Linear Regression-More Examples: Mechanical Engineering
Total Page:16
File Type:pdf, Size:1020Kb
Chapter 06.03 Linear Regression-More Examples Mechanical Engineering
Example 1 The coefficient of thermal expansion, ,of steel is given at discrete values of temperature in Table 1. Table 1 Coefficient of thermal expansion versus temperature for steel. Temperature, Coefficient of T thermal expansion, F in/inF 80 6.470106 60 6.360106 40 6.240106 20 6.120106 0 6.000106 −20 5.860106 −40 5.720106 −60 5.580106 −80 5.430106 −100 5.280106 −120 5.090106 −140 4.91010 6 −160 4.72010 6 −180 4.52010 6 −200 4.30010 6 −220 4.08010 6 −240 3.830106 −260 3.580106 −280 3.330106 −300 3.070106 −320 2.76010 6 −340 2.45010 6
06.03.1 06.03.2 Chapter 06.03
The data is regressed to a first order polynomial.
k1 k2T
Find the constants k1 and k2 of the regression model. Solution Table 2 shows the summations needed for the calculation of the constants of the regression model. Table 2 Tabulation of data for calculation of needed summations. I T T T 2 − F in/in/F in/in/F F2 1 80 6.47010 6 5.1760104 6400 2 60 6.36010 6 3.8160104 3600 3 40 6.240106 2.4960104 1600 4 20 6.12010 6 1.2240 104 400 5 0 6.00010 6 0.000 0 6 -20 5.860106 1.1720 104 400 7 -40 5.720106 2.2880104 1600 8 -60 5.580106 3.3480104 3600 9 -80 5.430106 4.3440104 6400 10 -100 5.280106 5.2800104 10000 11 -120 5.090106 6.1080104 14400 12 -140 4.910106 6.8740104 19600 13 -160 4.720106 7.5520104 25600 14 -180 4.520106 8.1360104 32400 15 -200 4.300106 8.6000104 40000 16 -220 4.080106 8.9760104 48400 17 -240 3.830106 9.1920104 57600 18 -260 3.580106 9.3080104 67600 19 -280 3.330106 9.3240104 78400 20 -300 3.070106 9.2100104 90000 21 -320 2.760106 8.8320104 102400 22 -340 2.450106 8.3300104 115600 22 -2860 1.0570104 1.0416102 726000 i1 Linear Regression-More Examples: Mechanical Engineering 06.03.3
n 22 22 22 22 nTi i Ti i i1 i1 i1 k2 22 22 2 2 nTi Ti i1 i1
221.0416102 28601.0570104 22726000 28602 9.3868 10-9 in/in/(F)2 22 _ i i1 n 1.0570104 22
4.8045106 in/inF
22 T _ i T i1 n 2860 22 130 F
_ _
k1 k2 T 4.8045106 9.3868109 130 6.0248106 in/inF 06.03.4 Chapter 06.03
Figure 4 Linear regression of coefficient of thermal expansion vs. temperature data.