Attention – Top Down Control Task Name Description Cognitive Construct Validity Neural Construct Reliability Psychometric Animal Model Stage of Research Validity Characteristics Guided This is a type of visual search in which Many RT studies show that Single-unit studies Not Known Wolfe et al. (1989) show Visual search There is evidence Search top-down information about relevant attention can be limited on the show that top-down that the spontaneous use tasks involving that this specific task features is used to guide attention to basis of top-down information control may be of top-down control in top-down control elicits deficits in likely targets (i.e., those that contain to task-relevant items, and implemented by visual search develops have been used in schizophrenia. features that are present in the target). others show that bottom-up means of working over the course of a monkeys. They The number of items that contain vs. do sensory signals compete with memory session (in college are not quite the (Gold, Fuller, not contain the relevant features is top-down control signals for representations of the students). However, same as those Robinson, Braun, & varied, and reaction time methods are control over attention. target (a target practice effects have not used in humans, Luck, 2007) used to determine whether subjects (Egeth et al., 1984; Folk et al., "template") that are been documented when but it should be can limit their search to the items 1992; Wolfe et al., 1989). active in visual cortex the top-down control is possible to use containing the relevant features. For and PFC. When top- explicit in the task (Wolfe similar tasks example, a typical experiment would down control is et al., 1989). across species contain two conditions, and the target in necessary to find a (Buschman & both conditions would be a red item. target, PFC appears to Miller, 2007; The number of items in each stimulus detect the target first. Chelazzi et al., array would be 6, 12, or 18. Subjects When bottom-up 2001). respond when they find the target (e.g., signals are used, a red item of a particular shape). In posterior parietal one condition, half of the items in each cortex appears to array are red; in the other condition, 3 detect the target first. of the items in each array are red Neuroimaging studies (regardless of the total number of also show that items). If subjects can restrict attention changes in top-down to the red items, then their reaction control of search are times should be constant as the total accompanied by PFC number of items increases when each activation. array contains 3 red items. This (Buschman & Miller, requires the use of a top-down signal, 2007; Chelazzi et al., presumably from prefrontal cortex, that 2001). controls the operation of posterior attentional selection mechanisms to limit search to the red items. The condition in which half of the items are red is used to detect differences in overall search rate.

MANUSCRIPTS ON THE WEBSITE:

Egeth, H. E., Virzi, R. A., & Garbart, H. (1984). Searching for conjunctively defined targets. J Exp Psychol Hum Percept Perform, 10(1), 32-39.

Gold, J. M., Fuller, R. L., Robinson, B. M., Braun, E. L., & Luck, S. J. (2007). Impaired top-down control of visual search in schizophrenia. Schizophr Res, 94(1-3), 148-155.

Attention A fixation cross is visible in the centre The experimental task was In functional magnetic (Fan et al., 2002) Fan et al., 2002. Unknown There is evidence Networks of the screen during the whole designed by Posner and resonance imaging that this specific task Task experiment. Cue stimuli appear above Petersen (Posner & Petersen, (fMRI) experiments Fan et al., 2002: elicits deficits in REFERENCES:

Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Percept Psychophys, 55(5), 485-496. Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860-1862. Bushnell, P. J. (1999). Detection of visual signals by rats: effects of signal intensity, event rate, and task type. Behavioral Processes, 46, 141-150. Carter, C. S., Robertson, L. C., Chaderjian, M. R., Celaya, L. J., & Nordahl, T. E. (1992). Attentional asymmetry in schizophrenia: controlled and automatic processes. Biol Psychiatry, 31(9), 909-918. Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. (2001). Responses of neurons in macaque area V4 during memory-guided visual search. Cereb Cortex, 11(8), 761-772. Demeter, E., Sarter, M., & Lustig, C. (in submission). Rats and Humans Paying Attention: Cross-Species Task Development for Translational Research on the Neurobiology of Challenges to Attention. Echevarria, D. J., Brewer, A., Burk, J. A., Brown, S. N., Manuzon, H., & Robinson, J. K. (2005). Construct validity of an operant signal detection task for rats. Behav Brain Res, 157(2), 283-290. Egeth, H. E., Virzi, R. A., & Garbart, H. (1984). Searching for conjunctively defined targets. J Exp Psychol Hum Percept Perform, 10(1), 32-39. Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and brain consequences of conflict. Neuroimage, 18(1), 42-57. Fan, J., Fossella, J., Sommer, T., Wu, Y., & Posner, M. I. (2003). Mapping the genetic variation of executive attention onto brain activity. Proc Natl Acad Sci U S A, 100(12), 7406-7411. Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. Neuroimage, 26(2), 471-479. Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. J Cogn Neurosci, 14(3), 340-347. Fan, J., Wu, Y., Fossella, J. A., & Posner, M. I. (2001). Assessing the heritability of attentional networks. BMC Neurosci, 2, 14. Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. J Exp Psychol Hum Percept Perform, 18(4), 1030-1044. Fossella, J., Sommer, T., Fan, J., Wu, Y., Swanson, J. M., Pfaff, D. W., et al. (2002). Assessing the molecular genetics of attention networks. BMC Neurosci, 3, 14. Gold, J. M., Fuller, R. L., Robinson, B. M., Braun, E. L., & Luck, S. J. (2007). Impaired top-down control of visual search in schizophrenia. Schizophr Res, 94(1-3), 148-155. Gouzoulis-Mayfrank, E., Balke, M., Hajsamou, S., Ruhrmann, S., Schultze-Lutter, F., Daumann, J., et al. (2007). Orienting of attention in unmedicated patients with schizophrenia, prodromal subjects and healthy relatives. Schizophr Res, 97(1-3), 35-42. Hickey, C., McDonald, J. J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. J Cogn Neurosci, 18(4), 604-613. Kozak, R., Martinez, V., Young, D., Brown, H., Bruno, J. P., & Sarter, M. (2007). Toward a neuro-cognitive animal model of the cognitive symptoms of schizophrenia: disruption of cortical cholinergic neurotransmission following repeated amphetamine exposure in attentional task-performing, but not non-performing, rats. Neuropsychopharmacology, 32(10), 2074-2086. Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. J Exp Psychol Gen, 133(3), 339-354. Liotti, M., Dazzi, S., & Umilta, C. (1993). Deficits of the automatic orienting of attention in schizophrenic patients. J Psychiatr Res, 27(1), 119-130. Luck, S. J., Fuller, R. L., Braun, E. L., Robinson, B., Summerfelt, A., & Gold, J. M. (2006). The speed of visual attention in schizophrenia: electrophysiological and behavioral evidence. Schizophr Res, 85(1-3), 174-195. Martinez, V., & Sarter, M. (2007). Detection of the Moderately Beneficial Cognitive Effects of Low-Dose Treatment with Haloperidol or Clozapine in an Animal Model of the Attentional Impairments of Schizophrenia. Neuropsychopharmacology. McGaughy, J., Kaiser, T., & Sarter, M. (1996). Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: selectivity of the behavioral impairment and relation to cortical AChE-positive fiber density. Behav Neurosci, 110(2), 247-265. McGaughy, J., & Sarter, M. (1995a). Behavioral vigilance in rats: task validation and effects of age, amphetamine, and benzodiazepine receptor ligands. Psychopharmacology (Berl), 117(3), 340-357. McGaughy, J., & Sarter, M. (1995b). Effects of chlordiazepoxide and scopolamine, but not aging, on the detection and identification of conditional visual stimuli. J Gerontol A Biol Sci Med Sci, 50(2), B90-96. Newman, L. A., & McGaughy, J. (2008). Cholinergic deafferentation of prefrontal cortex increases sensitivity to cross-modal distractors during a sustained attention task. J Neurosci, 28(10), 2642-2650. Parasuraman, R., & Davies, D. R. (1976). Decision theory analysis of response latencies in vigilance. J Exp Psychol Hum Percept Perform, 2(4), 578-590. Parasuraman, R., & Mouloua, M. (1987). Interaction of signal discriminability and task type in vigilance decrement. Percept Psychophys, 41(1), 17-22. Parasuraman, R., Warm, J. S., & Dember, W. N. (1987). Vigilance: taxonomy and utility. In L. S. Mark, J. S. Warm & R. L. Huston (Eds.), Ergonomics and human factors (pp. 11-32). New York: Springer. Posner, M. I. (1980). Orienting of attention. Q J Exp Psychol, 32(1), 3-25. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annu Rev Neurosci, 13, 25-42. Sapir, A., d'Avossa, G., McAvoy, M., Shulman, G. L., & Corbetta, M. (2005). Brain signals for spatial attention predict performance in a motion discrimination task. Proc Natl Acad Sci U S A, 102(49), 17810-17815. Sarter, M., Bruno, J. P., Givens, B., Moore, H., McGaughy, J., & McMahon, K. (1996). Neuronal mechanisms mediating drug-induced cognition enhancement: cognitive activity as a necessary intervening variable. Brain Res Cogn Brain Res, 3(3-4), 329-343. Sarter, M., Hasselmo, M. E., Bruno, J. P., & Givens, B. (2005). Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Brain Res Rev, 48(1), 98-111. Sylvester, C. M., Shulman, G. L., Jack, A. I., & Corbetta, M. (2007). Asymmetry of anticipatory activity in visual cortex predicts the locus of attention and perception. J Neurosci, 27(52), 14424-14433. Theeuwes, J. (1994). Stimulus-driven capture and attentional set: selective search for color and visual abrupt onsets. J Exp Psychol Hum Percept Perform, 20(4), 799-806. Wang, K., Fan, J., Dong, Y., Wang, C. Q., Lee, T. M., & Posner, M. I. (2005). Selective impairment of attentional networks of orienting and executive control in schizophrenia. Schizophr Res, 78(2-3), 235-241. Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: An alternative to the feature integration model for visual search. . Journal of Experimental Psychology: Human Perception and Performance, 15, 419-433. Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: voluntary versus automatic allocation. J Exp Psychol Hum Percept Perform, 16(1), 121-134. Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., et al. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nat Neurosci, 5(10), 995- 1002.