Proceedings of the Multi-Disciplinary Senior Design Conference Page 3 s2
Total Page:16
File Type:pdf, Size:1020Kb
Proceedings of the Multi-Disciplinary Senior Design Conference
Page 1
Project Number: P14253
UNDERWATER MCKIBBEN MUSCLE MANIPULATOR
Will Fickenscher Jared Warren Mechanical Engineering Mechanical Engineering
Joseph Taddeo Erika Mason Chris Jasinski Mechanical Engineering Electrical Engineering Mechanical Engineering
ABSTRACT This project is part of a partnership between the Rochester Institute of Technology (RIT) and Boeing to research and develop underwater technologies. This project's primary focus is on the development of a robotic arm, or manipulator that can offer more dexterity and environmental safety than current underwater manipulators. The arm is actuated by pumping water into McKibben Muscles, which act similarly to human muscles. The use of water to actuate the muscles not only is safe for the environment, but also ensures that the arm will be able to function at great depths in the sea.
BACKGROUND Boeing, most commonly known for their industry leading aircraft, has a separate division specializing in subsea exploration. It currently employs an unmanned underwater vehicle known as the Echo Ranger. The Echo Ranger was designed mainly for scientific use and data gathering ranging from acoustic mapping to water sampling. The Echo Ranger competes with a wide array of other versatile unmanned underwater vehicles. Boeing has teamed up with the Rochester Institute of Technology to research and develop new technologies that could be outfitted to their subsea vessel to improve it’s functionality and increase Boeing’s foothold in the Unmanned Underwater Vehicle (UUV) market. Beginning in the 2013-2014 academic year, Boeing has sponsored three Multidisciplinary Senior Design projects. Among these was a project to develop a robotic manipulator that could be used on an underwater vehicle. Current robotic manipulators feature a pincher-style gripper powered by hydraulics, electronic servos, or a combination of both (Fig. 1). These are important for moving objects on the ocean floor, but they suffer from some drawbacks. Mainly, the pincher-style grippers can be very difficult to control and grab objects. The hydraulic arms also pose an environmental risk with the possibility of the hydraulic fluid leaking out into the ocean. An alternative to hydraulic power for actuation of the manipulator is McKibben Muscles. McKibben muscles create a tensile force, similar to human muscles. They consist of a latex tube and an outer mesh. When the latex bladder is pressurized, it inflates and pushes the mesh out radially causing the muscle to contract (Fig. 2). McKibben muscles have been around since the 1950’s and one of the most successful applications of this technology has been in the Shadow Dexterous Hand [2], which allows for an unprecedented amount of control and dexterity in a robotic manipulator. Previous RIT MSD projects have also used McKibben muscles to demonstrate the feasibility and advantages that this technology offers. To develop a McKibben muscle actuated arm for use on a UUV, improvements need to be made to the current design and use of this technology. First, air would not be a suitable medium for actuating the muscles. Since this arm will be used at great depth and pressure, air would compress under these circumstances and would not properly inflate the muscles. As a result this project would need to incorporate water as the actuating fluid instead of the air. Previous versions of RIT’s air muscle hands offered a limited number of muscles in the hand resulting in a low amount of dexterity. To improve current pincher-style grippers, more muscles would need to be added in order to Copyright © 2014 Rochester Institute of Technology Proceedings of the Multidisciplinary Senior Design Conference Page 2
allow for the level of control that would be needed to successfully use this style of gripper. Additionally, the hand alone offers little functionality without an arm to position the gripper into its proper location so a functional arm would need to be part of the system. Finally, a more intuitive user interface would need to be created to allow for easy use and control of the entire system of the more dexterous hand. Taking into account all the needed improvements to the current McKibben muscle hand designs, the goal of this MSD project was to create an articulating arm and hand that could ultimately pick up a golf ball, a dive stick, and a small brick. The design would also need to take into account that it would be working in a fully submerged environment so special attention needs to be given to selecting materials that have anti-corrosive properties.
MUSCLE ACTUATION The design of the Underwater McKibben Muscle Manipulator was influenced by the Festo Humanoid, the Shadow Dexterous Hand, and the Beijing Institute of Technology Dexterous Hand; all of which focused on developing a functional hand through the use of McKibben Muscles [2-4]. These successful designs however do not have to operate at the extreme pressures that an underwater manipulator faces while operating at great depths in the sea. This allowed Festo, Shadow, and the Beijing Institute of Technology to use compressed air to actuate the McKibben muscles, whereas this would be difficult to utilize on a UUV because the air would have to be stored somewhere on the vessel and compressed additionally as the vehicle descended. As a result, the Underwater McKibben Muscle Manipulator utilizes water to actuate the McKibben Muscles. Water is the ideal medium to actuate the muscles for multiple reasons. First, water is incompressible, so there would be no need to compensate for compression effects. Instead, water can be pumped from the surrounding water or a tank in the vessel to the muscles. Water pumps are popular and create the pressure differential needed to expand the McKibben muscles, thus making them act similarly to their air-actuated counterparts. Using water is also beneficial because it reduces the footprint of the system inside the vessel. Instead of a tank of air and high-pressure compressor, a water system only requires a water pump and valves for directing flow. The primary drawback of using water instead of air is that it doesn’t flow as quickly. As a result, muscle and in turn, manipulator motion will be slower. Depending on the task, this could either be beneficial or detrimental to the objective at hand. However, using higher flow pumps and proportional control valves would reduce this effect.
FINGER DEVELOPMENT In order to turn the axial force created by McKibben muscles into rotary force needed to rotate finger appendages, fishing line was used similarly to how tendons are utilized by the human body. As a result, the finger design was driven primarily on the need to allow ‘tendons’, or the fishing braid to travel along the finger, while also being able to create a torque around the joints. The fishing braid passes through the center of each finger appendage in order to keep the fishing braid safe from abrasion. Through concept selection, spring pins were chosen to be both an anchoring point for the fishing braid and the rotating link between the separate finger appendages. The spring pins are cost effective and easy to repair and replace. Keeping the fishing braid and spring pin constraints in mind, the fingers were developed to resemble that of a human hand as closely as possible. The fingers are comprised of 4 appendages: the distal, middle, proximal, and knuckle (Fig. 3). Each appendage was designed with dimensions of the human hand in mind. The profile of the finger was constrained by the water-jet manufacturing process, which was available and cost effective resulting in a sharp cornered representation of the human finger. The appendage profile was designed to allow a 90° bend at each joint, which is roughly what a human finger is capable of at full constriction. Each finger has 4 degrees of freedom, one at each joint with another at the knuckle to allow side-to-side motion of the fingers (spreading fingers wide). The index and pinky fingers each are allowed to spread 15° from pure vertical, while the middle and ring fingers are given 7.5° to spread.
Project P14253 Proceedings of the Multi-Disciplinary Senior Design Conference
Page 3
In order to rotate a finger appendage, the fishing braid must be able to create a torque around the spring pin joints. To do this, the braid is knotted to a separate spring pin placed above the joint and then traverses around the joint and into the next appendage and continues through the finger and palm until being connected to a McKibben Muscle. In order to create the most torque possible around the spring pin, a Teflon bushing is placed on the spring pin with a max diameter to allow the fishing braid to pass over it without causing abrasion against the appendages. To reduce the cost of expensive valves and the complexity of the control circuitry and algorithms, the fingers were designed to utilize McKibben Muscles only for contraction. Retraction of the fingers is done using springs instead of muscles. As a result, plates are screwed onto the backs of the fingers that serve as mechanical stops to prevent the finger from retracting past straight or ‘hyperextending’. An adverse effect of using springs for retraction is a reduction of net force created by the muscles since they have to counteract the linearly increasing force created by the springs. Upon testing on a plastic prototype finger, this effect was realized quickly as the muscle struggled to overcome the spring’s force while contracting the finger. To reduce this effect, the contraction tendon is anchored farther past the retraction tendon in order to create a greater lever arm for torque transmission.
THUMB DEVELOPMENT Similarly, the thumb was created using a distal, middle, proximal, and knuckle section. The distal, middle, and proximal sections are identical to that of the finger with the exception of length. The lengths of the thumb sections were altered to better represent that of an actual human thumb. The knuckle joint on the thumb was a complicated feature to design. A human thumb consists of a ball joint, which is difficult to control using McKibben muscles. As a result, the side-to-side and open- close actions were separated and designed using individual components. The first component, which mounts to the palm of the hand, allows the entire thumb assembly to move from side-to-side. This piece is connected to the second component of the thumb knuckle, which covers the open-close motion. This is then in turned connected to the remaining proximal, middle, and distal components of the thumb. The connections between all components in the thumb are the same as in the fingers using spring pins and Teflon bushings.
MUSCLE REQUIREMENTS In order to actuate each finger, two muscle-spring pairs are needed. Contracting the muscle closes the finger, while the return action of the spring provides the force needed to open the finger. Similarly, the contraction of the second muscle pair spreads the finger while the spring returns the finger to the straight and upright position. This equates to 8 muscles and 8 springs for the four fingers. The thumb uses one muscle-spring pair to close the distal and middle sections of the thumb, and two muscle-muscle pairs to control the opening and closing of the proximal section as well as the side-to-side rotation of the thumb knuckle. This equates to an additional 5 muscles and 1 spring in the thumb for a grand total of 13 muscles and 9 springs in the hand. Each hand muscle was designed using 1/2” latex tubing and 1/2" mesh in order to provide the needed force to actuate the hand components. Under contraction, each muscle expands to roughly 5/8” which needs to be accounted for when packaging the muscles side-by-side. Each muscle also needs to be roughly 10 inches long in order to provide the needed length of contraction. Previous RIT MSD projects that used McKibben muscles had two common problems when wiring the muscles to each component. First, the cabling that they used tended to stretch and two, it was very difficult to wire the muscles up while keeping the line tight. To combat these problems. Dyneema braided fishing line was used to limit the amount of stretch in the line since it is the most sensitive fishing line on the market, and a cable tensioner was designed and incorporated into each muscle and spring assembly. This tensioner consists of three components. The first is the tensioner housing. This component is installed into the end of the muscle and has a hole for a hex bolt to pass through. There is a milled slot so when the hex bolt is tightened down, it cannot rotate. Additionally, there is another slot milled through the center of the tensioner body to allow for Copyright © 2014 Rochester Institute of Technology Proceedings of the Multidisciplinary Senior Design Conference Page 4
the center of the bolt to be accessed. The second component in the tensioner assembly is a hex bolt. This is a standard hex bolt with the addition of a small hole drilled in the center. Threading the fishing braid through this hole and then tying a knot creates an anchor point for the line and creates the connection between the muscle and appendage that it’s intended for. The last component is a nut to fasten down the bolt and keep it in place. When the tension in the cable needs to be adjusted, the nut is loosened and the bolt is retracted enough so the hex cap is free to rotate. The bolt is then rotated until the proper tension is achieved. The bolt is then reinserted completely into the slot so the bolt is no longer free to rotate and finally the nut is tightened down to keep the bolt from slipping out. Teflon tubing was also used as an outer covering for the fishing line to help guide and route the cabling through the palm and fingers. This Teflon tubing also had the added benefits of acting as an outer housing that reduces friction and helps protect the line from wear.
FOREARM DEVELOPMENT The forearm was designed to provide the proper spacing between the hand and elbow as well as provide a location to mount the 13 muscles and 9 springs needed to actuate the hand. Dimensions for the forearm were originally planned to replicate that of a human, but both the length and the diameter of the forearm needed to be increased to properly package all of the muscles. The forearm uses a center shaft that runs the entire length of the forearm. Three plates are then mounted onto the shaft to provide the means to mount each of the springs and muscles. The first plate is mounted at the end of the forearm and provides a means for the muscles and springs to be anchored to. The next plate is located on the hand end and provides a support for the muscles to contract and relax in. This ensures that the muscles remain in line with their anchor points. The third plate is mounted slightly further down the shaft closer to the hand. This plate allows the braided line to remain in line with the muscles when it is routed into the Teflon tubing. Each of the three forearm plates uses the same hole pattern with an inner circle and an outer circle. The inner circle allows for 8 mounting positions and the outer circle allows for 16 mounting positions. Together, they provide enough mounting locations for the 13 muscles and 9 springs with 2 empty spots that can be utilized for more functionality in the future. Much like a human, the forearm is connected to the hand with a wrist. The wrist uses a double horseshoe design. The first shoe allows for the hand to bend up and down. The second show allows for the hand to rotate side- to-side. Originally, the wrist was intended to be controlled with muscles, but in order to reduce overall complexity, this function was dropped and Nord-Lock washers were added at each axis of rotation to allow the user to tighten down the bolts to lock the wrist into the desired position.
ARM AND SHOULDER DEVELOPMENT The arm and shoulder were originally designed with five degrees of freedom. These degrees of freedom would include horizontal rotation at the shoulder, vertical rotation forwards and backwards at the shoulder, vertical rotation to the side at the shoulder, vertical rotation at the elbow, and forearm roll at the elbow. The vertical rotation to the side at the shoulder was eliminated in order to simplify the design while still allowing the design to meet customer and engineering requirements. A water pump rated at 100 psi was selected to power the muscles. The pump is capable of moving four liters of water per minute. The flow rate of the pump was not important since there was not a project requirement that the arm had to move at a certain rate. The muscles are an assembly of two nylon end caps, two hose clamps, an eye screw, a push-to-connect fitting, silicon tubing, and mesh sleeving. The nylon end caps contain a barb that holds the tubing on and allows the hose clamp to secure the tubing and mesh sleeving. On one end cap the eye screw is connected so the muscle can easily be connected to transfer force. On the opposite end of the muscle the end cap connects to the push-to-connect fitting allowing it to connect to the pump.
Project P14253 Proceedings of the Multi-Disciplinary Senior Design Conference
Page 5
The joints consist of an aluminum pulley, an aluminum rod, and two Teflon sleeve bearings the sit in structural aluminum. The aluminum rod sits in the sleeve bearings allowing it rotate freely. A pulley is mounted to the aluminum rod. From here, the pulley connected to the necessary muscles by braided cable. The shoulder had to allow for both horizontal rotation and vertical rotation forwards and backwards. To accomplish the horizontal rotation the sleeve bearings sit in two horizontal aluminum plates. The aluminum rod that goes through the lower plate has a pulley mounted to it. Opposing muscles mounted to the base power this joint. In order to achieve the vertical rotation at the shoulder a pulley is mounted to an aluminum rod that connects to the upper arm. Opposing muscles mounted to the body rod control this joint. At the elbow both vertical rotation and forearm roll are required. The vertical rotation is done with opposing muscles mounted to the upper arm. The forearm roll is also accomplished with opposing muscles mounted to the upper arm. These muscles must transfer their force through bowden cables, however in order to power the pulley connected to the forearm rod.
CONTROL DEVELOPMENT Through the process of developing the mechanical structure of the Underwater McKibben Muscle manipulator, the processes that would be needed to control the entire system began to separate into two subsections, the hand control system and the arm control system. Deciding to build a hand that is semi-dexterous added complexities to the system since the human hand is capable of movements that cannot be replicated without several muscles contributing to something that a tendon or small muscle would do. The second part of this is attempting to have as much control over each movement as possible so that the manipulator can perform tasks as a human hand would. Because there are several layers of depth in what the analysis of this amount of control would incur, finding an alternative was imperative, especially for a nine month project. By using flexible resistors/ sensors and analog current switches, the goal of moving the fingers was realized. The second control system that was to be applied to the mechanical system was for the arm. This was a simpler design since the valves that were used to actuate the muscles were either on or off and could be turned on and off with a simple switch. However, to keep in mind what the purpose of the project was, it was decided to control this part of the system with a joystick. Given that this manipulator would be controlled remotely, having a joystick that could move each part of the arm was an attractive alternative to fulfill the customer requirements. As aforementioned, the control system for the hand portion of the project consisted of a flex sensor and an analog current switch. The flex sensor is a resistor that when flexed, has an increased resistance value. This difference in resistance is what was used to get the valve to turn on and off. The sensor was then grounded in a voltage divider and fed into an op amp which was then fed into a power transistor and that is what drove the valve. The schematic for this is shown in Figure 9. This was necessary to have because the difference in the resistance that was varying had to have a large enough for the valve to recognize. The configuration allows the valve to turn completely off when the sensor is not flexed and turn on when the sensor is flexed. There are three different arrangements for this circuit to control the different parts of the hand. Having to control the open and closing of the finger, the spreading of the fingers and the many movements of the thumb.
PUMP AND VALVE DEVELOPMENT The hand and arm design utilizes two different types of muscle combinations. The first is a muscle-spring combination, and the other is a muscle-muscle combination. The muscle-spring combination is used to either contract the muscle fully, or to relax the muscle completely. This requires one 3-way, 2-position valve for each muscle-spring combination. The 3-ways refers the 3 ports. One port is for the pressure source, one is for the exhaust port, and one is for the outlet (muscle). The 2-positions refers to the 2 states of the valve. The valve is either at rest, which allows the muscle to exhaust, or the valve is actuated, which pressurizes and contracts the muscle. When the muscle is deflated, the spring creates the return force for the opposing motion. When a muscle-muscle Copyright © 2014 Rochester Institute of Technology Proceedings of the Multidisciplinary Senior Design Conference Page 6
combination is used, a single valve is needed for each of the two muscle pairs. The valve used in this situation is a 5- way, 3-position valve. The 5-ways refers to the 5 ports. The first port is for the pressure source, the next two ports are the outlet ports for each muscle, and the final two ports are the exhaust ports for each muscle. The 3-position refers to the 3 states of the valve. The first position is at rest, which each muscle is neither exhausting nor pressurizing. In this state the muscles are holding their pressure. The second state allows the first muscle to pressurize while the second muscle exhausts, and the third state allows for the second muscle to pressurize while the first muscle exhausts. This single valve allows for both muscles to work in tandem to provide the opposing motion. The 3-way, 2-position valves are either fully pressurized, or fully exhausted, while the 5-way, 3-position valves allow for position control. The hand utilizes 9 muscle-spring pairs to control the closing and spreading of each finger and the tip of the thumb, and 2 muscle-muscle pairs to control the rotation and closing of the thumb. The arm uses 4 muscle-muscle pairs to control the rotation of the shoulder, upper arm, lower arm, and elbow. The muscles in the arm require more pressure than the muscles for the arm since they are required to create much higher forces. As a result, the hand and arm each use a separate pump to provide the needed pressure and flow rate for each sub-system. The hand uses a 60 psi output pump, and the arm uses 100 psi output pump.
SYSTEM RESULTS The resulting system assembly is shown in Figure 11. The arm has two degrees of freedom, having the ability to rotate around the base 70° and up and down at the shoulder 120°. The elbow also has two degrees of freedom and can lift and roll the forearm 90° relative to the upper arm. All four fingers close into a fist and spread wide at the knuckle. Cable tensioning issues late in the project resulted in removing a degree of freedom from the thumb, which left it with the ability to open and close at the proximal and distal appendages. The full manipulator assembly was tested above and underwater. In both scenarios, it was able to grasp and lift a one- pound weight, diving stick, golf ball, baseball, tennis ball, and brick, which were objectives outlined at the beginning of the project. The maximum lifting capacity for the system was never measured since project display and planning did not leave time for testing. It’s assumed that hand position, the cable-to-pulley connection, and bicep muscle size are the determining factors for this specification since the large muscles used to rotate the shoulder up and down are capable of lifting hundreds of pounds, which was validated through testing.
Project P14253 Proceedings of the Multi-Disciplinary Senior Design Conference
Page 7
CONCLUSIONS AND RECOMMENDATIONS The Underwater Mckibben Muscle Manipulator assembly ran without failure at an all day campus festival for creativity and drew enough attention to win the Xerox Corporation Sponsor Award for Innovation and Creativity. This final test proved that the overall design of the system is done with high quality. Throughout the development process however, initial ideas, goals, and designs were changed in order to keep the project on schedule. The controls subsystem was one such area where the initial ideas were simplified. Future work should be pursued to enhance the controls of this manipulator. Ideas to do this include force and position feedback, proportional valves, an exosleeve to have the manipulator also mimic arm movements, and integrating a microcontroller. Additionally, the hand could be further improved by allowing wrist movement, since the wrist is currently locked into place. Also, consideration should be given to redesigning the thumb. The thumb is a very intricate part of the human anatomy and not enough time was spent during the development process on achieving a fully functioning thumb. Furthermore, finger actuation could be improved by creating individual control of the proximal and middle/distal appendages and replacing the retraction springs for muscles. As mentioned before, the fishing line had the tendency to snap and therefore, could be upgraded to provide more durability. It’s also recommended to create more forearm roll. Having 180° of rotation would add a great deal of functionality for lifting objects from the floor. In addition, another degree of freedom could be added to the arm allowing it to lift to the side.
REFERENCES [1] "Compare SpecsManipulators." Kraft Telerobotics. N.p., n.d. Web. 12 May 2014. [2] "Dexterous Hand." Shadow Robot Company. N.p., n.d. Web. 12 May 2014. [3] "Humanoid." Festo Pneumatic & Electric Automation Worldwide. N.p., n.d. Web. 12 May 2014. [4] Liu, Hao, Wei Fan, Lin Yu, Guang-Zheng Peng, and Tao Wang. "Study On A New Dexterous Hand Actuated By Pneumatic Muscle Actuators." Proceedings of the JFPS International Symposium on Fluid Power 2008.7-2 (2008): 521-26. Print.
ACKNOWLEDGMENTS A very special thanks to Boeing, Kathleen Lamkin-Kennard, Rick Lux, Rob Kraynik, Jan Maneti, and the RIT ME machine shop staff for without their generous support this project would not have been possible.
Copyright © 2014 Rochester Institute of Technology