Some Possible Project Topics
Total Page:16
File Type:pdf, Size:1020Kb
Some Possible Project Topics
More Applied Topics:
***Check the journal Public Opinion Quarterly for interesting topics
The articles listed below are just some references on topics. They aren't necessarily the "best" articles on the topic. Once you pick a topic do a search (using ISI or Current Index to Statistics) for other articles. These are just something to get you started....
*********************************************************************** ********************* Matrix Sampling
Multiple Matrix Sampling, Encyclopedia of Statistics.
Zeger and Thomas, Efficient Matrix sampling instruments for correlated latent traits: Examples from the national assessment of educational progress, Journal of the American Statistical Association, 92: 416--425
Munger and Loyd, (1988) The Use of Multiple Matrix Sampling for Survey Research, Journal of Experimental Education, 56: 187-191.
Gressard and Loyd (1991) A Comparison of Item Sampling Plan sin the Application of Multiple Matrix Sampling, Journal of Educational Measurement, 28: 119-130.
Moy and Barcikowski (1974) Item Sampling: Optimal Number of People and items, The Journal of Experimental Education, 42:46-52.
*********************************************************************** **************** Imputation for missing data (general)
Heitjan, D.F. (1997). Annotation: what can be done about missing data? Approaches to imputation. American Journal of Public Health, 87, 548- 550.
Schafer JL, Graham JW (2002). Missing data: our view of the state of the art. Psychological Methods;7(2):147-77.
Sinharay S, Stern HS, Russell D (2001). The use of multiple imputation for the analysis of missing data. Psychological Methods;6(4):317-29.
*********************************************************************** ***********************************
Applications of Multiple Imputation for Nonresponse
VanBuuren, Boshuizen and KNook (1999) Multiple Imputation of Missing Blood Pressure Covariates in Survival Analysis, Statistics in Medicine, 18:681-694. Heitjan and Landis (1994) Assessing secular trend sin blood pressure: A Multiple Imputation Approach, JASA, 89: 750-759.
Heitjan and Little (1991) Multiple Imputation for the Fatal Accident Reporting System, Applied Statistics, 40: 13-29.
Lavori, Dawson, and Shera (1995) A Multiple Imputation strategy for cinical trials with truncation of patient data, Statistics in Medicine, 14: 1913-1925.
Brancato, G., Pezzotti, P., Rapiti E., Perucci, C.A., Abeni, D., Babbalaccio, A., Rezza, G. and The Multicenter Prospective HIV Study (1997). Multiple imputation method for estimating incidence of HIV infection. International Journal of Epidemiology, 26, 1107-1114.
Kmetic A, Joseph L, Berger C, Tenenhouse A (2002). Multiple imputation to account for missing data in a survey: estimating the prevalence of osteoporosis. Epidemiology, 13(4):437-44. Kneipp SM, McIntosh M (2001). Handling missing data in nursing research with multiple imputation. Nurs Res;50(6):384-9.
Allison, P.D. (2000). Multiple imputation for missing data: A cautionary tale. Sociological Methods and Research, 28, 301-309. For more articles on multiple imputation see www.multiple-imputation.com
*********************************************************************** *************** Nonresponse Bias
Curtin, Presser and Singer, THE EFFECTS OF RESPONSE RATE CHANGES ON THE INDEX OF CONSUMER SENTIMENT, Public Opinion Quarterly Volume 64:413-428
Holmes and Schmitz (1996) Nonresponse Bias and business turnover rates: the case of teh characteristics of business owners survey, Journal fo Business and Economic Statistics, 14:231-241.
Turner (1999) Particpation bias in AIDS-Related telephone surveys:Results from teh National AIDS Behavioral Survey (NABS) Nonr- response study, The Journal of Sex Research, 36:52-58.
Keeter, Miller, Kohut, Groves, and Presser (2000) Consequences of reducing nonresponse in a national telephone survey, Public Opinon Quarterly 64:125-148.
National Survey of Student Engagement survey www.indiana.edu/~nsse/mbp/pressrel.htm nonrsponse follow up report.
*
*********************************************************************** **********************************
Panel Surveys/Longitudinal Data
**Kaspryzk, Duncan, Kalton and SIngh (1989) Panel Surveys, Wiley. Little, Schnabel and Baumert (2000) Modeling Loingtudinal and Multilevel Data, Lawrence Erlbaum.
Bijleveld and van der Kamp (1998) Longitudinal Data Analysis, Sage Publications.
Taris (2000) A Primer in Longitudinal Data Analysis, Sage Publications.
Firebaugh (1997) Analyzing Repeated Surveys, Sage Publications.
Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence by Judith D. Singer, John B. Willett , 2003, Oxfor P
Applied Longitudinal Data Analysis for Epidemiology : A Practical Guide by Jos W. R. Twisk (Author) 2003, Cambridge University Press.
Analysis of Longitudinal Data by Peter Diggle (Editor), Patrick Heagerty, Kung-Yee Liang, Scott Zeger , second edition, Oxford Press.
Rabe-Hesketth and Everitt (2000) A Handbook of Statistcal Analyses using Stata 2nd ed (or later if you can find it), Chapman and Hall.
Wooldrige (2000) Introductory Ecnometrics, Chapters 13 & 14, South- Western College Publishing, Thompson.
*********************************************************************** *********************************
Regression with Survey Data
Korn and Graubard, (1995) Examples of Differing Weighted and Unweighted Estimates from a Sample Survey, The American Statistician, 49: 291-295.
Pfeffermann, (1996) The use of sampling weights for survey data analysis, Statistical Methods in Medical Research, 5:239-261.
Winship and Radbill (1994) Sampling Weights and Regression Analysis, Sociological Methods and Research 23: 230-257.
Lemeshow, Letenneur, Dartigues, Lafon, Orgogozo, and Commenges (1998) Illustration of Analysis taking into Account Complex Survey Considerations: the association between wine consumption and dementia in teh PAQUID study, American Journal of Epidemiology, 148:298-306.
Eltinge, Parsons, and Jang (1997) Differences betwen complex design based and IID-based analysis of survey data: Examples from Phase I of NHANES III, Stats (magazine), 19:3-9.
Brogan (1998) SOftware for sample survey data: Misuse of STandard packages, in Encycloopedia of Biostatistics, wiley 5: 4167-4174. www.sph.emory.edu/bios/tech/donna.html Lohr and Liu (1994) A comparison of weighted and unweighted nalayses in the national crime victimization survey, Journal of Quantitative criminology, 10:343-360.
Reiter, Zanutto and Hunter (2003) Analytical Modeling in Complex Surveys of Work Practices, submitted to Industrial and Labor Relations Review.
*********************************************************************** ************************ Rolling Cross-sectional Surveys
Kish, (1998) Space/Time Variations and Rolling Samples. Journal of Official Statistics, 14: 31-46.
Kish, (1990) Rolling Samples and Census, Survey Methodology, 16: 63-79.
Kish (1997) Periodic and rolling samples and censuses. In Statistics and Public Policy, Bruce Spencer, editor, Oxford University Press.
*********************************************************************** ***************
*********************************************************************** ******************
More Methodological Topics: ***Check the journal Survey Methodology for survey articles.
The articles listed below are just some references I know of. They aren't necessarily the "best" articles on the topic (the articles with ** are really good articles). Once you pick a topic do a search (using ISI or Current Index to Statistics) for other articles. These are just something to get you started.
*********************************************************************** **************** Innovations in Poststratification Methods
**Gelman and Little, (1997). Poststratification into many categories using hierarchical logistic regression, Survey Methodology, 23: 127-135.
**Reilly, Gelman and Katz (2000). Post-stratification without population level information on the post-stratifying variable, with application to political polling.
**Lazzeroni and Little (1998) Random-effects models for smoothing poststratification weights. Journal of Official Statistics, 13:61-78.
*********************************************************************** ********** Pattern Mixture Models for Analyzing Data with Missing Value **Little and Wang (1996). Pattern-mixture models for multivariate incomplete data with covariates, Biometrics 52: 98-111.
Ekholm and Skinner, (1998). The Muscatine children's obesity data reanalysed using pattern mixture models, Applied Statistics 47: 251-263.
Molenberghs, Michiels, Kenward, and Diggle (1998). Monotone missing data and pattern-mnixture models, Statistica Neerlandica, 52:153-161.
Pauler, McCoy, Moinpur (2003). Pattern mixture models for longitudinal quality of life studies in advanced stage disease, Statistics in Medicine, 22:795-809.
*********************************************************************** ************* Influential Observations in Surveys
Smith (1987). Influential Obserations in Survey Sampling. Journal of Applied Statistics, 14:143-52.
**Elliott and Little (2000). Model-based alternative to trimming survey weights, Journal of Official Statistics, 16:191-209.
Zaslavsky, Schenker and Belin (2001). Downweighting influential clusters in surveys: Application to the 1990 Post Enumeration Survey, Journal of the American Statistical Association, 96: 858-869.
*********************************************************************** ************* Small Area Estimation (hierarchical models)
**Ghosh and Rao, (1994). Small Area Estimation: An Appraisal, Statistical Science, 9:55-93.
Farrell, MacGibbon, and Tomberlin, (1997). Empirical Bayes Small-Area EStimation Using Logistic Regression Models and Summary Statistics, Journal of Business and Economic Statistics, 15:101-108.
Congdon and Best, (2000). Small area variation inhospital admission rates: Bayesian adjustment for primary care and hospital factors, Applied Statistics, 49: 207-226.
**Fay and Herriot (1979) Estimate of Income for Small Places: An Application of James-Stein PRocedures to Census Data, JASA, 74: 269-277.
Rao, J.N.K. (2003). Small Area Estimation. Wiley.
*********************************************************************** **************** Capture-Recapture Methods (usually for wildlife sampling, but also for estimating undercount in the census)
Search on "recapture" in Current Index to Statistics, here are some that sound good, but I haven't read them: Brecht, Mary-Lynn , and Wickens, Thomas D. (1991), ``A comparison of multiple-recapture models for drug prevalence estimation'', ASA Proceedings of the Social Statistics Section, 556-561
Pollock, K. H. , Nichols, J. D. , Brownie, C. , and Hines, J. E. (1990), ``Statistical inference for capture-recapture experiments'', Wildlife Society (Bethesda, MD)
Pollock, Kenneth H. (1989), ``Modelling capture, recapture, and removal statistics for estimation of demographic parameters for fish and wildlife populations: Past, present, and future'', ASA Sesquicentennial Invited Paper Sessions, 26-50
Rodrigues, Josemar , Bolfarine, Heleno , and Galvão Leite, José (1989), ``A simple non-parametric Bayes solution to the estimation of the size of a closed animal population'', The Statistician, 38 , 71-76
Nayak, Tapan K. (1988), ``Estimating population size by recapture sampling'', Biometrika, 75 , 113-120
*********************************************************************** ******************** Adaptive Sampling
Thompson and Seber 1996 Adaptive Sampling. Wiley.
Thompson (1996) Adaptive Cluster sampling based on order statistics. Environmetrics, 7:123-133.
Danaher and King, 1994, Estimating Rare Household Characteristics Using Adaptive Sampling. The New Zealand Statistician, 29: 14-23.
Lo, Griffith and Hunget (1997) Using a restricted adaptive cluster sampling to estimate pacific hake larval abundance, California cooperative Oceanic Fisheries Investigations Reports, 38: 103--13.
Blair, (1999) A Probability sample of gay urban males: The use of two- phase adaptive sampling, The Journal of Sex Research, 36: 39-44.
*********************************************************************** ********************* Matrix Sampling
**Raghunathan and Grizzle (1995) A Split Questionnaire SUrvey Design, Journal of the American Statistical Association, 90:54-63.
Shoemaker (1973) Principles and Procedures of Multiple Matrix Sampling, Ballinger Publishing Company.
Multiple Matrix Sampling, Encyclopedia of Statistics.
**Thomas and Gan (1997) Generating Multiple Imputations for Matrix sampling data anlyzed with item response models, Journal of Educational and Behavioral Statistics, 22:425-445. **Mislevy, Beaton, Kaplan, and Sheehan (1992) Estimating Population Characteristics From Spare Matrix Samples of Item Responses, Journal of Educational Measurement, 29:133-161.
Zeger and Thomas, Efficient Matrix sampling instruments for correlated latent traits: Examples from the national assessment of educational progress, Journal of the American Statistical Association, 92: 416--425
Munger and Loyd, (1988) The Use of Multiple Matrix Sampling for Survey Research, Journal of Experimental Education, 56: 187-191.
Gressard and Loyd (1991) A Comparison of Item Sampling Plan sin the Application of Multiple Matrix Sampling, Journal of Educational Measurement, 28: 119-130.
Moy and Barcikowski (1974) Item Sampling: Optimal Number of People and items, The Journal fo Experimental Education, 42:46-52
*********************************************************************** *************************************
Bayesian Bootstrap Multiple Imputation
Kim (2002) A note on approximate Bayesian bootstrap imputation, Biometrika 89: 470-477.
RUbin and Schenker (1986). Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. JASA, 81:366-74.
*********************************************************************** ************************************
Imputation for Missing Data (general)
Little (1992) Regression with Missing X's: a review. JASa 87:1227-1237.
Schafer JL, Graham JW (2002). Missing data: our view of the state of the art. Psychological Methods;7(2):147-77.
*********************************************************************** ********************************** Multiple Imputation
Rubin, D.B. (1996). Multiple imputation after 18+ years. Journal of the American Statistical Association, 91, 473-489.
Rubin, D.B. (1986). Basic ideas of multiple imputation for nonresponse. Survey Methodology, 12, 37-47.
Schafer, J.L. (1997). Analysis of Incomplete Multivariate Data. New York: Chapman & Hall.
Sinharay S, Stern HS, Russell D (2001). The use of multiple imputation for the analysis of missing data. Psychological Methods;6(4):317-29. For more articles on multiple imputation see www.multiple-imputation.com
*********************************************************************** ***********************************
Applications of Multiple Imputation for Nonresponse
VanBuuren, Boshuizen and KNook (1999) Multiple Imputation of Missing Blood Pressure Covariates in Survival Analysis, Statistics in Medicine, 18:681-694.
Heitjan and Landis (1994) Assessing secular trend sin blood pressure: A Multiple Imputation Approach, JASA, 89: 750-759.
Heitjan and Little (1991) Multiple Imputation for the Fatal Accident Reporting System, Applied Statistics, 40: 13-29.
Lavori, Dawson, and Shera (1995) A Multiple Imputation strategy for cinical trials with truncation of patient data, Statistics in Medicine, 14: 1913-1925.
Glynn, Laird and Rubin (1993) Multiple imputation in mixture models for Nonignorable nonresponse with Follow-ups, JASA, 88:984-993.
**Gelman, A., King, G. and Liu, C. (1998). Not asked and not answered: Multiple imputation for multiple surveys (with discussion). Journal of the American Statistical Association, 93, 846-874.
Landrum MB, Becker MP (2001). A multiple imputation strategy for incomplete longitudinal data. Statistics in Medicine;20(17-18):2741- 2760.
Raghunathan, T.E., Siscovick, D.S. (1996). A multiple imputation analysis of a case-control study of the risk of primary cardiac arrest among pharmacologically treated hypertensives. Applied Statistics, 45, 335-352.
For more articles on multiple imputation see www.multiple-imputation.com
*********************************************************************** ************************************* Sequential Multiple Imputation
Raghunathan, T.E., Lepkowski, J.M., van Hoewyk, J., Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27, 85-95.
MICE software manual www.multiple-imputation.com
*********************************************************************** *************************************** Approaches to nonignorable nonresponse
Greenlees, J.S., Reece, W.S. and Zieschang, K.D. (1982). Imputation of missing values when the probability of response depends on the variable being imputed. Journal of the American Statistical Association, 77, 251-261.
Glynn, R.J., Laird, N.M. and Rubin, D.B. (1986). Selection modeling versus mixture modeling with nonignorable nonresponse. With discussion. In W. Wainer (Ed.), Drawing Inferences from Self-Selected Samples, 115- 151. New York: Springer-Verlag.
*********************************************************************** ***************************************
Jackknife and bootstrap variance estimation for hot-deck (single) imputation
Rao, J.N.K. and Shao, J. (1992). Jackknife Variance Estimation with Survey Data Under Hot Deck Imputation. Biometrika, 79, 811-822.
Rao, J.N.K. (1996). On variance estimation with imputed survey data. Journal of the American Statistical Association, 91, 499-505.
Shao J and Sitter R.R. (1996). Bootstrap for Imputed Survey Data. Journal of the American Statistical Association, 91, 435, 1278-1288.
*********************************************************************** **********************************
Panel Surveys/Longitudinal Data
**Kaspryzk, Duncan, Kalton and SIngh (1989) Panel Surveys, Wiley. (I have the one from the library--see you if you need it).
Little, Schnabel and Baumert (2000) Modeling Loingtudinal and Multilevel Data, Lawrence Erlbaum.
Bijleveld and van der Kamp (1998) Longitudinal Data Analysis, Sage Publications.
**Taris (2000) A Primer in Longitudinal Data Analysis, Sage Publications.
Firebaugh (1997) Analyzing Repeated Surveys, Sage Publications.
Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence by Judith D. Singer, John B. Willett , 2003, Oxfor P
Applied Longitudinal Data Analysis for Epidemiology : A Practical Guide by Jos W. R. Twisk (Author) 2003, Cambridge University Press.
Analysis of Longitudinal Data by Peter Diggle (Editor), Patrick Heagerty, Kung-Yee Liang, Scott Zeger , second edition, Oxford Press.
*********************************************************************** *********************************
Analysis of Complex Survey Data
Kott (1991) A Model-Based Look at Linear Regression with Survey Data, THe American Statistician, 45: 107-112.
Little (1991) Inference with Survey weights, Journal of Official Statistics, 7:105-474.
Magee, Robb, and Burbridge (1998) On the use of sampling weights when estimating regression models with survey data, Journal of Econometrics, 84:251-271.
Holt, Smith and WInter (1980) Regression Analysos of Data from Complex Surveys, Journal of the Royal STatistical Society, Series A, 143:474- 487.
Kalton (1983) Models in the Practice of Survey Sampling, International Statistical Revewi, 51: 175-188.
DuMouchel and Duncan (1983) Using Sample Survey Weights in Multiple Regression Analyses of STratified Samples, JASA, 78:535-543.
Chambers and Skinner (2003) Analysis of Survey Data, Wiley.
SKinner, Holt, and Smith (1989) ANalysis of Complex Surveys, WIley.