Formal Topology in Univalent Foundations

Total Page:16

File Type:pdf, Size:1020Kb

Formal Topology in Univalent Foundations Formal Topology in Univalent Foundations Master’s Thesis in Computer Science and Engineering Ayberk Tosun Department of Computer Science and Engineering Chalmers University of Technology University of Gothenburg Gothenburg, Sweden 2020 Master’s thesis 2020 Formal Topology in Univalent Foundations Ayberk Tosun Department of Computer Science and Engineering Division of Logic and Types Chalmers University of Technology University of Gothenburg Gothenburg, Sweden 2020 Formal Topology in Univalent Foundations Ayberk Tosun © Ayberk Tosun, 2020 Supervisor: Thierry Coquand, Department of Computer Science and Engineering Examiner: Nils Anders Danielsson, Department of Computer Science and Engineer- ing Master’s Thesis 2020 Department of Computer Science and Engineering Division of Logic and Types Chalmers University of Technology and University of Gothenburg SE-412 96 Gothenburg Telephone +46 31 772 1000 Typeset using LATEX Agda code typeset in PragmataPro Gothenburg, Sweden 2020 iv Formal Topology in Univalent Foundations Ayberk Tosun Department of Computer Science and Engineering Chalmers University of Technology and University of Gothenburg Abstract Formal topology is a mathematical discipline that aims to interpret topology in type-theoretical terms, that is, constructively and predicatively. Type theory has recently undergone a transformation [42] through insights arising from its association with homotopy theory, resulting in the formulation of the notion of a univalent type theory, and more broadly, a univalent foundation. We investigate, in this thesis, the natural continuation of the line of work on formal topology into univalent type theory. We first recapitulate our finding thata naive approach to formal topology in univalent type theory is problematic, and then present a solution to this problem that involves the use of higher inductive types. We hence sketch the beginnings of an approach towards developing formal topology in univalent type theory. As a proof of concept for this approach, we develop the formal topology of the Cantor space and construct a proof that it is compact. The development that we present has been carried out using the cubical extension of the Agda proof assistant [44]. No postulates have been used and the development typechecks with the --safe flag of Agda. The presentation in this thesis amounts to an informalisation of this formal development. Keywords: topology, formal topology, pointless topology, formal space, locale, locale theory, frame, homotopy type theory, univalence, univalent foundations, agda, cubical agda v Acknowledgements I would like to start by thanking my supervisor Thierry Coquand for all his efforts that have made this thesis possible. He has not only suggested the topic of this thesis, closely supported all my work, and patiently answered my (at times never-ending) questions, but he has also inspired much of my thought on type theory through various lectures and discussions, some in the context of the Types for Programs and Proofs course he co-taught in Fall 2018. In fact, this course has been the most important course I have taken at Chalmers so I would like to thank all of its teaching staff: Peter Dybjer, Andrea Vezzosi, and Fabian Ruch. I would like to also thank Nils Anders Danielsson for serving as the examiner of this thesis. His suggestions and careful review of the first draft of this thesis have been extremely helpful. Throughout the two years I have spent at Chalmers, I have had the chance to engage with the lively type theory community of Gothenburg, most importantly through the Initial Types Club (ITC). ITC has provided a conducive environment for fun discussions on type theory (every Thursday), from which I have learned a lot. I would like to therefore thank all ITC regulars for these meetings, but especially Andreas Abel, Jesper Cockx, Carlos Tomé Cortiñas, Nachiappan Valiappan, and Sandro Stucki for undertaking the organisational efforts required to keep ITC going. I would like to thank my friends Joel Sjögren, Warrick Macmillan, Alexander Fuhs, and Robert Krook for various discussions on logic, types, categories, and much more. I would also like to thank Joel Sjögren for accepting to serve as an opponent for this thesis: his careful reading and suggestions have proved quite beneficial. Joomy Korkut deserves special mention for getting me interested in Agda in the first place. Of course, anything I have done has been possible thanks to the support of my parents to whom I am, and will always be, grateful. Finally, I would like to thank the Adlerbert Foundation for funding my studies at Chalmers through the Adlerbert Study Scholarship. Ayberk Tosun, Gothenburg, June 2020 vii Contents 1 Introduction 1 2 Foundations 7 2.1 Formal vs. informal mathematics . 7 2.2 Univalent foundations: the idea . 8 2.3 Equivalence and univalence . 9 2.4 Homotopy levels . 10 2.4.1 Propositions . 11 2.4.2 Sets . 13 2.5 Powersets . 14 2.6 Families . 15 2.7 Higher inductive types . 16 2.8 Truncation . 17 3 Frames 19 3.1 Partially ordered sets . 20 3.1.1 Monotonic functions . 22 3.2 Definition of a frame . 22 3.2.1 Frame homomorphisms . 24 3.3 Some properties of frames . 25 3.4 Univalence for frames . 26 3.5 Frames of downwards-closed subsets . 30 3.6 Nuclei and their fixed points . 30 4 Formal topology 35 4.1 Interaction systems . 35 4.2 Cover relation . 38 4.3 Covers are nuclei . 43 4.4 Lifting into the generated frame . 44 4.5 Formal topologies present . 45 5 The Cantor space 51 5.1 The Cantor interaction system . 51 5.2 The Cantor space is compact . 54 6 Conclusion 57 ix Contents Bibliography 61 Appendix 65 A Agda formalisation 65 A.1 Discussion of some syntax declarations . 65 A.2 The Basis module . 65 A.3 The Poset module . 69 A.4 The Frame module . 77 A.5 The Nucleus module . 90 A.6 The Cover module . 94 A.7 The CoverFormsNucleus module . 96 A.8 The FormalTopology module . 98 A.9 The UniversalProperty module . 99 A.10 The CantorSpace module . 105 x 1 Introduction This thesis is about topology, the branch of mathematics that studies continuous transformations between topological spaces. The raison d’être of topological spaces is to allow the formulation of the notion of continuity that pervades practically all of mathematics, as pointed out by Sylvester [5, pg. 27]: “if I were asked to name, in one word, the pole star round which the mathematical firmament revolves, the central idea which pervades the whole corpus of mathematical doctrine, I should point to Continuity as contained in our notions of space, and say, it is this, it is this!”. Let us then start by considering the question of what topology is. The usual definition of a topological space is the following [29]. Definition 1.1 (Topological space). A topology on a set 푋 is a class 풯 of subsets of 푋 such that • The trivial subsets 푋, ∅ ⊆ 푋 are in 풯, • 풯 is closed under finite intersections, and • 풯 is closed under arbitrary unions. A topological space is a set 푋 equipped with a topology 풯. When a set 푋 forms a topological space i.e. is equipped with some topology 풯, its elements are called points and the members of 풯 are called open sets of 푋.A noteworthy thing about this definition is the asymmetry between intersection and union: a topology is required to be closed only under finite intersection whereas it must be closed under arbitrary union. This asymmetry is familiar to computer scientists from computability theory. Let 푃 be a program whose internal structure we do not have access to. One could say it is a “black box” although this is not to say it is a scenario occurring only in theory; black boxes do occur in practice. A compiled program whose source code one does not have access to, or even, a program whose source code is not familiar to one, can be seen as examples of black boxes from one’s perspective. One way or another, suppose that we are in a situation in which we have to un- derstand the behaviour of some program 푃 by running it and examining its output. For the sake of example, suppose that 푃 does something simple such as printing a sequence of integers (which we do not know is finite or infinite). We run 푃 and observe that it starts printing a sequence of integers: (1.2) 7 8 11 2 2 42 ⋯ 1 1. Introduction We then observe the output and judge whether or not 푃 satisfies certain prop- erties. Among the properties of 푃 , some are special in that we can observe the fact that 푃 satisfies them. Consider, for instance, the property: (1.3) “푃 eventually prints 42”. The knowledge about the behaviour of 푃 we can obtain from (1.2) is sufficient to judge that 푃 satisfies this property. In other words, at the point of time atwhichwe make the observation (1.2), we have gathered complete evidence for the fact that 푃 satisfies this property: there is no need to make any further examination. Whenever a program satisfies Property 1.3, there will be such a finite prefix of the output of the program by observing which we will be able to judge for sure that 푃 satisfies this property. We refer to such properties as observable properties. Some properties of 푃 , on the other hand, are not observable. Consider, for instance, the property: (1.4) “푃 prints at most two 2s”. Suppose that 푃 is a program such that, after printing the sequence of integers in (1.2), starts to continually print 0. Although 푃 then certainly satisfies this property, we will not be able to judge on the basis of a finite observation that it does so.
Recommended publications
  • The Structure of Gunk: Adventures in the Ontology of Space
    The Structure of Gunk: Adventures in the Ontology of Space Jeff Sanford Russell February 16, 2009 1 Points and gunk Here are two ways space might be (not the only two): (1) Space is “pointy”. Ev- ery finite region has infinitely many infinitesimal, indivisible parts, called points. Points are zero-dimensional atoms of space. In addition to points, there are other kinds of “thin” boundary regions, like surfaces of spheres. Some regions include their boundaries—the closed regions—others exclude them—the open regions—and others include some bits of boundary and exclude others. Moreover, space includes unextended regions whose size is zero. (2) Space is “gunky”.1 Every region contains still smaller regions—there are no spatial atoms. Every region is “thick”—there are no boundary regions. Every region is extended. Pointy theories of space and space-time—such as Euclidean space or Minkowski space—are the kind that figure in modern physics. A rival tradition, most famously associated in the last century with A. N. Whitehead, instead embraces gunk.2 On the Whiteheadian view, points, curves and surfaces are not parts of space, but rather abstractions from the true regions. Three different motivations push philosophers toward gunky space. The first is that the physical space (or space-time) of our universe might be gunky. We posit spatial reasons to explain what goes on with physical objects; thus the main reason Dean Zimmerman has been a relentless source of suggestions and criticism throughout the writing of this paper. Thanks are also due to Frank Arntzenius, Kenny Easwaran, Peter Forrest, Hilary Greaves, John Hawthorne, and Beatrice Sanford for helpful comments.
    [Show full text]
  • Sets in Homotopy Type Theory
    Predicative topos Sets in Homotopy type theory Bas Spitters Aarhus Bas Spitters Aarhus Sets in Homotopy type theory Predicative topos About me I PhD thesis on constructive analysis I Connecting Bishop's pointwise mathematics w/topos theory (w/Coquand) I Formalization of effective real analysis in Coq O'Connor's PhD part EU ForMath project I Topos theory and quantum theory I Univalent foundations as a combination of the strands co-author of the book and the Coq library I guarded homotopy type theory: applications to CS Bas Spitters Aarhus Sets in Homotopy type theory Most of the presentation is based on the book and Sets in HoTT (with Rijke). CC-BY-SA Towards a new design of proof assistants: Proof assistant with a clear (denotational) semantics, guiding the addition of new features. E.g. guarded cubical type theory Predicative topos Homotopy type theory Towards a new practical foundation for mathematics. I Modern ((higher) categorical) mathematics I Formalization I Constructive mathematics Closer to mathematical practice, inherent treatment of equivalences. Bas Spitters Aarhus Sets in Homotopy type theory Predicative topos Homotopy type theory Towards a new practical foundation for mathematics. I Modern ((higher) categorical) mathematics I Formalization I Constructive mathematics Closer to mathematical practice, inherent treatment of equivalences. Towards a new design of proof assistants: Proof assistant with a clear (denotational) semantics, guiding the addition of new features. E.g. guarded cubical type theory Bas Spitters Aarhus Sets in Homotopy type theory Formalization of discrete mathematics: four color theorem, Feit Thompson, ... computational interpretation was crucial. Can this be extended to non-discrete types? Predicative topos Challenges pre-HoTT: Sets as Types no quotients (setoids), no unique choice (in Coq), ..
    [Show full text]
  • Fomus: Foundations of Mathematics: Univalent Foundations and Set Theory - What Are Suitable Criteria for the Foundations of Mathematics?
    Zentrum für interdisziplinäre Forschung Center for Interdisciplinary Research UPDATED PROGRAMME Universität Bielefeld ZIF WORKSHOP FoMUS: Foundations of Mathematics: Univalent Foundations and Set Theory - What are Suitable Criteria for the Foundations of Mathematics? Convenors: Lukas Kühne (Bonn, GER) Deborah Kant (Berlin, GER) Deniz Sarikaya (Hamburg, GER) Balthasar Grabmayr (Berlin, GER) Mira Viehstädt (Hamburg, GER) 18 – 23 July 2016 IN COOPERATION WITH: MONDAY, JULY 18 1:00 - 2:00 pm Welcome addresses by Michael Röckner (ZiF Managing Director) Opening 2:00 - 3:30 pm Vladimir Voevodsky Multiple Concepts of Equality in the New Foundations of Mathematics 3:30 - 4:00 pm Tea / coffee break 4:00 - 5:30 pm Marc Bezem "Elements of Mathematics" in the Digital Age 5:30 - 7:00 pm Parallel Workshop Session A) Regula Krapf: Introduction to Forcing B) Ioanna Dimitriou: Formalising Set Theoretic Proofs with Isabelle/HOL in Isar 7:00 pm Light Dinner PAGE 2 TUESDAY, JULY 19 9:00 - 10:30 am Thorsten Altenkirch Naïve Type Theory 10:30 - 11:00 am Tea / coffee break 11:00 am - 12:30 pm Benedikt Ahrens Univalent Foundations and the Equivalence Principle 12:30 - 2.00 pm Lunch 2:00 - 3:30 pm Parallel Workshop Session A) Regula Krapf: Introduction to Forcing B) Ioanna Dimitriou: Formalising Set Theoretic Proofs with Isabelle/HOL in Isar 3:30 - 4:00 pm Tea / coffee break 4:00 - 5:30 pm Clemens Ballarin Structuring Mathematics in Higher-Order Logic 5:30 - 7:00 pm Parallel Workshop Session A) Paige North: Models of Type Theory B) Ulrik Buchholtz: Higher Inductive Types and Synthetic Homotopy Theory 7:00 pm Dinner WEDNESDAY, JULY 20 9:00 - 10:30 am Parallel Workshop Session A) Clemens Ballarin: Proof Assistants (Isabelle) I B) Alexander C.
    [Show full text]
  • Univalent Foundations
    Univalent Foundations Talk by Vladimir Voevodsky from Institute for Advanced Study in Princeton, NJ. September 21 , 2011 1 Introduction After Goedel's famous results there developed a "schism" in mathemat- ics when abstract mathematics and constructive mathematics became largely isolated from each other with the "abstract" steam growing into what we call "pure mathematics" and the "constructive stream" into what we call theory of computation and theory of programming lan- guages. Univalent Foundations is a new area of research which aims to help to reconnect these streams with a particular focus on the development of software for building rigorously verified constructive proofs and models using abstract mathematical concepts. This is of course a very long term project and we can not see today how its end points will look like. I will concentrate instead its recent history, current stage and some of the short term future plans. 2 Elemental, set-theoretic and higher level mathematics 1. Element-level mathematics works with elements of "fundamental" mathematical sets mostly numbers of different kinds. 2. Set-level mathematics works with structures on sets. 3. What we usually call "category-level" mathematics in fact works with structures on groupoids. It is easy to see that a category is a groupoid level analog of a partially ordered set. 4. Mathematics on "higher levels" can be seen as working with struc- tures on higher groupoids. 3 To reconnect abstract and constructive mathematics we need new foundations of mathematics. The ”official” foundations of mathematics based on Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC) make reasoning about objects for which the natural notion of equivalence is more complex than the notion of isomorphism of sets with structures either very laborious or too informal to be reliable.
    [Show full text]
  • Martin-L¨Of Random Points Satisfy Birkhoff's Ergodic
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000{000 S 0002-9939(XX)0000-0 MARTIN-LOF¨ RANDOM POINTS SATISFY BIRKHOFF'S ERGODIC THEOREM FOR EFFECTIVELY CLOSED SETS JOHANNA N.Y. FRANKLIN, NOAM GREENBERG, JOSEPH S. MILLER, AND KENG MENG NG Abstract. We show that if a point in a computable probability space X sat- isfies the ergodic recurrence property for a computable measure-preserving T : X ! X with respect to effectively closed sets, then it also satisfies Birkhoff's ergodic theorem for T with respect to effectively closed sets. As a corollary, every Martin-L¨ofrandom sequence in the Cantor space satisfies 0 Birkhoff's ergodic theorem for the shift operator with respect to Π1 classes. This answers a question of Hoyrup and Rojas. Several theorems in ergodic theory state that almost all points in a probability space behave in a regular fashion with respect to an ergodic transformation of the space. For example, if T : X ! X is ergodic,1 then almost all points in X recur in a set of positive measure: Theorem 1 (See [5]). Let (X; µ) be a probability space, and let T : X ! X be ergodic. For all E ⊆ X of positive measure, for almost all x 2 X, T n(x) 2 E for infinitely many n. Recent investigations in the area of algorithmic randomness relate the hierarchy of notions of randomness to the satisfaction of computable instances of ergodic theorems. This has been inspired by Kuˇcera'sclassic result characterising Martin- L¨ofrandomness in the Cantor space. We reformulate Kuˇcera'sresult using the general terminology of [4].
    [Show full text]
  • Constructivity in Homotopy Type Theory
    Ludwig Maximilian University of Munich Munich Center for Mathematical Philosophy Constructivity in Homotopy Type Theory Author: Supervisors: Maximilian Doré Prof. Dr. Dr. Hannes Leitgeb Prof. Steve Awodey, PhD Munich, August 2019 Thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in Logic and Philosophy of Science contents Contents 1 Introduction1 1.1 Outline................................ 3 1.2 Open Problems ........................... 4 2 Judgements and Propositions6 2.1 Judgements ............................. 7 2.2 Propositions............................. 9 2.2.1 Dependent types...................... 10 2.2.2 The logical constants in HoTT .............. 11 2.3 Natural Numbers.......................... 13 2.4 Propositional Equality....................... 14 2.5 Equality, Revisited ......................... 17 2.6 Mere Propositions and Propositional Truncation . 18 2.7 Universes and Univalence..................... 19 3 Constructive Logic 22 3.1 Brouwer and the Advent of Intuitionism ............ 22 3.2 Heyting and Kolmogorov, and the Formalization of Intuitionism 23 3.3 The Lambda Calculus and Propositions-as-types . 26 3.4 Bishop’s Constructive Mathematics................ 27 4 Computational Content 29 4.1 BHK in Homotopy Type Theory ................. 30 4.2 Martin-Löf’s Meaning Explanations ............... 31 4.2.1 The meaning of the judgments.............. 32 4.2.2 The theory of expressions................. 34 4.2.3 Canonical forms ...................... 35 4.2.4 The validity of the types.................. 37 4.3 Breaking Canonicity and Propositional Canonicity . 38 4.3.1 Breaking canonicity .................... 39 4.3.2 Propositional canonicity.................. 40 4.4 Proof-theoretic Semantics and the Meaning Explanations . 40 5 Constructive Identity 44 5.1 Identity in Martin-Löf’s Meaning Explanations......... 45 ii contents 5.1.1 Intensional type theory and the meaning explanations 46 5.1.2 Extensional type theory and the meaning explanations 47 5.2 Homotopical Interpretation of Identity ............
    [Show full text]
  • Extending Obstructions to Noncommutative Functorial Spectra
    EXTENDING OBSTRUCTIONS TO NONCOMMUTATIVE FUNCTORIAL SPECTRA BENNO VAN DEN BERG AND CHRIS HEUNEN Abstract. Any functor from the category of C*-algebras to the category of locales that assigns to each commutative C*-algebra its Gelfand spectrum must be trivial on algebras of n-by-n matrices for n ≥ 3. This obstruction also applies to other spectra such as those named after Zariski, Stone, and Pierce. We extend these no-go results to functors with values in (ringed) topological spaces, (ringed) toposes, schemes, and quantales. The possibility of spectra in other categories is discussed. 1. Introduction The spectrum of a commutative ring is a leading tool of commutative algebra and algebraic geometry. For example, a commutative ring can be reconstructed using (among other ingredients) its Zariski spectrum, a coherent topological space. Spectra are also of central importance to functional analysis and operator algebra. For example, there is a dual equivalence between the category of commutative C*-algebras and compact Hausdorff topological spaces, due to Gelfand.1 A natural question is whether such spectra can be extended to the noncommu- tative setting. Indeed, many candidates have been proposed for noncommutative spectra. In a recent article [23], M. L. Reyes observed that none of the proposed spectra behave functorially, and proved that indeed they cannot, on pain of trivial- izing on the prototypical noncommutative rings Mn(C) of n-by-n matrices with complex entries. To be precise: any functor F : Ringop → Set that satisfies F (C) = Spec(C) for commutative rings C, must also satisfy F (Mn(C)) = ∅ for n ≥ 3.
    [Show full text]
  • Set-Theoretic Foundations
    Contemporary Mathematics Volume 690, 2017 http://dx.doi.org/10.1090/conm/690/13872 Set-theoretic foundations Penelope Maddy Contents 1. Foundational uses of set theory 2. Foundational uses of category theory 3. The multiverse 4. Inconclusive conclusion References It’s more or less standard orthodoxy these days that set theory – ZFC, extended by large cardinals – provides a foundation for classical mathematics. Oddly enough, it’s less clear what ‘providing a foundation’ comes to. Still, there are those who argue strenuously that category theory would do this job better than set theory does, or even that set theory can’t do it at all, and that category theory can. There are also those who insist that set theory should be understood, not as the study of a single universe, V, purportedly described by ZFC + LCs, but as the study of a so-called ‘multiverse’ of set-theoretic universes – while retaining its foundational role. I won’t pretend to sort out all these complex and contentious matters, but I do hope to compile a few relevant observations that might help bring illumination somewhat closer to hand. 1. Foundational uses of set theory The most common characterization of set theory’s foundational role, the char- acterization found in textbooks, is illustrated in the opening sentences of Kunen’s classic book on forcing: Set theory is the foundation of mathematics. All mathematical concepts are defined in terms of the primitive notions of set and membership. In axiomatic set theory we formulate . axioms 2010 Mathematics Subject Classification. Primary 03A05; Secondary 00A30, 03Exx, 03B30, 18A15.
    [Show full text]
  • Higher Algebra in Homotopy Type Theory
    Higher Algebra in Homotopy Type Theory Ulrik Buchholtz TU Darmstadt Formal Methods in Mathematics / Lean Together 2020 1 Homotopy Type Theory & Univalent Foundations 2 Higher Groups 3 Higher Algebra Outline 1 Homotopy Type Theory & Univalent Foundations 2 Higher Groups 3 Higher Algebra Homotopy Type Theory & Univalent Foundations First, recall: • Homotopy Type Theory (HoTT): • A branch of mathematics (& logic/computer science/philosophy) studying the connection between homotopy theory & Martin-Löf type theory • Specific type theories: Typically MLTT + Univalence (+ HITs + Resizing + Optional classicality axioms) • Without the classicality axioms: many interesting models (higher toposes) – one potential reason to case about constructive math • Univalent Foundations: • Using HoTT as a foundation for mathematics. Basic idea: mathematical objects are (ordinary) homotopy types. (no entity without identity – a notion of identification) • Avoid “higher groupoid hell”: We can work directly with homotopy types and we can form higher quotients. (But can we form enough? More on this later.) Cf.: The HoTT book & list of references on the HoTT wiki Homotopy levels Recall Voevodsky’s definition of the homotopy levels: Level Name Definition −2 contractible isContr(A) := (x : A) × (y : A) ! (x = y) −1 proposition isProp(A) := (x; y : A) ! isContr(x = y) 0 set isSet(A) := (x; y : A) ! isProp(x = y) 1 groupoid isGpd(A) := (x; y : A) ! isSet(x = y) . n n-type ··· . 1 type (N/A) In non-homotopical mathematics, most objects are n-types with n ≤ 1. The types of categories and related structures are 2-types. Univalence axiom For A; B : Type, the map id-to-equivA;B :(A =Type B) ! (A ' B) is an equivalence.
    [Show full text]
  • Characterization of Cantor Spaces
    Characterization of Cantor Spaces Matthew Shaw (ref. Pugh Analysis Textbook) November 2019 1 Introduction The standard Cantor Middle Thirds Set is compact, perfect, nonempty, and to- tally disconnected (and since the construction takes place in R with its standard metric, the Cantor Set is also metrizable). Totally Disconnected: Every connected component is a singleton set, and equiv- alently, every point has arbitrarily small clopen neighborhoods. Perfect: A space is called perfect if it has no isolated points. There are two main theorems of this presentation: The Cantor Surjection The- orem, that every nonempty compact metric space is the image of a continuous function with the Cantor set as its domain, and a complete characterization of Cantor spaces, in particular that every compact, nonempty, perfect, and to- tally disconnected metric space is homeomorphic to the standard Cantor middle thirds set. Notation: The set of words of countably infinite length in a two character al- phabet is denoted by Ω, the standard Cantor Middle-Thirds set is denoted by C, and the set of words of length n (where n 2 N) in a two character alphabet is denoted !(n). Note that the size of !(n) is always 2n. ! with no associated number will represent a word of countably infinite length (i.e. an element of Ω) and the notation !jn for n 2 N means the word ! truncated to only its first n characters (this is an element of !(n)). t denotes disjoint union of sets. If α and β are words of finite length, then the notation αβ means the word made up of the characters of α followed by the characters of β, which is also termed concatenation.
    [Show full text]
  • Set Known As the Cantor Set. Consider the Clos
    COUNTABLE PRODUCTS ELENA GUREVICH Abstract. In this paper, we extend our study to countably infinite products of topological spaces. 1. The Cantor Set Let us constract a very curios (but usefull) set known as the Cantor Set. Consider the 1 2 closed unit interval [0; 1] and delete from it the open interval ( 3 ; 3 ) and denote the remaining closed set by 1 2 G = [0; ] [ [ ; 1] 1 3 3 1 2 7 8 Next, delete from G1 the open intervals ( 9 ; 9 ) and ( 9 ; 9 ), and denote the remaining closed set by 1 2 1 2 7 8 G = [0; ] [ [ ; ] [ [ ; ] [ [ ; 1] 2 9 9 3 3 9 9 If we continue in this way, at each stage deleting the open middle third of each closed interval remaining from the previous stage we obtain a descending sequence of closed sets G1 ⊃ G2 ⊃ G3 ⊃ · · · ⊃ Gn ⊃ ::: T1 The Cantor Set G is defined by G = n=1 Gn, and being the intersection of closed sets, is a closed subset of [0; 1]. As [0; 1] is compact, the Cantor Space (G; τ) ,(that is, G with the subspace topology), is compact. It is useful to represent the Cantor Set in terms of real numbers written to basis 3, that is, 5 ternaries. In the ternary system, 76 81 would be written as 2211:0012, since this represents 2 · 33 + 2 · 32 + 1 · 31 + 1 · 30 + 0 · 3−1 + 0 · 3−2 + 1 · 3−3 + 2 · 3−4 So a number x 2 [0; 1] is represented by the base 3 number a1a2a3 : : : an ::: where 1 X an x = a 2 f0; 1; 2g 8n 2 3n n N n=1 Turning again to the Cantor Set G, it should be clear that an element of [0; 1] is in G if 1 5 and only if it can be written in ternary form with an 6= 1 8n 2 N, so 2 2= G 81 2= G but 1 1 1 3 2 G and 1 2 G.
    [Show full text]
  • Locales in Functional Analysis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 70 (1991) 133-145 133 North-Holland Locales in functional analysis Joan Wick Pelletier Department of Mathematics, York University, North York, Ontario, Canada M3J IP3 Received 25 October 1989 Revised 1 June 1990 Abstract Pelletier, J.W., Locales in functional analysis, Journal of Pure and Applied Algebra 70 (1991) 133-145. Locales, as a generalization of the notion of topological space, play a crucial role in allowing theorems of functional analysis which classically depend on the Axiom of Choice to be suitably reformulated and proved in the intuitionistic context of a Grothendieck topos. The manner in which locales arise and the role they play are discussed in connection with the Hahn-Banach and Gelfand duality theorems. Locales have long been recognized as an important generalization of the notion of topological space, a notion which permits the study of topological questions in contexts where intuitionistic logic rather than Boolean logic prevails and in which spaces without points occur naturally. An excellent exposition of the history of this generalization can be found in Johnstone’s article, “The point of pointless topo- logy” [7]. The appearance of locales in functional analysis came about through the emer- gence of a need to do analysis in a more general context than the classical one. In this expository article we shall explore generalizations of two theorems which il- lustrate this phenomenon-the Hahn-Banach theorem and the Gelfand duality theorem in the setting of a Grothendieck topos.
    [Show full text]