Software Application Security Test Strategy with Lean Canvas Design
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Opentext Product Security Assurance Program
The Information Company ™ Product Security Assurance Program Contents Objective 03 Scope 03 Sources 03 Introduction 03 Concept and design 04 Development 05 Testing and quality assurance 07 Maintain and support 09 Partnership and responsibility 10 Privavy and Security Policy 11 Product Security Assurance Program 2/11 Objective The goals of the OpenText Product Security Assurance Program (PSAP) are to help ensure that all products, solutions, and services are designed, developed, and maintained with security in mind, and to provide OpenText customers with the assurance that their important assets and information are protected at all times. This document provides a general, public overview of the key aspects and components of the PSAP program. Scope The scope of the PSAP includes all software solutions designed and developed by OpenText and its subsidiaries. All OpenText employees are responsible to uphold and participate in this program. Sources The source of this overview document is the PSAP Standard Operating Procedure (SOP). This SOP is highly confidential in nature, for internal OpenText consumption only. This overview document represents the aspects that are able to be shared with OpenText customers and partners. Introduction OpenText is committed to the confidentiality, integrity, and availability of its customer information. OpenText believes that the foundation of a highly secure system is that the security is built in to the software from the initial stages of its concept, design, development, deployment, and beyond. In this respect, -
Leading Practice: Test Strategy and Approach in Agile Projects
CA SERVICES | LEADING PRACTICE Leading Practice: Test Strategy and Approach in Agile Projects Abstract This document provides best practices on how to strategize testing CA Project and Portfolio Management (CA PPM) in an agile project. The document does not include specific test cases; the list of test cases and steps for each test case are provided in a separate document. This document should be used by the agile project team that is planning the testing activities, and by end users who perform user acceptance testing (UAT). Concepts Concept Description Test Approach Defines testing strategy, roles and responsibilities of various team members, and test types. Testing Environments Outlines which testing is carried out in which environment. Testing Automation and Tools Addresses test management and automation tools required for test execution. Risk Analysis Defines the approach for risk identification and plans to mitigate risks as well as a contingency plan. Test Planning and Execution Defines the approach to plan the test cases, test scripts, and execution. Review and Approval Lists individuals who should review, approve and sign off on test results. Test Approach The test approach defines testing strategy, roles and responsibilities of various team members, and the test types. The first step is to define the testing strategy. It should describe how and when the testing will be conducted, who will do the testing, the type of testing being conducted, features being tested, environment(s) where the testing takes place, what testing tools are used, and how are defects tracked and managed. The testing strategy should be prepared by the agile core team. -
Secure by Design, Secure by Default: Requirements and Guidance
Biometrics and Surveillance Camera Commissioner Secure by Design, Secure by Default Video Surveillance Products Introduction This guidance is for any organisation manufacturing Video Surveillance Systems (VSS), or manufacturing or assembling components intended to be utilised as part of a VSS. It is intended to layout the Biometrics and Surveillance Camera Commissioners (BSCC) minimum requirements to ensure such systems are designed and manufactured in a manner that assures they are Secure by Design. It also contains certain component requirements that will ensure a configuration that is Secure by Default when the component is shipped, thereby making it more likely that the system will be installed and left in a secure state. This guidance forms part of a wider suite of documentation being developed as part of the SCC Strategy, in support of the SCC Code of Practice. Background and Context The nature of the Internet means that connected devices can be subjected to a cyber attack from anywhere in the world. Widespread attacks on connected products is a current and real threat, and a number of highly publicised attacks have already occurred. The Mirai malware targeted devices such as internet-enabled cameras (IP cameras). Mirai was successful because it exploited the use of common default credentials (such as a username and password being set by the manufacturer as ‘admin’) and poor security configuration of devices. Ultimately, this facilitated attacks on a range of commercial and social media services and included an outage of streaming services such as Netflix. An evolution of Mirai, called Reaper, has also been discovered. Reaper used publicly and easily available exploits that remained unfixed (patched) and highlighted the problem around non patching of known security vulnerabilities, allowing attackers to utilise them to cause harm. -
Infotek Solutions Inc
Infotek Solutions Inc. Test Strategy Test Strategy is summarize or outline which describes the approach of software development cycle. Or The test levels to be performed in testing and the description of testing activities within those test levels are known as test strategy. It is created to inform project managers, testers and developers about some key points of testing process. Strategy also includes testing objective, methods to testing new functions, time and resource what will be used in project and testing environment. Test strategies describe how to mitigate the product risk at test level, which of types of test are to be performed in testing and which entry and exit criteria apply. Different Testing strategies may be adopted depending on the type of system to be test and the development process used. In this document we are going to discuss testing strategies on two different types of software testing. 1. Conventional Software 2. Object Oriented Software(OO software) Conventional Software Testing: It is traditional approach. It takes place mostly when water fall life cycle is used for development. Conventional software Testing focuses more on decomposition. Conventional software testing always takes place during the test phase of life cycle, which usually follows the development phase and proceeds the implementation phase. During the conventional testing phase, Three types of testing will be conducted 1. System Testing 2. Integration Testing 3. Unit Testing Object Oriented Software Testing: Using Object Oriented design or design along with Agile development methodology leads to Object Oriented Software Testing. Object Oriented testing is done having emphasis on Composition. -
Principles for Software Assurance Assessment a Framework for Examining the Secure Development Processes of Commercial Technology Providers
Principles for Software Assurance Assessment A Framework for Examining the Secure Development Processes of Commercial Technology Providers PRIMARY AUTHORS: Shaun Gilmore, Senior Security Program Manager, Trustworthy Computing, Microsoft Corporation Reeny Sondhi, Senior Director, Product Security Engineering, EMC Corporation Stacy Simpson, Director, SAFECode © 2015 SAFECode – All Rights Reserved. Principles for Software Assurance Assessment Table of Contents Foreword ��������������������������������������������������������������������������������������������������������������������������������� 3 Methodology �������������������������������������������������������������������������������������������������������������������������� 3 Problem Statement ���������������������������������������������������������������������������������������������������������������� 4 Framework Overview ������������������������������������������������������������������������������������������������������������� 5 Guiding Principles for Software Security Assessment ����������������������������������������������������������������������6 The SAFECode Supplier Software Assurance Assessment Framework ������������������������������ 7 What Are Your Risk Management Requirements? ����������������������������������������������������������������������������7 The Tier Three Assessment �����������������������������������������������������������������������������������������������������������������8 The Tier One and Tier Two Assessments ���������������������������������������������������������������������������������������������8 -
Model-Based Security Testing
Model-Based Security Testing Ina Schieferdecker Juergen Grossmann Fraunhofer FOKUS Fraunhofer FOKUS Berlin, Germany Berlin, Germany Freie Universitaet Berlin [email protected] Berlin, Germany [email protected] Martin Schneider Fraunhofer FOKUS Berlin, Germany [email protected] Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the sys- tematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the com- bination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS. 1 Introduction The times of rather static communication in strictly controlled, closed networks for limited purposes are over, while the adoption of the Internet and other communication technologies in almost all domes- tic, economic and social sectors with new approaches for rather dynamic and open networked environ- ments overwhelmingly progresses. -
Guidelines on Minimum Standards for Developer Verification of Software
Guidelines on Minimum Standards for Developer Verification of Software Paul E. Black Barbara Guttman Vadim Okun Software and Systems Division Information Technology Laboratory July 2021 Abstract Executive Order (EO) 14028, Improving the Nation’s Cybersecurity, 12 May 2021, di- rects the National Institute of Standards and Technology (NIST) to recommend minimum standards for software testing within 60 days. This document describes eleven recommen- dations for software verification techniques as well as providing supplemental information about the techniques and references for further information. It recommends the following techniques: • Threat modeling to look for design-level security issues • Automated testing for consistency and to minimize human effort • Static code scanning to look for top bugs • Heuristic tools to look for possible hardcoded secrets • Use of built-in checks and protections • “Black box” test cases • Code-based structural test cases • Historical test cases • Fuzzing • Web app scanners, if applicable • Address included code (libraries, packages, services) The document does not address the totality of software verification, but instead recom- mends techniques that are broadly applicable and form the minimum standards. The document was developed by NIST in consultation with the National Security Agency. Additionally, we received input from numerous outside organizations through papers sub- mitted to a NIST workshop on the Executive Order held in early June, 2021 and discussion at the workshop as well as follow up with several of the submitters. Keywords software assurance; verification; testing; static analysis; fuzzing; code review; software security. Disclaimer Any mention of commercial products or reference to commercial organizations is for infor- mation only; it does not imply recommendation or endorsement by NIST, nor is it intended to imply that the products mentioned are necessarily the best available for the purpose. -
Agile Test Automation Strategy, V2.Pptx
MJ Half-day Tutorials 10/3/16 13:00 Test Automation Strategies for the Agile World Presented by: Bob Galen Velocity Partners Brought to you by: 350 Corporate Way, Suite 400, Orange Park, FL 32073 888---268---8770 ·· 904---278---0524 - [email protected] - http://www.starwest.techwell.com/ Bob Galen Velocity Partners An agile methodologist, practitioner, and coach, Bob Galen ([email protected]) helps guide companies in their adoption of Scrum and other agile methodologies and practices. Bob is a principal agile evangelist at Velocity Partners; president of RGCG; and frequent speaker on software development, project management, software testing, and team leadership. He is a Certified Scrum Coach, Certified Scrum Product Owner, and an active member of the Agile and Scrum Alliances. Bob published Scrum Product Ownership–Balancing Value from the Inside Out. Test Automation Strategies for the Agile World Bob Galen President & Principal Consultant RGCG, LLC [email protected] Introduction Bob Galen n Independent Agile Coach (CEC) at RGCG, LLC n Director, Agile Practices at n Somewhere ‘north’ of 30 years overall experience J n Wide variety of technical stacks and business domains n Developer first, then Project Management / Leadership, then Testing n Senior/Executive software development leadership for 20+ years n Practicing formal agility since 2000 n XP, Lean, Scrum, and Kanban experience n From Cary, North Carolina Bias Disclaimer: Agile is THE BEST Methodology for Software Development… However, NOT a Silver Bullet! Copyright © 2016 RGCG, LLC 2 1 Outline n Traditional Automation – Business Case & ROI n 3-Pillars n Agile Test Automation Pyramid n Agile Automation – Business Case & ROI n Implementation Strategy n Communication n Wrap-up Copyright © 2016 RGCG, LLC 3 Let’s start with… Traditional Automation Strategy n What are your current strategies towards: q Test Automation q Frameworks q Tooling q Maintenance q ROI q Team structure n Get together in “pairs” and chat about this for 20 minutes. -
Testing the Security of Your Applications 2 Application Security Testing Cybersecurity the Way We Do It
the way we see it Testing the Security of your Applications 2 Application Security Testing Cybersecurity the way we do it Safeguarding Business Critical Systems and Applications Organizations are under increased pressure to innovate, rapidly develop new applications, and adopt new technologies such as social, mobile, analytics, cloud and the Internet of Things (SMACT). This increases the security risk to business applications and systems. It is a very real and present risk. The number of security all web and mobile applications before release, particularly if breaches reported is escalating – between 2013 and 2014 they are highly regulated. Yet the right people to carry out this 1 alone attacks grew by 120% – and the threat of an attack testing are both difficult to find and costly to employ, plus their from hacktivists or criminal organizations is more pertinent work isn’t scalable nor repeatable. We offer a comprehensive today than ever before. solution designed to address this growing threat to your The average yearly cost of cybercrime for large organizations business applications. in 2014 was US$7.6m – a 10.4% net increase over the Powered by HPE Fortify on Demand, our Application 2 previous year . Combine this with data breach incidents Security Testing solution makes it simple and fast to initiate costing companies $194 on average per compromised record fundamental security controls, whether you have just a few and it’s clear that major attacks could potentially result in applications or are looking to launch a comprehensive security losses totaling tens or even hundreds of millions. This accrues program across your organization without large upfront not only through lost revenue, but as a result of reputational investment. -
Beginners Guide to Software Testing
Beginners Guide To Software Testing Beginners Guide To Software Testing - Padmini C Page 1 Beginners Guide To Software Testing Table of Contents: 1. Overview ........................................................................................................ 5 The Big Picture ............................................................................................... 5 What is software? Why should it be tested? ................................................. 6 What is Quality? How important is it? ........................................................... 6 What exactly does a software tester do? ...................................................... 7 What makes a good tester? ........................................................................... 8 Guidelines for new testers ............................................................................. 9 2. Introduction .................................................................................................. 11 Software Life Cycle ....................................................................................... 11 Various Life Cycle Models ............................................................................ 12 Software Testing Life Cycle .......................................................................... 13 What is a bug? Why do bugs occur? ............................................................ 15 Bug Life Cycle ............................................................................................... 16 Cost of fixing bugs ....................................................................................... -
A Guide for Running an Effective Penetration Testing Programme
A guide for running an effective Penetration Testing programme April 2017 A guide for running an effective Penetration Testing programme Published by: CREST Tel: 0845 686-5542 Email: [email protected] Web: http://www.crest-approved.org/ Principal Author Principal reviewer Jason Creasey, Ian Glover, President, CREST Managing Director, Jerakano Limited DTP notes For ease of reference, the following DTP devices have been used throughout the Penetration Testing Guide. Acknowledgements CREST would like to extend its special thanks to those CREST member organisations who took part in interviews and to those clients who agreed to be case studies. Warning This Guide has been produced with care and to the best of our ability. However, CREST accepts no responsibility for any problems or incidents arising from its use. A Good Tip ! A Timely Warning An insightful Project Finding Quotes are presented in a box like this. © Copyright 2013. All rights reserved. CREST (GB). 2 A guide for running an effective Penetration Testing programme Contents Part 1 – Introduction and overview • About this Guide ................................................................................................................................................4 • Purpose ..............................................................................................................................................................4 • Scope .................................................................................................................................................................5 -
Oracle Software Security Assurance Oracle’S Methodology for the Development and Maintenance of Security in Its Products
ORACLE BRIEF Oracle Software Security Assurance Oracle’s methodology for the development and maintenance of security in its products As organizations increasingly rely on software controls to protect their computing environments and data, ensuring that these controls operate in the way they were intended has become a paramount concern. Software security assurance encompasses all the activities involved in ensuring that software operates at an expected and predictable level of security. Managing security incidents, meeting complex regulatory and auditing requirements, and keeping current with security releases can add tremendous costs to an organization’s IT budget; thus organizations must give careful consideration to how their software providers approach software security assurance. Security built in, not bolted on S T A T I C CODE ANALYSIS Encompassing every phase of the product development lifecycle, Oracle Software Static security analysis of source code Security Assurance is Oracle's methodology for building security into the design, build, is used during the entire product testing, delivery, and maintenance of its products. Oracle's goal is to ensure that development cycle. This type of analysis works very well for identifying Oracle's products, as well as the customer systems that leverage those products, buffer overflows and memory leaks in remain as secure as possible. C/C++ code, resource handling issues Secure Coding Standards in J2EE and .NET, finding improper Secure software does not happen by itself. It requires consistently applied credentials handling, various injections, incorrect system configurations, etc. methodologies across each organization; methodologies that conform to stated policies, objectives, and principles. D Y N A M I C C O D E ANALYSIS Oracle Secure Coding Standards are a guide for developers in their efforts to produce Dynamic analysis activity always takes secure code.