Plant Foods for Human Nutrition

Total Page:16

File Type:pdf, Size:1020Kb

Plant Foods for Human Nutrition

PLANT FOODS FOR HUMAN NUTRITION

Application of a Portable Infrared Instrument for Simultaneous Analysis of Sugars,

Asparagine and Glutamine Levels in Raw Potato Tubers

Huseyin Ayvaza*, Alejandra M. Santosb, Jennifer Moyseenkoc, Matthew Kleinhenzc and

Luis. E. Rodriguez-Saonab

a Department of Food Engineering, Canakkale Onsekiz Mart University, Canakkale, 17020,

Turkey b Department of Food Science and Technology, The Ohio State University, 110 Parker Food

Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, United States c Department of Horticulture and Crop Science, The Ohio State University, Ohio Agricultural

Research and Development Center, 1680 Madison Ave, Wooster, OH 44691, United States

* Corresponding author. [email protected] Tel.: +90-286-2180018; fax: +90-286-2180541

Electronic Supplementary File 3: Three tables related to the text Supplementary Table 1 Reference concentration levels for the compounds measured in the

tubers based on the harvest year and their comparison to the previously reported literature data

Parameters Harvest n Min. Max. Mean Std. Literature range Year Dev. (mg/g fresh weight) Asparagine 2012 47 0.7 2.9 1.9 0.5 1.5-11.4 [26]; 1.8-9.0 [27] 2013 37 0.8 2.0 1.3 0.4 1.7-2.5 [10]; 2.0-4.3 [11] (mg/g fresh weight) Glutamine 2012 47 0.4 1.7 0.8 0.3 1.7-2.0 [10]; ND-2.1[11] 2013 37 0.3 1.1 0.7 0.2 (mg/g fresh weight) Glucose 2012 47 0.7 7.7 3.5 1.7 0.1-6.3 [26]; 1.5-1.9 [10] 2013 37 ND 3.2 0.3 0.5 0.1-2.6 [11] (mg/g fresh weight) Fructose 2012 47 0.5 9.4 5.2 2.2 0.1-6.1 [26]; 1.5-1.7 [10] 2013 37 ND 0.7 0.1 0.1 0.0-1.5 [11] (mg/g fresh weight) Reducing sugars 2012 47 1.7 17 8.9 3.8 0.6-10.6[26]; 1.4-1.7[27] 2013 37 ND 4 0.4 0.7 (mg/g fresh weight) Sucrose 2012 47 1.1 5.4 2.7 1.1 0.4-1.6 [11]; 0.7-1.1*[28] 2013 37 0.4 2.3 1.2 0.4 (mg/g fresh weight)

Supplementary Table 2 Comparison of some statistical parameters of the sample sets used to develop calibration and prediction models in raw potatoes using transmission and ATR accessories of Cary 630 Mid- nInfrared systems

Analyte Accessory Sample Set Number Min. Max. Mean Standard of samples Deviation Calibration 66 0.7 2.9 1.7 0.5 ATR Asparagine Validation 16 0.8 2.6 1.5 0.5 Calibration 64 0.7 2.9 1.6 0.5 (mg/g fresh weight) Dial path Validation 16 0.8 2.6 1.5 0.6 Calibration 66 0.3 1.7 0.7 0.2 ATR Glutamine Validation 16 0.4 1.4 0.7 0.3 Calibration 65 0.3 1.7 0.7 0.2 (mg/g fresh weight) Dial path Validation 16 0.4 1.4 0.7 0.3 Calibration 66 0.0 6.9 2.0 1.9 ATR Glucose Validation 16 0.0 5.8 2.3 2.1 Calibration 65 0.0 6.9 1.9 1.8 (mg/g fresh weight) Dial path Validation 16 0.0 5.8 2.3 2.1 Calibration 65 0.0 9.4 2.8 3.0 ATR Fructose Validation 16 0.0 8.3 2.9 2.8 Calibration 66 0.0 9.4 3.0 3.1 (mg/g fresh weight) Dial path Validation 16 0.0 7.5 2.8 2.9 Calibration 66 0.0 15.0 4.8 4.7 ATR Reducing sugars Validation 16 0.1 11.9 4.7 4.4 Calibration 66 0.0 15.0 4.4 4.6 (mg/g fresh weight) Dial path Validation 16 0.1 14.1 4.8 4.8 Calibration 64 0.4 5.4 2.0 1.2 ATR Sucrose Validation 16 0.9 4.6 2.2 1.1 Calibration 63 0.4 5.4 1.9 1.2 (mg/g fresh weight) Dial path Validation 16 0.9 4.3 2.2 1.1

Supplementary Table 3 Cross-validation and prediction results of PLSR models developed by

using transmission and ATR accessories of Cary 630 Mid-Infrared systems

Analyte Accessory Region useda Factorsb SECVc SEPd rCVe rPredf RPDg Asparagine ATR 1299 - 1800 5 0.17 0.15 0.95 0.95 3.4 Dial Path 1166 - 1500 5 0.15 0.16 0.96 0.97 3.4 (mg/g fresh weight) Glutamine ATR 1299 - 1800 5 0.12 0.09 0.88 0.95 3.1 Dial Path 1166 - 1500 5 0.11 0.08 0.86 0.96 3.4 (mg/g fresh weight) Glucose ATR 900 - 1500 6 0.44 0.46 0.97 0.98 4.6 Dial Path 900 - 1500 6 0.43 0.38 0.97 0.98 5.5 (mg/g fresh weight) Fructose ATR 900 - 1500 6 0.81 0.73 0.96 0.96 3.9 Dial Path 900 - 1414 6 0.95 0.70 0.95 0.97 4.1 (mg/g fresh weight) Reducing Sugar ATR 900 - 1500 6 1.06 1.15 0.97 0.96 3.9 Dial Path 900 - 1500 6 1.09 1.15 0.97 0.97 4.2 (mg/g fresh weight) Sucrose ATR 900 - 1500 4 0.34 0.32 0.96 0.96 3.5 (mg/g fresh weight) Dial Path 900 - 1500 5 0.31 0.34 0.97 0.95 3.2 a The part of the Mid-IR region used for the model (cm-1) b Factors: set of orthogonal factors that account for most of the variation in the response c SECV: standard error of cross-validation d SEP: standard error of prediction e rCV: correlation coefficient of cross-validation f rPred: correlation coefficient of prediction g RPD (Standard Deviation of Reference Data)/(Standard Error of Prediction)

References

10. Brunton NP, Gormley R, Butler F, Cummins E, Danaher M, Minihan M, O’Keeffe M (2007) A survey of acrylamide precursors in Irish ware potatoes and acrylamide levels in French fries.

LWT-Food Sci Technol 40:1601–1609. doi: 10.1016/j.lwt.2006.11.015

11. Amrein TM, Bachmann S, Noti A, Biedermann M, Barbosa MF, Biedermann-Brem S, Grob K,

Keiser A, Realini P, Escher F, Amado R (2003) Potential of acrylamide formation, sugars, and free asparagine in potatoes: a comparison of cultivars and farming systems. J Agric Food Chem

51:5556–5560. doi: 10.1021/jf034344v

26. Becalski A, Lau BPY, Lewis D, Seaman SW, Hayward S, Sahagian M, Ramesh M, Leclerc Y

(2004) Acrylamide in French fries: influence of free amino acids and sugars. J Agric Food Chem

52:3801–3806. doi: 10.1021/jf0349376 27. Kalita D, Holm DG, Jayanty SS (2013) Role of polyphenols in acrylamide formation in the fried products of potato tubers with colored flesh. Food Res Int 54:753–759. doi:

10.1016/j.foodres.2013.08.023

28. Zhu F, Cai YZ, Ke J, Corke H (2010) Compositions of phenolic compounds, amino acids and reducing sugars in commercial potato varieties and their effects on acrylamide formation. J Sci

Food Agric 90:2254–2262. doi: 10.1002/jsfa.4079

Recommended publications