Template Crane
Total Page:16
File Type:pdf, Size:1020Kb

Hydrology Modeling in Alaska: Model Documentation Template (please fill out as much as possible)
Your name: Crane Johnson, USACE Alaska District
Model name: Streamflow Synthesis and Reservoir Regulation (SSARR) Model
HEC-HMS -HEC Hydrological Modeling System
Authors: SSARR U.S. Army Corps of Engineers Columbia Basin Water Management Division HEC-HMS US Army Corps of Engineers Hydrologic Engineering Center
Source code location (if public):
SSARR - http://www.nwd-wc.usace.army.mil/ftppub/SSARR_program
HEC-HMS – http://www.hec.usace.army.mil/software/hec-hms/
Citations and URLs for basic documentation:
Source code language: SSARR – Fortran HEC-HMS - Java
For the following section, you may wish to use appropriate keywords such as: Physically-based, statistical, lumped parameter, spatially distributed, transitive model, equilibrium model, implicit, semi-implicit, explicit, TOPMODEL based, finite element, finite differences, routing, bottom boundary condition, parallel code, Richardson equation, optimization, forecast, etc
Model type and/or conceptual framework: Both models are lumped parameter hydrologic models.
Data needed to run the model (inputs): Spring Snowpack (SWE) Air Temperature Precipitation Discharge Parameters and how they are derived: Empirically derived parameters
Spatial element used to lump inputs and outputs: Sub-basins and elevations bands (SSARR) Sub-basins and aspects (HEC-HMS)
Sub-models (i.e. snow or ground thermodynamics):
Rainfall/runoff transformation mechanism:
Empirical method based on calculated soil moisture and rainfall intensity (SSARR)
Runoff routing within spatial elements and to basin outlet: Cascade if reservoirs for all model routing.(SSARR).
Method for including sub-grid scale processes: N/A
Resolution (possible & prudent):
Method of deriving topography: USGS topographic maps to determine elevation bands for SSARR model and northern and southern aspect watersheds for HEC- HMS model
Calibration approaches: Overall model calibrated using historical peak flows (magnitude/volume). Operational model runs are calibrated to match observed antecedent hydrographs by adjusting initial conditions (primarily soil moisture). Treatment of frozen ground: No explicit treatment. Implicitly included in empirical parameters.
Strengths and Weaknesses in Alaska applications: Strengths – Robust models that are well documented and generally used for water control. Weaknesses – Individual parameters are often difficult to determine (typically empirically derived) with little in the way or regional guidance. No explicit treatment of permafrost.