Table S4. EC50, Top, and Hill Slope Values of the Dose-Response Curves and Other Relevant

Total Page:16

File Type:pdf, Size:1020Kb

Table S4. EC50, Top, and Hill Slope Values of the Dose-Response Curves and Other Relevant

Table S4. EC50, top, and Hill slope values of the dose-response curves and other relevant information of the sulfur compounds and cyclooctenes in Figs. 3B and S2.

A. EC50 values of the dose-response curves of the sulfur compounds and cyclooctenes in Figs. 3B and S2.

EC50 (log M) # Common Name 0 M Cu 30 M Cu 30 M TEPA best-fit SE best-fit SE best-fit SE 1 (Methylthio)methanethiol -4.7 ± 0.07813 -5.99 ± 0.0834 >-4 N/A

2 (Ethylthio)methanethiol -4.560 ± 0.2644 -5.831 ± 0.02341 -4.536 0.1718

5 1-(Ethylthio)ethanethiol -4.884 ± 0.2637 -6.617 ± 0.1551

17 1-(Methylthio)ethanethiol -4.564 ± 0.1219 -5.662 ± 0.1499

6 [(Dimethylethyl)thio]methanethiol -4.939 ± 0.1427 -5.85 ± 0.1518 >-4 N/A

7 (Methylseleno)methanethiol >-4 N/A -5.36 ± 0.0592

4 2-(Methylthio)ethanethiol -6.26 ± 0.1016 -6.775 ± 0.06017 >-4 N/A

13 3-(Methylthio)-1-propanethiol -5.715 ± 0.03848 -6.48 ± 0.1264 >-4 N/A

9 2-Thiophenethiol >-4 N/A >-4 N/A

8 2-Tetrahydrothiophenethiol -5.491 ± 0.1205 -6.316 ± 0.07714

10 (Methylsulfonyl)methanethiol >-4 N/A -5.53 ± 0.1737

3 Methyl dithioformate -4.407 ± 0.06501 -4.554 ± 0.05838 -4.334 0.1192

12 Dimethyl trithiocarbonate -4.099 ± 0.3457 -4.652 ± 0.09488 >-4 N/A

20 Bis(methylthiomethyl) disulfide -5.753 ± 0.04939 -6.388 ± 0.09679 -5.560 0.04285

19 2,3,5-Trithiahexane -5.279 ± 0.1401 -5.27 ± 0.1227 >-4 N/A

11 Bis(methylthio)methane >-4 N/A -4.769 ± 0.1113

18 Methanedithiol >-4 N/A >-4 N/A

15 1,2-Ethanedithiol >-4 N/A >-4 N/A

14 Dimethyl disulfide >-4 N/A >-4 N/A

16 Methanethiol >-4 N/A -4.312 ± 0.04745

Cysteamine -4.590 ± 0.2519 -4.421 ± 0.06557 Trimethylthiazoline >-4 N/A -5.149 ± 0.1258

trans-Cyclooctene -4.735 ± 0.09422 -5.135 ± 0.08924

cis-Cyclooctene -4.707 ± 0.1247 -5.152 ± 0.1746

B. Top values of the dose-response curves of the sulfur compounds and cyclooctenes in Figs. 3B and S2.

Top # Common Name 0 M Cu 30 M Cu 30 M TEPA best-fit SE best-fit SE best-fit SE 1 (Methylthio)methanethiol 0.6411 ± 0.04007 1.062 ± 0.05175 N/A N/A

2 (Ethylthio)methanethiol 0.4904 ± 0.07715 1.005 ± 0.01598 0.3601 0.03895

5 1-(Ethylthio)ethanethiol 0.3196 ± 0.05194 0.2427 ± 0.02076

17 1-(Methylthio)ethanethiol 0.3039 ± 0.03715 0.3238 ± 0.04511

6 [(Dimethylethyl)thio]methanethiol 0.3342 ± 0.03366 0.3283 ± 0.04121 N/A N/A

7 (Methylseleno)methanethiol N/A N/A 1.13 ± 0.0527

4 2-(Methylthio)ethanethiol 0.7808 ± 0.06819 1.181 ± 0.05331 N/A N/A

13 3-(Methylthio)-1-propanethiol 1.348 ± 0.04249 1.141 ± 0.08802 N/A N/A

9 2-Thiophenethiol N/A N/A N/A N/A

8 2-Tetrahydrothiophenethiol 0.193 ± 0.01563 0.1954 ± 0.00966

10 (Methylsulfonyl)methanethiol N/A N/A 0.2831 ± 0

3 Methyl dithioformate 0.3817 ± 0.02064 0.88 ± 0.03853 0.3893 0.03962

12 Dimethyl trithiocarbonate 0.6443 ± 0.2551 1.132 ± 0.08645 N/A N/A

20 Bis(methylthiomethyl) disulfide 0.7486 ± 0.02456 1.042 ± 0.05629 0.1203 0.00479

19 2,3,5-Trithiahexane 0.442 ± 0.04841 1.296 ± 0.1008 N/A N/A

11 Bis(methylthio)methane N/A N/A 0.3422 ± 0

18 Methanedithiol N/A N/A N/A N/A

15 1,2-Ethanedithiol N/A N/A N/A N/A 14 Dimethyl disulfide N/A N/A N/A N/A

16 Methanethiol N/A N/A 0.987 ± 0.04335

Cysteamine 0.08518 ± 0.02074 0.5951 ± 0.03711

Trimethylthiazoline N/A N/A 0.2589 ± 0.02527

trans-Cyclooctene 0.6812 ± 0 0.9592 ± 0

cis-Cyclooctene 0.4385 ± 0 0.4295 ± 0

C. Hill slope values of the dose-response curves of the sulfur compounds and cyclooctenes in Figs. 3B and S2.

Hill slope # Common Name 0 M Cu 30 M Cu 30 M TEPA best-fit SE best-fit SE best-fit SE 1 (Methylthio)methanethiol 0.9076 ± 0.07388 0.8229 ± 0.09041 N/A N/A

2 (Ethylthio)methanethiol 0.6855 ± 0.1458 1.024 ± 0.04197 0.7398 0.1146

5 1-(Ethylthio)ethanethiol 0.6741 ± 0.129 1.787 ± 1.077

17 1-(Methylthio)ethanethiol 1.178 ± 0.2087 1.112 ± 0.2406

6 [(Dimethylethyl)thio]methanethiol 0.8475 ± 0.1312 1.987 ± 1.158 N/A N/A

7 (Methylseleno)methanethiol N/A N/A 0.965 ± 0.0722

4 2-(Methylthio)ethanethiol 1.05 ± 0.1428 1.25 ± 0.1726 N/A N/A

13 3-(Methylthio)-1-propanethiol 1.53 ± 0.1715 0.9092 ± 0.1745 N/A N/A

9 2-Thiophenethiol N/A N/A N/A N/A

8 2-Tetrahydrothiophenethiol 1.219 ± 0.3327 1.707 ± 0.4116

10 (Methylsulfonyl)methanethiol N/A N/A 0.7508 ± 0.2149

3 Methyl dithioformate 1.107 ± 0.1169 1.009 ± 0.09036 1.096 0.1984

12 Dimethyl trithiocarbonate 1.038 ± 0.2351 0.8931 ± 0.08288 N/A N/A

20 Bis(methylthiomethyl) disulfide 0.9143 ± 0.06457 1.068 ± 0.2059 1.734 0.2592

19 2,3,5-Trithiahexane 0.9122 ± 0.1379 0.6707 ± 0.05354 N/A N/A 11 Bis(methylthio)methane N/A N/A 0.9724 ± 0.2313

18 Methanedithiol N/A N/A N/A N/A

15 1,2-Ethanedithiol N/A N/A N/A N/A

14 Dimethyl disulfide N/A N/A N/A N/A

16 Methanethiol N/A N/A 1.265 ± 0.1122

Cysteamine 1.131 ± 0.3962 0.9996 ± 0.06214

Trimethylthiazoline N/A N/A 1.209 ± 0.3118

trans-Cyclooctene 0.7931 ± 0.1308 0.6102 ± 0.07065

cis-Cyclooctene 0.7933 ± 0.1260 0.6510 ± 0.07292

Grey areas mean functional assays not done. "0 M Cu" signifies no added copper. The backgroud level of copper in the cell culture medium used to dilute the odorant chemicals was measured to be ~0.6 M (Table S3).

D. Synthetic and structural information of the sulfur compounds and cyclooctenes in Figs. 3B and S2.

Structural Features Known Copper # Common Name Synthesis (relation to MTMT) Complexes

1 (Methylthio)methanethiol 1 in mouse urine

2 (Ethylthio)methanethiol 2 +CH2

5 1-(Ethylthio)ethanethiol 2 +2CH2

17 1-(Methylthio)ethanethiol commercial +CH2 new to our 6 [(Dimethylethyl)thio]methanethiol +3CH work 2 new to our 7 (Methylseleno)methanethiol S to Se work

4 2-(Methylthio)ethanethiol 3,4 +CH2

13 3-(Methylthio)-1-propanethiol 3,4 +2CH2

9 2-Thiophenethiol commercial +2C; -2H

8 2-Tetrahydrothiophenethiol 10 +2CH 10 (Methylsulfonyl)methanethiol 5 +2O

3 Methyl dithioformate 9 -2H

12 Dimethyl trithiocarbonate commercial +CS

20 Bis(methylthiomethyl) disulfide 13 disulfide of MTMT mixed disulfide of 19 2,3,5-Trithiahexane 14 MTMT; in mouse urine

11 Bis(methylthio)methane commercial +CH2 8

18 Methanedithiol 5 -CH2

15 1,2-Ethanedithiol 5 structural isomer

14 Dimethyl disulfide commercial structural isomer

16 Methanethiol commercial -SCH2 chelate with thiol and amine groups, can form Cysteamine commercial 12 5-membered ring or dimer of that Trimethylthiazoline commercial heterocycle; in fox urine

trans-Cyclooctene 17 strained olefin 16 geometric isomer of cis-Cyclooctene commercial trans-cyclooctene

1. Lin, D.Y., Zhang, S.Z., Block, E. & Katz, L.C. Encoding social signals in the mouse main olfactory bulb. Nature 434, 470-7 (2005).

2. Schutte, L. One-step synthesis of dithiohemiacetals - new class of compounds. Tetrahedron Lett 25, 2321-2 (1971).

3. Newman, B.C. & Eliel, E.L. Reduction with metal-ammonia combinations .3. Synthesis of beta-alkylthiomercaptans and gamma-alkylthiomercaptans from 1,3-dithiolanes and 1,3-dithianes. J Org Chem 35, 3641-6 (1970).

4. Anklam, E. & Aced, A. Nmr and mass spectroscopic studies on normal-(alkylthio)-1- alkanethiols. J Agr Food Chem 38, 123-5 (1990).

5. Matsumoto, K., Costner, E.A., Nishimura, I., Ueda, M. & Willson, C.G. High index resist for 193 nm immersion lithography. Macromolecules 41, 5674-80 (2008). 6. Black, J.R. & Levason, W. Synthesis and solution multinuclear magnetic-resonance studies of homoleptic copper(I) complexes of sulfur, selenium and tellurium donor ligands. J Chem Soc Dalton Transactions 22, 3225-30 (1994).

7. Cairns, T.L., Evans, G.L., Larchar, A.W. & Mckusick, B.C. gem-Dithiols. J Am Chem Soc 74, 3982-9 (1952).

8. Black, J.R., Champness, N.R., Levason, W. & Reid, G. Self-assembly of ribbons and frameworks containing large channels based upon methylene-bridged dithio-, diseleno-, and ditelluroethers. Inorg Chem 35, 4432-8 (1996).

9. Block, E. & Aslam, M. The chemistry of alkyl thiosulfinate esters .9. Serendipitous synthesis of alkyl trimethylsilyldithioformates by trapping of bis(trimethylsilyl)thione with alkanesulfenic acids - synthesis of bis- and tris(trimethylsilyl)methanethiols. Tetrahedron Lett 26, 2259-62 (1985).

10. Gais, H.J. Cyclic dithiohemiacetals - synthesis and properties. Angew Chem Int Edit 16, 196-7 (1977).

11. Burth, R. & Vahrenkamp, H. Zinc thiolate complexes with chelating nitrogen ligands. Inorg Chim Acta 282, 193-9 (1998).

12. Loeb, B., Crivelli, I. & Andrade, C. A violet mixed-valence copper mercaptoethylamine complex generated electrochemically or by reversible interaction with oxygen. Inorg Chim Acta 231, 21-7 (1995).

13. Altamura, M.R., Hasselstrom, T. & Long, L. Synthesis of bis(methylthiomethyl) polysulfides. J Org Chem 28, 2438-40 (1963).

14. Block, E. & O'Connor, J. The chemistry of alkyl rhiosulfinate esters. VII. Mechanistic studies and synthetic applications. J Am Chem Soc 96, 3929-44 (1974).

15. Remuzon, P. et al. Studies toward the stereocontrolled synthesis of a key azetidinone- acid intermediate in the preparation of a new carbapenem. Tetrahedron 51, 9657-70 (1995).

16. Ganis, P., Lepore, U. & Paiaro, G. Molecular structure of di-mu-chlorotris-(trans-cyclo- octene)dicopper(I). Chem Commun 18, 1054 (1969).

17. Cope, A.C. & Bach, R.D. trans-Cyclooctene. Organic Syntheses, Coll. Vol. 5, p.315 (1973); Vol. 49, p.39 (1969).

Recommended publications