Math 120 - Cooley Trigonometry OCC

Total Page๏ผš16

File Type๏ผšpdf, Size๏ผš1020Kb

Math 120 - Cooley Trigonometry OCC

Math 120 - Cooley Trigonometry OCC

Section 5.4 โ€“ Vectors Vector addition is commutative. That is, if v and w are any two vectors, then

v + w = w + v

Vector addition is also associative. That is, if u, v, and w are vectors, then

u + (v + w) = (u + v) + w

The zero vector 0 has the property that v + 0 = 0 + v = v for any vector v. Definition

If ๐›ผ is a scalar and v is a vector, the scalar multiple ๐›ผv is defined as follows:

1. If ๐›ผ > 0, ๐›ผv is the vector whose magnitude is ๐›ผ times the magnitude of v and whose direction is the

same as v.

2. If ๐›ผ < 0, ๐›ผv is the vector whose magnitude is |๐›ผ| times the magnitude of v and whose direction is

opposite that of v.

3. If ๐›ผ = 0 or if v = 0, then ๐›ผv = 0.

Note that when a v or 0 is written in bold that this represents โ€œvector vโ€ or โ€œvector 0โ€, respectively. Theorem โ€“ Properties of ||v||

If v is a vector and if ๐›ผ is a scalar, then

(a) ||v|| โ‰ฅ 0 (b) ||v|| = 0 if and only if v = 0. (c) ||โ€“v|| = ||v||

(d) || ๐›ผv|| = |๐›ผ|๏ƒ—||v||

1 Math 120 - Cooley Trigonometry OCC

Section 5.4 โ€“ Vectors Definition - A vector u for which ||u|| = 1 is called a unit vector. Definition - An algebraic vector v is represented as v = a, b where a and b are real numbers (scalars) called the components of the vector v. Theorem Suppose that v is a vector with initial point P= ( x, y ) , not necessarily the origin, and terminal point ๎‚—๎‚—๎‚—๎‚—๎‚˜ 1 1 1 P2= ( x 2, y 2 ) . If v = PP1 2 , then v is equal to the position vector

v = x2- x 1, y 2 - y 1

Theorem โ€“ Equality of Vectors Two vectors v and w are equal if and only their corresponding components are equal. That is,

If v = a1, b 1 and w = a2, b 2

then v = w if and only if a1 = a2 and b1 = b2. Definition

Let v = a1i + b1j = a1, b 1 and w = a2i + b2j = a2, b 2 be two vectors, and let ฮฑ be a scalar. Then

v + w = (a1 + a2)i + (b1 + b2)j = a1+ a 2, b 1 + b 2

v โ€“ w = (a1 โ€“ a2)i + (b1 โ€“ b2)j = a1- a 2, b 1 - b 2

ฮฑv = (ฮฑa1)i + (ฮฑb1)j = aa1, a b 1

2 2 ||v|| = a1+ b 1 Theorem โ€“ Unit Vector in the Direction v For any nonzero vector v, the vector v u = ||v || is a unit vector that has the same direction as v. (Written in terms of v as v=|| v || u ).

๏Š Exercises: The vector v has initial point P and terminal point Q. Write v in the form of a i + b j ; that is, find its position vector.

1) P = (0,0); Q = (โ€“3, โ€“5) 2) P = (โ€“1,4); Q = (6, 2)

2 Math 120 - Cooley Trigonometry OCC

Section 5.4 โ€“ Vectors

๏Š Exercises: Find || v || .

3) v = โ€“5i + 12j 4) v = 6i + 2j

๏Š Exercises: Find each quantity if v = 3 i โ€“ 5 j and w = โ€“2 i + 3 j .

5) 3v โ€“ 2w 6) ||v + w|| 7) ||v|| + ||w||

3 Math 120 - Cooley Trigonometry OCC

Section 5.4 โ€“ Vectors ๏Š Exercises: Find the unit vector in the same direction as v .

8) v = โ€“3j 9) v = 2i โ€“ j

๏Š Exercises: Write the unit vector v in the form a i โ€“ b j , given its magnitude || v || and the angle ๐›ผ it makes with

the positive x-axis.

10) ||v|| = 8, ๐›ผ = 45ยฐ 11) ||v|| = 15, ๐›ผ = 315ยฐ

๏Š Exercises:

12) A man pushes a wheelbarrow up an incline of 20ยฐ with a force of 100 pounds. Express the force vector F in terms of i and j.

13) Two forces of magnitude 30 newtons (N) and 70 N act on an object at angles of 45ยฐ and 120ยฐ with the

positive x-axis, as shown in the figure. Find the direction and magnitude of the resultant force; that is, find F1 + F2.

4 Math 120 - Cooley Trigonometry OCC

Section 5.4 โ€“ Vectors

5 Math 120 - Cooley Trigonometry OCC

Section 5.4 โ€“ Vectors ๏Š Exercises:

14) Static Equilibrium. A weight of 800 pounds is suspended from two cables as shown in the figure. What are the tensions in the two cables?

6

Recommended publications