well as distance learning students who have no access to physical labs. Furthermore, recent reviews identified that VR applications for education currently lack learning theories and objectives integration in their design. -
Augmented Reality, Virtual Reality, & Health
University of Massachusetts Medical School eScholarship@UMMS National Network of Libraries of Medicine New National Network of Libraries of Medicine New England Region (NNLM NER) Repository England Region 2017-3 Augmented Reality, Virtual Reality, & Health Allison K. Herrera University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/ner Part of the Health Information Technology Commons, Library and Information Science Commons, and the Public Health Commons Repository Citation Herrera AK, Mathews FZ, Gugliucci MR, Bustillos C. (2017). Augmented Reality, Virtual Reality, & Health. National Network of Libraries of Medicine New England Region (NNLM NER) Repository. https://doi.org/ 10.13028/1pwx-hc92. Retrieved from https://escholarship.umassmed.edu/ner/42 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in National Network of Libraries of Medicine New England Region (NNLM NER) Repository by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Augmented Reality, Virtual Reality, & Health Zeb Mathews University of Tennessee Corina Bustillos Texas Tech University Allison Herrera University of Massachusetts Medical School Marilyn Gugliucci University of New England Outline Learning Objectives Introduction & Overview Objectives: • Explore AR & VR technologies and Augmented Reality & Health their impact on health sciences, Virtual Reality & Health with examples of projects & research Technology Funding Opportunities • Know how to apply for funding for your own AR/VR health project University of New England • Learn about one VR project funded VR Project by the NNLM Augmented Reality and Virtual Reality (AR/VR) & Health What is AR and VR? F. -
Lightdb: a DBMS for Virtual Reality Video
LightDB: A DBMS for Virtual Reality Video Brandon Haynes, Amrita Mazumdar, Armin Alaghi, Magdalena Balazinska, Luis Ceze, Alvin Cheung Paul G. Allen School of Computer Science & Engineering University of Washington, Seattle, Washington, USA {bhaynes, amrita, armin, magda, luisceze, akcheung}@cs.washington.edu http://lightdb.uwdb.io ABSTRACT spherical panoramic VR videos (a.k.a. 360◦ videos), encoding one We present the data model, architecture, and evaluation of stereoscopic frame of video can involve processing up to 18× more LightDB, a database management system designed to efficiently bytes than an ordinary 2D video [30]. manage virtual, augmented, and mixed reality (VAMR) video con- AR and MR video applications, on the other hand, often mix tent. VAMR video differs from its two-dimensional counterpart smaller amounts of synthetic video with the world around a user. in that it is spherical with periodic angular dimensions, is nonuni- Similar to VR, however, these applications have extremely de- formly and continuously sampled, and applications that consume manding latency and throughput requirements since they must react such videos often have demanding latency and throughput require- to the real world in real time. ments. To address these challenges, LightDB treats VAMR video To address these challenges, various specialized VAMR sys- data as a logically-continuous six-dimensional light field. Further- tems have been introduced for preparing and serving VAMR video more, LightDB supports a rich set of operations over light fields, data (e.g., VRView [71], Facebook Surround 360 [20], YouTube and automatically transforms declarative queries into executable VR [75], Google Poly [25], Lytro VR [41], Magic Leap Cre- physical plans. -
Natural Interaction in Augmented Reality Context
Natural Interaction in Augmented Reality Context John Aliprantis1, Markos Konstantakis1, Rozalia Nikopoulou2, Phivos Mylonas2 and George Caridakis1 1 University of the Aegean, 81100 Mytilene, Greece {jalip, mkonstadakis, gcari}@aegean.gr 2 Ionian University 49100 Corfu, Greece [email protected], [email protected] Abstract. In recent years, immersive technologies like Virtual and Augmented Reality have been accelerating at an incredible pace, building innovative experiences and developing new interaction paradigms. Current research has widely explored gesture interaction with Augmented Reality interfaces, but usually requires users to manipulate input devices that could be cumbersome and obtrusive, thus preventing them from interacting efficiently with the 3D environment. Therefore, Natural User Interfaces and freehand gesture interaction are becoming more and more popular, improving the user’s engagement and sense of presence, providing more stimulating, user-friendly and non-obtrusive interaction methods. However, researchers argue about the impact of the interaction fidelity in usability and user satisfaction, questioning the level of naturalness that should characterize the interaction metaphors. Current paper proposes different gesture recognition techniques for three basic interaction categories (translation, rotation and scaling) in a Leap Motion Controller - Augmented Reality framework. A prototype is implemented in order to evaluate efficiency and usability of the proposed architecture. Finally, experimental results are discussed. Keywords: Natural interactionAugmented realityLeap motion controller Gesture recognition. 1 Introduction Over the last few years, Augmented Reality (AR) has developed into a cutting edge technology, providing new ways to interact with computer – generated information. By removing the boundaries between physical and virtual, AR has been able to create more engaging experiences, enhancing user’s enjoyment and satisfaction.