Simulation of Deepwater Horizon Oil Plume Reveals Substrate Specialization Within a Complex Community of Hydrocarbon Degraders

Total Page:16

File Type:pdf, Size:1020Kb

Simulation of Deepwater Horizon Oil Plume Reveals Substrate Specialization Within a Complex Community of Hydrocarbon Degraders Simulation of Deepwater Horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders Ping Hua, Eric A. Dubinskya,b, Alexander J. Probstc, Jian Wangd, Christian M. K. Sieberc,e, Lauren M. Toma, Piero R. Gardinalid, Jillian F. Banfieldc, Ronald M. Atlasf, and Gary L. Andersena,b,1 aEcology Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; bDepartment of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720; cDepartment of Earth and Planetary Science, University of California, Berkeley, CA 94720; dDepartment of Chemistry and Biochemistry, Florida International University, Miami, FL 33199; eDepartment of Energy, Joint Genome Institute, Walnut Creek, CA 94598; and fDepartment of Biology, University of Louisville, Louisville, KY 40292 Edited by Rita R. Colwell, University of Maryland, College Park, MD, and approved May 30, 2017 (received for review March 1, 2017) The Deepwater Horizon (DWH) accident released an estimated Many studies of the plume samples reported that the structure 4.1 million barrels of oil and 1010 mol of natural gas into the Gulf of the microbial communities shifted as time progressed (3–6, 11– of Mexico, forming deep-sea plumes of dispersed oil droplets and 16). Member(s) of the order Oceanospirillales dominated from dissolved gases that were largely degraded by bacteria. During the May to mid-June, after which their numbers rapidly declined and course of this 3-mo disaster a series of different bacterial taxa were species of Cycloclasticus and Colwellia dominated for the next enriched in succession within deep plumes, but the metabolic capa- several weeks (4, 5, 14). Following containment of the DWH bilities of the different populations that controlled degradation rates wellhead, all of these dominant members declined in abundance. of crude oil components are poorly understood. We experimentally Multiple hypotheses have been put forth regarding the drivers of reproduced dispersed plumes of fine oil droplets in Gulf of Mexico microbial community succession during the period of hydrocarbon seawater and successfully replicated the enrichment and succession contamination. Redmond and Valentine (14) proposed that the of the principal oil-degrading bacteria observed during the DWH input of natural gas structured the microbial community response. event. We recovered near-complete genomes, whose phylogeny A modeling study suggested it was a consequence of different MICROBIOLOGY matched those of the principal biodegrading taxa observed in the metabolic growth rates combined with ocean fluid dynamics (6). field, including the DWH Oceanospirillales (now identified as a Dubinsky et al. (3) found succession was primarily controlled by Bermanella species), multiple species of Colwellia, Cycloclasticus, hydrocarbon rather than nutrient availability. A 16S rRNA gene- and other members of Gammaproteobacteria, Flavobacteria, and Rho- based study using surrogate oil suggested that dispersant might dobacteria. Metabolic pathway analysis, combined with hydrocarbon compositional analysis and species abundance data, revealed sub- Significance strate specialization that explained the successional pattern of oil- degrading bacteria. The fastest-growing bacteria used short-chain The Deepwater Horizon drilling accident was the first major alkanes. The analyses also uncovered potential cooperative and com- release of oil and natural gases in the deep ocean, and con- petitive relationships, even among close relatives. We conclude that siderable uncertainty remains about the fate of vast amounts patterns of microbial succession following deep ocean hydrocarbon of hydrocarbons that never reached the surface. We simu- blowouts are predictable and primarily driven by the availability of lated the deep-sea plumes of dispersed oil microdroplets and liquid petroleum hydrocarbons rather than natural gases. measured biodegradation of crude oil components. We suc- cessfully reproduced the successive blooms of diverse bacte- hydrocarbon biodegradation | Gulf of Mexico | microbial communities | ria observed in the field and obtained near-complete Macondo oil | genome succession genomes of all major hydrocarbon-degrading species, pro- viding an assessment of the metabolic capabilities of the uring April to July 2010, 4.1 million barrels of crude oil were microbial community responsible for biodegradation. Our Dreleased into the Gulf of Mexico due to the Deepwater results show that rapidly degraded components of oil were Horizon (DWH) accident. The DWH accident was the first consumed by bacteria with highly specialized degradation major spill to occur in the deep ocean (1,500-m depth), and the capabilities and that crude oil alone could explain the micro- processes that determined the fate of oil released at this depth bial dynamics observed in the field. were largely unknown. An important phenomenon observed in the deep ocean was the unexpected suspension of small oil Author contributions: P.R.G., R.M.A., and G.L.A. designed research; J.W. and L.M.T. per- droplets (<100 μm) that remained trapped at depth in the water formed research; A.J.P. contributed new reagents/analytic tools; P.H., E.A.D., A.J.P., C.M.S., J.F.B., and G.L.A. analyzed data; and P.H., E.A.D., A.J.P., P.R.G., J.F.B., R.M.A., column because they lacked enough buoyancy to rise to the and G.L.A. wrote the paper. surface. Consequently, vast plumes of oil microdroplets con- The authors declare no conflict of interest. taining not only soluble but also insoluble fractions of oil were This article is a PNAS Direct Submission. retained at depth, largely between 900 and 1,300 m deep (1, 2), and subject to biodegradation by the deep ocean microbial Freely available online through the PNAS open access option. – Data deposition: The whole genome shotgun project and the associated draft genomes community (3 6). Furthermore, the application of dispersants at have been deposited at the DNA Data Bank of Japan (DDBJ), European Nucleotide the wellhead may have enhanced oil droplet formation, oil re- Archive, and GenBank (accession nos. MAAA00000000– MAAU00000000 and tention, and biodegradation at depth, although potential in- MAAW00000000–MABF00000000). The version described in this paper is version hibitory effects of dispersants on biodegradation have been MAAA00000000–MAAU00000000 and MAAW00000000–MABF00000000. The raw reads have been deposited at DDBJ, the European Molecular Biology Laboratory, and GenBank (acces- reported (7). There continues to be considerable uncertainty and sion no. SRP075617). The project description and related metadata are accessible through disagreement about the rates of microbial biodegradation under BioProject PRJNA320927. these conditions and the factors controlling the fate of the 1To whom correspondence should be addressed. Email: [email protected]. complex mixture of crude oil compounds that were trapped deep This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. in the water column (8–10). 1073/pnas.1703424114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1703424114 PNAS Early Edition | 1of6 Downloaded by guest on October 1, 2021 promote microbes that are able to use dispersant for growth. Therefore, it was thought that the relative abundance of the nat- ural hydrocarbon degraders, such as Marinobacter, was kept low (7). No study, to date, has been able to specify the relationship between hydrocarbon substrate availability and the metabolic ca- pacities of the diverse group of organisms responsible for hydro- carbon degradation in the DWH plume. Our goals in this study were to mimic the conditions present in the deep-sea oil plume at the time of the DWH oil release by producing highly dispersed (∼10-μm) oil droplets in natural seawater, correlate the progression of oil degradation with shifts in the endemic microbial community by analyzing changes in hy- drocarbon chemistry and bacterial populations over a 64-d time course, and recover high-quality draft genomes to determine the metabolic factors that drove the microbial community shifts throughout the oil biodegradation process. Results Microbial Community Structural Changes Correlated with Hydrocarbon Groups. To observe the interaction between the microbial com- munity and the consumption of hydrocarbons we simulated the deep-sea plume observed during the DWH incident in the labo- ratory. Natural seawater collected from Mississippi Canyon block Fig. 2. Response of deep-ocean bacteria to MC252 oil. Heat maps of Phy- loChip hybridization intensities for the incubation experiment (A) and field MC-294 at 1,100- to 1,200-m depth was mixed to a final concen- samples collected in 2010 during the DWH event (B). Hybridization in- tration of 2 ppm oil and 0.02 ppm Corexit EC9500A dispersant. tensities were standardized to the maximum value for each operational Microdroplets were produced using a pressurized flow injection taxonomic unit (OTU). OTUs are shown that represent the 10 most enriched (PFI) droplet generator (15) to produce median-size oil droplets genera in incubation samples compared with starting abundances (t0). OTUs of 10-μm diameter using Macondo (MC252) oil (SI Methods). Oil enriched in 2010 field samples that matched enriched genera in the in- droplets remained in suspension in replicate 2-L bottles for the cubation experiment are shown in B. OTUs that dominated early, in- 64 d of the experiment. termediate, and late stages
Recommended publications
  • Genomic Insight Into the Host–Endosymbiont Relationship of Endozoicomonas Montiporae CL-33T with Its Coral Host
    ORIGINAL RESEARCH published: 08 March 2016 doi: 10.3389/fmicb.2016.00251 Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host Jiun-Yan Ding 1, Jia-Ho Shiu 1, Wen-Ming Chen 2, Yin-Ru Chiang 1 and Sen-Lin Tang 1* 1 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, 2 Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, Kaohsiung, Taiwan The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its Edited by: Rekha Seshadri, host. Testosterone degradation and type III secretion system are commonly present in Department of Energy Joint Genome Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Institute, USA Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, Reviewed by: this bacterium could move into coral cells via endocytosis after binding to coral’s Eph Kathleen M. Morrow, University of New Hampshire, USA receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase Jean-Baptiste Raina, are possible type III secretion effectors that might help coral to prevent mitochondrial University of Technology Sydney, Australia dysfunction and promote gluconeogenesis, especially under stress conditions.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Indicators of Iron
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Indicators of Iron Metabolism in Marine Microbial Genomes and Ecosystems A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Shane Lahman Hogle Committee in charge: Katherine Barbeau, Chair Eric Allen Bianca Brahamsha Christopher Dupont Brian Palenik Kit Pogliano 2016 Copyright Shane Lahman Hogle, 2016 All rights reserved . The Dissertation of Shane Lahman Hogle is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION Mom, Dad, Joel, and Marie thank you for everything iv TABLE OF CONTENTS Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents .................................................................................................................v List of Figures ................................................................................................................... vii List of Tables ..................................................................................................................... ix Acknowledgements ..............................................................................................................x Vita ..................................................................................................................................
    [Show full text]
  • Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: a Review
    International Journal of Environmental Research and Public Health Review Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review Omena Bernard Ojuederie and Olubukola Oluranti Babalola * ID Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +27-786551839 Received: 15 September 2017; Accepted: 30 November 2017; Published: 4 December 2017 Abstract: Environmental pollution from hazardous waste materials, organic pollutants and heavy metals, has adversely affected the natural ecosystem to the detriment of man. These pollutants arise from anthropogenic sources as well as natural disasters such as hurricanes and volcanic eruptions. Toxic metals could accumulate in agricultural soils and get into the food chain, thereby becoming a major threat to food security. Conventional and physical methods are expensive and not effective in areas with low metal toxicity. Bioremediation is therefore an eco-friendly and efficient method of reclaiming environments contaminated with heavy metals by making use of the inherent biological mechanisms of microorganisms and plants to eradicate hazardous contaminants. This review discusses the toxic effects of heavy metal pollution and the mechanisms used by microbes and plants for environmental remediation. It also emphasized the importance of modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade heavy metals at a faster rate, highlighting recent advances in microbial bioremediation and phytoremediation for the removal of heavy metals from the environment as well as future prospects and limitations. However, strict adherence to biosafety regulations must be followed in the use of biotechnological methods to ensure safety of the environment.
    [Show full text]
  • Part 1. General Microbiology & Medical Immunology
    I.I. Generalov MEDICAL MICROBIOLOGY, VIROLOGY & IMMUNOLOGY Part 1. General Microbiology & Medical Immunology Lecture Course for Students of Medical Universities VITEBSK STATE MEDICAL UNIVERSITY 2016 УДК [579+616.31]=111(07) ББК 52.64 я73+56.6 я73 Г 34 Printed according to the decision of Educational&Methodological Concociation on Medical Education (July 1, 2016) Reviewed by: D.V.Tapalsky, MD, PhD, Head of Microbiology, Virology and Immunology Dpt, Gomel State Medical University Microbiology, Virology and Immunology Dpt, Belarussian State Medical University, Minsk Generalov I.I. Г 34 Medical Microbiology, Virology and Immunology. Part 1. General Microbiology & Medical Immunology – Lecture Course for students of medical universities / I.I. Generalov. – Vitebsk, - VSMU. - 2016. - 282 p. ISBN 978-985-466-743-0 The Lecture Course on Medical Microbiology, Virology and Immunology accumulates a broad scope of data covering the most essential areas of medical microbiology. The textbook is composed according to the educational standard, plan and program, approved by Ministry of Education and Ministry of Health Care of Republic of Belarus. This edition encompasses all basic sections of the subject – General Microbiology, Medical Immunology, Medical Bacteriology and Virology. Part 1 of the Lecture Course comprises General Microbiology and Medical Immunology sections. This book is directed for students of General Medicine faculties and Dentistry faculties of higher educational establishments. УДК [579+616.31]=111(07) ББК 52.64 я73+56.6 я73 © Generalov I.I., 2016 © VSMU Press, 2016 ISBN 978-985-466-743-0 2 CONTENTS Pages Abbreviation list 5 Section 1. GENERAL MICROBIOLOGY` 8 Chapter 1. The subject and basic fields of modern microbiology.
    [Show full text]
  • Dr. Subhankar Chatterjee Assistant Professor, Department of Environmental Science School of Earth and Environmental Sciences, CUHP
    Dr. Subhankar Chatterjee Assistant Professor, Department of Environmental Science School of Earth and Environmental Sciences, CUHP Contact Details: School of Earth and Environmental Sciences, Department of Environmental Sciences, Central University of Himachal Pradesh, Temporary Academic Block, Shahpur, Dist.- Kangra, HP- 176206; India. Phone: +91-1892 237288, Ext-311; Mobile: +91-8894500689; E-mail: [email protected]; [email protected] Academic Qualification: Ph.D. in Science (2007) Awarded by Jadavpur University, Kolkata, India (Graduate work was carried out at Department of Microbiology, Bose Institute, Kolkata, India) Thesis Title: Microbial Fate of Estrogenic Phthalate Esters in the Environment: Biochemical and Molecular Analysis Thesis Supervisor: Prof. Tapan K. Dutta (Bose Inst. Kolkata) M.Sc. in Chemistry (1999) University of Calcutta, Kolkata, India Positions Held: December, 2012 – till date – Assistant Professor, Dept. Of Environmental Science, Central University of Himachal Pradesh, Dharamshala, HP; From February, 2017 To November 2019 - In-Charge, Department of Chemistry and Chemical Sciences Central University of Himachal Pradesh, Dharamshala, HP. May, 2012 – December, 2012 – Biomedical Post doctoral Research Fellow, Department of Pharmacology, Perelman School of Medicine at the University of Pennsylvania, , PA, USA. March, 2011 – April, 2012 – DFG Post doctoral Research Scientist, Molecular Phytopathology and Mycotoxin Research, Georg-August University of Goettingen, Goettingen, Germany. August, 2008 – September, 2010 - Alexander von Humboldt Research Fellow at Georg-August University of Goettingen, Goettingen, Germany. September, 2007 - July, 2008 – Postdoctoral Research Associate, Dept. of Biological Chemistry, Indian Association for the Cultivation of Science, Kolkata, India. Page 1 of 12 July, 2002 - July, 2007 – Junior and Senior Research Fellow, Dept. of Microbiology, Bose Institute, Kolkata, India.
    [Show full text]
  • Bioremediation 3.0: Engineering Pollutant-Removing Bacteria in the Times of MARK Systemic Biology
    Biotechnology Advances 35 (2017) 845–866 Contents lists available at ScienceDirect Biotechnology Advances journal homepage: www.elsevier.com/locate/biotechadv Research review paper Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of MARK systemic biology ⁎ Pavel Dvořáka, Pablo I. Nikelb,Jiří Damborskýc,d, Víctor de Lorenzoa, a Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain b The Novo Nordisk Foundation Center for Biosustainability, 2800 Lyngby, Denmark c Loschmidt Laboratories, Centre for Toxic Compounds in the Environment RECETOX, Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic d International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic ARTICLE INFO ABSTRACT Keywords: Elimination or mitigation of the toxic effects of chemical waste released to the environment by industrial and Bioremediation urban activities relies largely on the catalytic activities of microorganisms—specifically bacteria. Given their Biodegradation pathway engineering capacity to evolve rapidly, they have the biochemical power to tackle a large number of molecules mobilized Emerging pollutants from their geological repositories through human action (e.g., hydrocarbons, heavy metals) or generated through Environmental biotechnology chemical synthesis (e.g., xenobiotic compounds). Whereas naturally occurring microbes already have con- Systemic biology siderable ability to remove many environmental pollutants with no external intervention, the onset of genetic Metabolic engineering fi Systems biology engineering in the 1980s allowed the possibility of rational design of bacteria to catabolize speci c compounds, Synthetic biology which could eventually be released into the environment as bioremediation agents. The complexity of this endeavour and the lack of fundamental knowledge nonetheless led to the virtual abandonment of such a re- combinant DNA-based bioremediation only a decade later.
    [Show full text]
  • Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications
    marine drugs Review Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications Sonja Kubicki 1, Alexander Bollinger 1 , Nadine Katzke 1, Karl-Erich Jaeger 1,2 , 1, , 1, , Anita Loeschcke * y and Stephan Thies * y 1 Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-52425 Jülich, Germany 2 Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany * Correspondence: [email protected] (A.L.); [email protected] (S.T.) These authors contributed equally in conceptualising and coordinating activities. y Received: 17 June 2019; Accepted: 7 July 2019; Published: 9 July 2019 Abstract: Biosurfactants are amphiphilic secondary metabolites produced by microorganisms. Marine bacteria have recently emerged as a rich source for these natural products which exhibit surface-active properties, making them useful for diverse applications such as detergents, wetting and foaming agents, solubilisers, emulsifiers and dispersants. Although precise structural data are often lacking, the already available information deduced from biochemical analyses and genome sequences of marine microbes indicates a high structural diversity including a broad spectrum of fatty acid derivatives, lipoamino acids, lipopeptides and glycolipids. This review aims to summarise biosyntheses and structures with an emphasis on low molecular weight biosurfactants produced by marine microorganisms and describes various biotechnological
    [Show full text]
  • Microbial Biodegradation of Aromatic Compounds in a Soil Contaminated with Gasohol
    British Biotechnology Journal 1(2): 18-28, 2011 SCIENCEDOMAIN international www.sciencedomain.org Microbial Biodegradation of Aromatic Compounds in a Soil Contaminated with Gasohol A. G. Parreira1, M. R. Tótola2, G. N. Jham2, S. L. Da Silva1* and A. C. Borges2 1Protein Chemistry and Nanobiotechnology Laboratory, Federal University of São João Del Rei, Divinópolis, MG, Brazil. 2Laboratory of Environmental Biotechnology and Biodiversity, Federal University of Viçosa, Viçosa, MG, Brazil. th Research Article Received 20 March 2011 Accepted 11th April 2011 Online Ready 25th April 2011 ABSTRACT The studies developed in this work aimed to find alternatives to biodegradation or bioremediation of soils contaminated with gasoline or gasohol. So, the biodegradation of benzene, toluene and o-xylene (BTX) in soil samples contaminated with gasoline or gasohol by a bacterial consortium was studied. Four bacterial strains were selected for the consortium based on their growth capacity in gasoline, gasohol and BTX as sole carbon sources, and on the production of biosurfactants in mineral medium containing gasohol as the sole carbon source. The reduction of TX concentrations in soil slurries in a multi-cell bioreactor system was used as the criterion to evaluate biodegradation efficiency. BTX removal was highly stimulated by air injection and mineral nutrients, and was significantly increased by the presence of the bacterial consortium. Addition of a proprietary oxygen release compound did not stimulate the biodegradation of BTX. Keywords: Bioremediation; Biodegradation; Hydrocarbons; Bacterial consortium; ORC; 1. INTRODUCTION The release of petroleum products (e.g., gasoline, diesel, fuel oil) from above-ground and underground storage tanks or transport pipelines are the major causes of groundwater pollution.
    [Show full text]
  • Microbial Interaction with Clay Minerals and Its Environmental and Biotechnological Implications
    minerals Review Microbial Interaction with Clay Minerals and Its Environmental and Biotechnological Implications Marina Fomina * and Iryna Skorochod Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Zabolotny str., 154, 03143 Kyiv, Ukraine; [email protected] * Correspondence: [email protected] Received: 13 August 2020; Accepted: 24 September 2020; Published: 29 September 2020 Abstract: Clay minerals are very common in nature and highly reactive minerals which are typical products of the weathering of the most abundant silicate minerals on the planet. Over recent decades there has been growing appreciation that the prime involvement of clay minerals in the geochemical cycling of elements and pedosphere genesis should take into account the biogeochemical activity of microorganisms. Microbial intimate interaction with clay minerals, that has taken place on Earth’s surface in a geological time-scale, represents a complex co-evolving system which is challenging to comprehend because of fragmented information and requires coordinated efforts from both clay scientists and microbiologists. This review covers some important aspects of the interactions of clay minerals with microorganisms at the different levels of complexity, starting from organic molecules, individual and aggregated microbial cells, fungal and bacterial symbioses with photosynthetic organisms, pedosphere, up to environmental and biotechnological implications. The review attempts to systematize our current general understanding of the processes of biogeochemical transformation of clay minerals by microorganisms. This paper also highlights some microbiological and biotechnological perspectives of the practical application of clay minerals–microbes interactions not only in microbial bioremediation and biodegradation of pollutants but also in areas related to agronomy and human and animal health.
    [Show full text]
  • Kinetic and Functional Properties of Human Mitochondrial Phosphoenolpyruvate Carboxykinase
    Biochemistry and Biophysics Reports 7 (2016) 124–129 Contents lists available at ScienceDirect Biochemistry and Biophysics Reports journal homepage: www.elsevier.com/locate/bbrep Kinetic and functional properties of human mitochondrial phosphoenolpyruvate carboxykinase Miriam Escós b, Pedro Latorre a,b, Jorge Hidalgo a,b, Ramón Hurtado-Guerrero b,e, José Alberto Carrodeguas b,c,d,nn, Pascual López-Buesa a,b,n a Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain b Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50009 Zaragoza, Aragón, Spain c Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain d IIS Aragón, 50009 Zaragoza, Spain e Fundación ARAID, Gobierno de Aragón, Zaragoza, Spain article info abstract Article history: The cytosolic form of phosphoenolpyruvate carboxykinase (PCK1) plays a regulatory role in gluconeo- Received 21 April 2016 genesis and glyceroneogenesis. The role of the mitochondrial isoform (PCK2) remains unclear. We report Received in revised form the partial purification and kinetic and functional characterization of human PCK2. Kinetic properties of 2 June 2016 the enzyme are very similar to those of the cytosolic enzyme. PCK2 has an absolute requirement for Accepted 6 June 2016 þ þ þ Mn2 ions for activity; Mg2 ions reduce the K for Mn2 by about 60 fold. Its specificity constant is 100 Available online 8 June 2016 m fold larger for oxaloacetate than for phosphoenolpyruvate suggesting that oxaloacetate phosphorylation Keywords: À1 is the favored reaction in vivo.
    [Show full text]
  • In Situ Biodegradation, Photooxidation and Dissolution of Petroleum Compounds in Arctic Seawater and Sea Ice
    Water Research 148 (2019) 459e468 Contents lists available at ScienceDirect Water Research journal homepage: www.elsevier.com/locate/watres In situ biodegradation, photooxidation and dissolution of petroleum compounds in Arctic seawater and sea ice * Leendert Vergeynst a, b, , Jan H. Christensen c, Kasper Urup Kjeldsen b, Lorenz Meire d, e, Wieter Boone f, Linus M.V. Malmquist c, Søren Rysgaard a, f a Arctic Research Centre, Aarhus University, Aarhus, Denmark b Section for Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark c Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark d Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland e Department of Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research, Utrecht University, Yerseke, Netherlands f Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada article info abstract Article history: In pristine sea ice-covered Arctic waters the potential of natural attenuation of oil spills has yet to be Received 19 July 2018 uncovered, but increasing shipping and oil exploitation may bring along unprecedented risks of oil spills. Received in revised form We deployed adsorbents coated with thin oil films for up to 2.5 month in ice-covered seawater and sea 22 October 2018 ice in Godthaab Fjord, SW Greenland, to simulate and investigate in situ biodegradation and photooxi- Accepted 23 October 2018 dation of dispersed oil. Available online 29 October 2018 GC-MS-based chemometric methods for oil fingerprinting were used to identify characteristic signa- tures for dissolution, biodegradation and photooxidation. In sub-zero temperature seawater, fast Keywords: Oil spill degradation of n-alkanes was observed with estimated half-life times of ~7 days.
    [Show full text]
  • Simulation of Deepwater Horizon Oil Plume Reveals Substrate Specialization Within a Complex Community of Hydrocarbon Degraders
    Simulation of Deepwater Horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders Ping Hua, Eric A. Dubinskya,b, Alexander J. Probstc, Jian Wangd, Christian M. K. Sieberc,e, Lauren M. Toma, Piero R. Gardinalid, Jillian F. Banfieldc, Ronald M. Atlasf, and Gary L. Andersena,b,1 aEcology Department, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; bDepartment of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720; cDepartment of Earth and Planetary Science, University of California, Berkeley, CA 94720; dDepartment of Chemistry and Biochemistry, Florida International University, Miami, FL 33199; eDepartment of Energy, Joint Genome Institute, Walnut Creek, CA 94598; and fDepartment of Biology, University of Louisville, Louisville, KY 40292 Edited by Rita R. Colwell, University of Maryland, College Park, MD, and approved May 30, 2017 (received for review March 1, 2017) The Deepwater Horizon (DWH) accident released an estimated Many studies of the plume samples reported that the structure 4.1 million barrels of oil and 1010 mol of natural gas into the Gulf of the microbial communities shifted as time progressed (3–6, 11– of Mexico, forming deep-sea plumes of dispersed oil droplets and 16). Member(s) of the order Oceanospirillales dominated from dissolved gases that were largely degraded by bacteria. During the May to mid-June, after which their numbers rapidly declined and course of this 3-mo disaster a series of different bacterial taxa were species of Cycloclasticus and Colwellia dominated for the next enriched in succession within deep plumes, but the metabolic capa- several weeks (4, 5, 14).
    [Show full text]