Mohamad Jaber Al-Jeboore*, Eman I
Total Page:16
File Type:pdf, Size:1020Kb
المجلة القطرية للكيمياء-2007-المجلد السادس والعشرون ,National Journal of Chemistry,2007, Volume26 331-341
New six coordinate cobalt(III) complexes of [1,2-diaminoethane –N,Ń-bis (2-butylidine -3-onedioxime)]
Mohamad Jaber Al-Jeboori Eman I.Abdulkarim Jassim S. Al-Dulaimi College of Education College of Education College of Education. Ibn Al-Haitham, University of Baghdad,P.O. 4150, Adhamiyah, Baghdad, Iraq
(NJC)
(Received on 30/10/2006) (Accepted for publication on 27/5/2007)
Abstract The ligand [1,2-diaminoethane –N,Ń-bis (2-butylidine -3-onedioxime)][H2L]. was reacted with Co(NO3)2.6H2O and KBr in ethanol with reflux in (1:1) metal : ligand ratio to give a III new complex of the general formula [Co (HL)Br2]. A series of new complexes with some heterocyclic nitrogen and aliphatic amine ligands of the general formula [CoIII(HL)(X)Br]Br (where: X=pyridine, 4-picoline, and 3-picoline, piperidine, octylamine, n-propylamine and Br) were prepared. All compounds have been characterised by spectroscopic methods [IR, U.V-Vis, atomic absorption, (1H NMR, and EI-mass spectroscopy for the ligand)], microanalysis andwith conductivity measurements. From the obtained data, a distorted octahedral molecular structure about Co(III) ion has been proposed. الخلةصة 1. L. A. Chugaev, Zh. Russ. Physicochem. Soc. 41, 184, 1909. تضمن البحث تحضير الليكند [diaminoethane- N,Ń-bis (2-butylidine -3-onedioxime) [H2L-1,2
وذلك من مفاعلة الثيلين ثنائي المين مع ثنائي السيتايل احادي الوكزيم . ثم مفاعلة الليكاند مع نترات الكوبلت وبروميد
البوتاسيوم باستخدام الميثانول وسطا للتفاعل و تحت التصعيد العكسي وبنسبة (1:1) حيث تكون معقد جديد ذي الصيغة
: العامة
[Co(HL)Br2 ]
كذلك تم تحضير سلسلة جديدة من المعقدات ذوات الصيغة العامة : [Br [Co(HL)Br.X حيث : X= (pyridine, 4-picoline, 3-picoline, piperidine, octylamine, and n-propylamine).
شخصت جميع المركبات بالطرق الطيفية المعروفة ( الشعة تحت الحمراء والشعة فوق البنفسجية –المرئية 1 ومطيافية التذرية و ( H NMR وطيف الكتلة بتقنية القصف اللكتروني EI لليكند) ,كذلك شخصت المركبات بوساطة التحليل الكمي الدقيق للعناصر CHN مع التوصيلية المولرية الكهربائية. بينت الدراسات التشخيصية ان الشكل الفراغي المتوقع لمعقدات الكوبلت هو ثماني السطوح المشوه .
75 المجلة القطرية للكيمياء-2007-المجلد السادس والعشرون ,National Journal of Chemistry,2007, Volume26 331-341
Introduction It is well known that heterocyclic Experimental compounds play a significant role in many Reagents were purchased from Fluka biological system, especially six members and Rediel- Dehenge Chemical Co. .I.R ring system being a component of several spectra were recorded as (KBr) discs using vitamins and drugs [1].The chemistry of a Shimadzu 8400 S FTIR metal oximato complexes has been spectrophotometer in the range (4000-400) investigated intensively e.g., preparation of cm-1. Electronic spectra of the prepared nickel(п) dimethylglyoximate, and compounds were measured in the region recognition of the chelate five- membered (200-900) nm for10-3M solution in (DMF) ring character of this complex by Chugaev at 25 0C using a Shimadzu160 [2]. Transition metal complexes with vic- spectrophotometer, with 1.000+0.001 cm dioxime have attracted attention of many matched quartz cell. Mass spectrum for the researchers because of their similarity to ligand was obtained by Electron-Impact vitamin B [3,4]. Numerous chemical (El) on a Shimadzu GCMSQPA 1000 12 studies have been made on the cobalt(II)- spectrometer. Nuclear Magnetic
1 cobalt(III)-bis(dimethylglyoxime)system Resonance spectrum H NMR for (H2L) which has been called a model system for ligand was recorded in DMSO-d6 using a Jeol [5,6] the B12 moiety, vic-Dioximes have great EX 270 MHz instrument with a importance since they are used as chelating tetramethylsilane (TMS) as an internal agents due to their stability of complexes standard. Elemental microanalyses were with transitions metal [7,8]. Recently CoIII performed on a (C.H.N.) analyser from oxime based compounds showed the Heraeus (Vario EL), at the University of possibility of using in detergent industry, Free Berlin/Germany. While metal and 3,8-dimethyl-5,6-benzo-4,7-diazadeca- contents of the complexes was determined 3,4-diene-2,9-diene dioxime CoIII by atomic absorption (A.A) technique complex is the candidate to be used as a using a Shimadzu A.A 680G atomic cationic surfactant[9]. The present paper absorption spectrophotometer. The describes the synthesis and bromide contents for complexes were characterisation of a new series of Coш determined using potentiometric titration -vic-dioxime cationic complexes with method, on 686-Titro Processor Dosimat- (pyridine, 4-picoline, 3-picoline, Metrahm-Swiss. Electrical conductivity piperidine, octylamine, n-propylamine, and measurements of the complexes were .(Br recorded at 25 0C for 10-3 M solutions of 76 المجلة القطرية للكيمياء-2007-المجلد السادس والعشرون ,National Journal of Chemistry,2007, Volume26 331-341 the samples in (DMF) using a PW 9526 digital conductivity meter.
77 المجلة القطرية للكيمياء-2007-المجلد السادس والعشرون ,National Journal of Chemistry,2007, Volume26 331-341 (3145cm-1) is attributed to the υ(O-H) the other regents were adjusted stretching of the oxime group. The strong accordingly and an identical work-up procedure gave an orange precipitate 0.42g (74%),m.p(220 0C). bands at (1001) and (918cm-1) are attributed to υ(N-O) stretching[11]. The (U.V-Vis): spectrum exhibits a high Synthesis of [Co(HL)(4-pic.)Br]Br intense absorption peak at (293nm) A similar procedure to that described
-1 -1 -1 (34130cm ) (εmax=1978 molar .cm ) for [Co(HL)py.Br]Br was used but with which assigned to overlap of (nπ*) and (0.37g, 4mmole) of 4-picoline in place of (ππ*) transitions[12] Table (3). The pyridine. The quantities of the other EI(+) mass spectrum of the ligand Fig.(4), regents were adjusted accordingly and an shows the parent ion peak at (m/z =226) identical work-up procedure gave a pale wich corresponds to [M]+, and the brown precipitate, yield 0.39g (65%), m.p fragments at,(209), (192), (166), (151), (210 0C)dec. (125), (112), (96),and (68), are assigned to Synthesis of [Co(HL)(3-pic.)Br]Br
+ + [M-(OH)] , [M-{(OH)2}] , [M -{(OH)2- The method used to prepare [Co(HL)
+ + CN}] , [M-{(OH)2-CN-CH3}] , [M- (3-pic.)Br]Br. was analogous to the
+ {(OH)2-CN-CH3-CN}] , [M-{(OH)2-CN- procedure given for the complex of 4-
+ CH3-CN-CH}] , [M-{(OH)2-CN-CH3-CN- picoline but with 3-picoline (0.37g,
+ CH-NH2}] , [M-{(OH)2-CN-CH3-CN-CH- 4mmole) instead of 4-picoline. The
+ 1 NH2-CNH2}] , respectively. The H NMR quantities of the other regents were
6 spectrum of [H2L], in DMSO-d , Fig.(5) adjusted accordingly and an identical showed (OH) protons of the oxime appear work-up procedure gave a mustard as a broad signal at (11.46)ppm. This precipitate 0.4g (67%), m.p (200 0C) dec. resonance was disappeared upon addition Results and discussion
[13] Synthesis of the ligand of D2O to the solution . The CH2 The [H2L] pro- ligand was prepared protons are equivalent and appear as a according to published method[10] as shown singlet at (3.70) ppm. As can be seen from in Scheme(1). The (I.R) spectrum for the spectrum the two sharp singlets at (H2L) displayed two bands at (1609) and (2.02) and (1.89) ppm are due to the (1473cm-1) due to the υ(C=N) stretching methyl groups on carbons (C-1,4) and for the imine and oxime groups carbons (C-2,3) respectively. However respectively, Table(2). The band at each peak is equivalent to six protons [14, 15].
78 المجلة القطرية للكيمياء-2007-المجلد السادس والعشرون ,National Journal of Chemistry,2007, Volume26 331-341
Scheme (1) The synthesis route for the ligand atoms of the imine and oxime groups.[16]. Synthesis of the complexes The synthesis of the new six coordinate The strong υ(N-O) stretching bands at complexes of the type [Co(HL)X]Br (X= (1001) and (918) cm-1 for the free ligand pyridine, 4-picoline, 3-picoline, piperidine, are shifted markedly to higher frequencies octylamine, and n-propylamine] was by ca. (90) cm-1 . This is presumably due carried out in EtOH solvent. These to the complexation with the metal ions. complexes are stable in EtOH solution. For these complexes the two (N-O) bands The analytical and physical data Table(1) are unequal[17]. The weak and broad bands and spectral data Table (2) and Tabl0e (3) appeared within the region (2580 – 2405) are compatible with the suggested cm-1 and (1765 – 1736) cm-1 are due to the structure Fig.(1). The (I.R) spectral data υ(O…H-O) stretching and d(O…H-O) of the complexes are presented in bending for the hydrogen bond Table(2). In general the (I.R) spectra of respectively, in which the ligand looses a the complexes show two bands within proton and a hydrogen bonding will be (1670-1630) and (1585-1562)cm-1 range formed. However, these bands are absent which assigned to the υ(C=N) for the in the spectrum of the spectrum of the free imine and oxime groups respectively, ligand[10]. The bands at (514-509)cm-1 indicating the coordination of nitrogen were assigned to υ(M-N) stretching, 79 المجلة القطرية للكيمياء-2007-المجلد السادس والعشرون ,National Journal of Chemistry,2007, Volume26 331-341 displayed a peak at (500-585)nm is due to indicating that the imine and oxime
3 (d-d) spin allowed transition type ( T2g nitrogens were involved in coordination
1 [18] ← A1g), suggesting distorted octahedral with metal ion . The molar conductance
(ш) [20] 3 structure about Co ion . The ( T2g of the complexes in (DMF) lie within the
1 -1 2 -1 ← A1g) band is masked by the intense (60-75 Ω .cm .mole ) range Table (3), charge transfer bands. The bands at the indicating their electrolytic nature with 1:1 range (293-305)nm assigned to the intra- ratio (bar [Co(HL)Br2] complex in which ligand (ππ*) transitions of the the molar conductance in DMF is 25 Ω- coordinated ligand. The bands occurring 1.cm2.mole-1, indicating its non-electrolytic at the range (362-383)nm are assigned to nature)[19]. The electronic spectral data of charge transfer[21]. the complexes are summarised in Table (3). The (U.V-Vis.) spectra of the complexes
80 المجلة القطرية للكيمياء-2007-المجلد السادس والعشرون ,National Journal of Chemistry,2007, Volume26 331-341
Compound Colour M.P Yield % (.Found , (Calc 0C % C H N Co Br
(H2L] ( C10 H18 N4 O2] White 164 56 (53.09) (7.96) (24.77) - - 52.50 7.32 24.34
[Co(C10 H17 N4 O2 ) Br2] Yellow 199 61 (27.04) (3.83) (12.62) (13.27) (36.01) 26.50 3.54 12.14 12.72 35.42
Co(C10 H17 N4 O2 ) py.Br]Br] Brown 220 64 (40.65) (4.97) (15.81) (13.30) (18.04) 40.10 4.60 15.30 13.00 17.64
Co(C10 H17 N4 O2 ) pipe.Br]Br] Brown 226 59 (40.19) (6.03) (15.63) (13.15) (17.84) 39.80 5.75 15.07 12.71 17.56
Co(C10 H17 N4 O2) oct.Br]Br] Yellow 180 75 (43.56) (7.26) (14.12) (11.88) (16.11) dec 43.20 6.81 13.72 11.32 15.50
[Co(C10 H17 N4O2) npro.Br]Br Orange 220 74 (36.63) (6.11) (16.44) (13.83) (18.76) 36.32 5.82 16.24 13.20 18.24
[Co(C10 H17 N4 O2) 4pic.Br]Br Pale 210 65 (42.03) (5.47) (15.32) (12.89) (17.49) brown dec 41.65 5.15 15.00 12.50 17.21
[Co(C10 H17 N4 O2 ) 3pic.Br]Br Mustard 200 67 (42.03) (5.47) (15.32) (12.89) (17.49) dec 41.37 5.00 15.10 12.31 17.00
Table (1) Analytical and physical data of the ligand and complexes
Table (2) The I.R. spectral data of the complexes and its complexesa a : compound υ(C-H) aliph υ(C=N) υ(N-O) υ(O..H-O) δ(O..H-O) υ(M-N) Additional S υ(C-H) aroma imine peaks υ(C=N) s oxime t [H2L] 2850(br) 1609 (s) 918 (sh) - - - 1415(CH2)(s) 3016(br) 1473 (s) 1001 (sh) r
[Co(HL) Br2] 2920 (br) 1670(sh) 979 (sh) 2500(w) 1650(w) 512(sh) 1430 (CH3)(br) o 3018 (br) 1562(sh) 1091(sh) n [Co(HL) py.Br]Br 2925 (w) 1660 (sh) 977 (sh) 2600(w) 1753(w) 509 1450 (CH3)(sh) , 3053 (w) 1563 (sh) 1078 (sh) (sh) 1615υ(C=C) g : ring m [Co(HL)pip.Br]Br 2952 (br) 1655 (br) 979 (sh) 2630(w) 1699(w) 510 1445 (CH3)(sh) 3091 (br) 1562 (sh) 1024 (br) (sh) m e [Co(HL) oct.Br]Br 2920 (br) 1670 (w) 1047 (w) 2519 (w) 1750 (w) 513 1425 (CH3)(br) 3045 (br) 1585 (sh) 1091 (sh) (sh) 1209υ(C-N)(w) d
[Co(HL) n pro.Br]Br 2970 (sh) 1670 (sh) 977 (w) 2565 (w) 1755 (w) 513 1384 (CH3)(sh) i 3058 (br) 1575 (sh) 1006 (w) (sh) u [Co(HL) 4 pic.Br]Br 2956 (br) 1630 (sh) 973 (sh) 2661 (w) 1720 (w) 514 (w) 1446 υ(C=C) , 3018 (br) 1570 (sh) 1037 (w) ring m : [Co(HL ) 3-pic.Br] 2925 (br) 1660 (w) 983 (w) 2588 (w) 1730 (w) 510 1384 (CH2) (s) w 3095 (br) 1565 (sh) 1004 (w) (sh) w eak, br: broad, w.br: weak and broad
81 المجلة القطرية للكيمياء-2007-المجلد السادس والعشرون ,National Journal of Chemistry,2007, Volume26 331-341
Table (3) Electronic spectral data, and conductance measurements
’ for the ligand [H2L] and it s complexes
-1 Compound nm λ εmax Molar Cm Assignment Λm (.Ω-1.cm2 Mole-1) in DMF [H2L] 293 1978 (*nπ) - (*ππ)
[Co(C10H17N4O2) Br2] 383 1472 charge 25 transfer
[Co(C10H17N4O2)(py)Br] 376 1293 60 3 1 575 134 ( T2g ← A1g)
[Co(C10H17N4O2)(pi)Br] 313 2482 65 376 1222 3 1 570 74 ( T2g ← A1g)
[Co(C10H17N4O2)(oct)Br] 301 2201 70 362 952 3 1 580 46 ( T2g ← A1g)
[Co(C10H17N4O2)(n-pro)Br] 379 1334 75 3 1 500 81 ( T2g ← A1g)
[Co(C10H17N4O2)(4-pic)Br] 300 1763 72 358 750 3 1 520 113 ( T2g ← A1g)
[Co(C10H17N4O2)(3-pic)Br] 383 1472 78
3 1 535 51 ( T2g ← A1g)
n
N Br N Me Me
Co
Me N X N Me
O O H n = 0, X = Br; n = +1, X = pyridine, 4-picoline, 3-picoline, piperdine, octylamine, and n-propylamine
Figure (1) The suggested structure for the propared complexes
82 المجلة القطرية للكيمياء-2007-المجلد السادس والعشرون ,National Journal of Chemistry,2007, Volume26 331-341
Figure (2) The IR spectra of (A)The ligand [H2L] . (B)The complex [Co(HL)( py).Br]Br (C)The complex [Co(HL)( pipi).Br]Br (D)The complex [Co(HL)(n-pro).Br]Br
Figure (3) The U.V-Vis spectra of (A)The ligand [H2L] (B) The complex [Co(HL)(py).Br] Br (C) The complex [Co(HL)(pipi).Br]Br (D) The complex [Co(HL)(4-pic).Br]Br
83 المجلة القطرية للكيمياء-2007-المجلد السادس والعشرون ,National Journal of Chemistry,2007, Volume26 331-341
Figure (4) EI (+) Mass spectrum of [H2L]
1 6 Figure (5) H NMR spectrum of [H2L] in DMSO-d
84 المجلة القطرية للكيمياء-2007-المجلد السادس والعشرون ,National Journal of Chemistry,2007, Volume26 331-341
References
13. Y. GöK, S. Karaböcek and H. 1. S.C. Nayak, P.K. Das and K.K. Sahoo. Asian J. Chem.,2003, 15, 911. Kantekin, Trans. Met. Chem., 1995, 2. L. A. Chugaev, Zh. Russ. 20, 234. Physicochem. Soc. 1909 , 41, 184. 3. J. Halpem, Science,1985, 227, 869 14. V. Ahsen, F. Gökceli and Ő. 4. R.G. Finke, D.A. Schiraldi, and B.J. Bekaroğlu, J. Chem. Soc. Dalton Mayer, Coord. Chem. Rev.,1984, 54, 1. Trans., 1987, 1827. 5. E. Canpolat, M. Kaya, and A. Yazici, 15. G. Irez and Ő. Bekaroğlu, Synth. Russ. J. of Coord. Chem, 2004, l.30, 87 React. Inorg. Met. Org. Chem., 1983, 6. L. Randaccio, N.B. Pahor, E. 13, 781. Zangrando, and L.G. Marzilli, Chem. Soc. Rev., 1989, Vol.18, No.(2), . 16. A. S. EL- Table, Trans. Met. Chem, 225. 2002, 27, 166. 7. G. N. Schrauzer., Accounts Chem. 17. M. J. Al-Jeboori, E. I. Abdulkarim and Res.,1968, 1, 97. S. B. Abbass, National J. of Chem. 8. B.D. Gupta, and S. Roy, Inorg. Chim. (Iraq), 2004, 14, 182. Acta., 1988, 146, , 209. 18. K. Nakamoto "Infrared Spectra of 9. M. N. Arumugham, K. Santhakumar, Inorganic and Coordination and S. Armachalam, Asian J. Compounds"4th. Ed., J. Wiely and Chem.,2003, 15, 191. Sons, New York, 1996. 10. M. J. Al-Jeboori, A. S. A. Abdul 19. W. J. Geary, Coord. Rev., 1971, 7, 81. Rahman and S. Atia, Ibn Al-Haitham 20. L. Misra and A. K. Singh, Indian J. J. for Pure & Appl. Sci., 2005, 18, 51. Chem., 2001, 40A, 1288. 11. G. Socarates "Infrared Characteristic 21. A. B. P. Lever, "Inorganic Electronic Group Frequencies" Wiley- Spectroscopy", 2nd Edition, New York, Interscience Publication.,1980. 1984. 12. W. Kemp, "Organic Spectroscopy" 2nd. Edition, 1987, 144.
85