Eclipse Newsletter

Total Page:16

File Type:pdf, Size:1020Kb

Eclipse Newsletter ECLIPSE NEWSLETTER The Eclipse Newsletter is dedicated to increasing the knowledge of Astronomy, Astrophysics, Cosmology and related subjects. VOLUMN 3 - NUMBER 3 MAY – JUNE 2019 All previous copies of the ECLIPSE are on the mountcuba.org Wed site. PLEASE SEND ALL PHOTOS, QUESTIONS AND REQUST FOR ARTICLES TO [email protected] 1 CONTENTS: CONSTELLATION - VIRGO WHAT ARE THE MESSIER OBJECTS? MESSIER OBJECT NUMBER 44 BEHIVE CLUSTER WHAT IS THE LIFECYCLE OF A STAR? PART 3. BLACK HOLE SPITS OUT HIGH-ENERGY JETS AT NEAR LIGHT SPEED. HUGE “GOD OF CHAOS” ASTEROID TO PASS NEAR EARTH IN 2029. TYPES OF GALAXIES. If you see text in green, my hope is you will do some research. I will continue to use hyperlinks. Just swipe, right click, open hyperlink. Hyperlinks are in Blue. 2 CONSTELLATION - VIRGO The bright star indicated here is Spica, the fifteenth brightest star in the night star. Virgo is the second largest constellation and is visible in both the Northern and Southern hemispheres. In the Northern hemisphere Virgo can be seen from March to July. Lying between Leo and Libra, Virgo is the only zodiacal constellation representing a woman. Virgo is the second largest constellation. The key to Virgos location is not just following the curve in the big dippers handle but the location the star Spica. Instead of me attempting to telling the readers how to find Virgo, I suggest you view the following. On YouTube – find Virgo Constellation. I recommend Virgo the Maiden. Happy viewing. WHAT ARE THE MESSIER OBJECTS? The Messier objects are a set of over 100 astronomical objects first listed by French astronomer Charles Messier in 1771.[1] Messier was a comet hunter, and was frustrated by objects which resembled but were not comets, so he compiled a list of them,[2] in collaboration with his assistant Pierre Méchain, to avoid wasting time on them. The number of objects in the lists he published reached 103, but a few more thought to have been observed by Messier have been added by other astronomers over the years. 3 For a list of Messier objects: https://en.wikipedia.org/wiki/List of Messier objects MESSIER OBJECT NUMBER 44 – BEHIVE CLUSTER ALSO KNOWN AS PRAESEPE Only 600 light-years away, M44 is one of the closest star clusters to our solar system. Also known as the Praesepe or the Beehive cluster its stars are young though, about 600 million years old compared to our Sun's 4.5 billion years. Based on similar ages and motion through space, M44 and the even closer Hyades star cluster in Taurus are thought to have been born together in the same large molecular cloud. An open cluster spanning some 15 light-years, M44 holds 1,000 stars or so and covers about 3 full moons (1.5 degrees) on the sky in the constellation Cancer. Visible to the unaided eye, M44 has been recognized since antiquity. Described as a faint cloud or celestial mist long before being included as the 44th entry in Charles Messier's 18th century catalog, the cluster was not resolved into its individual stars until telescopes were available. A popular target for modern, binocular- equiped sky gazers, the cluster's few yellowish tinted, cool, red giants are scattered through the field of its brighter hot blue main sequence stars in this colorful stellar group snapshot. 4 WHAT IS THE LIFECYCLE OF A STAR? PART 3. In the March – April edition, I left off with a supernova which is the largest explosion that takes place in space. As you can see from the picture above, there is another object a Red Giant can become. A White Dwarf. That is our destiny. Today, our Sun is a healthy yellow dwarf star. If you want to be precise, it is a “G V star”. This yellow dwarf will happily burn 600 million tons of hydrogen per second in its core for 10 billion years, generating the light that is required to make our planet habitable. The Sun is approximately half-way through this hydrogen burning phase, so its OK, things aren’t going to change (for the Sun at least) for a long time yet. But what happens when the supply of hydrogen runs out in about 4-5 billion years? Although our Sun isn’t massive enough to go out as a supernova, it will still go through an exciting, yet terrifying death. After evolving through the hydrogen-burning phase, the Sun will puff up into a huge red giant star as the hydrogen fuel becomes scarce, expanding 200 5 times the size it is now, probably swallowing the Earth. Helium, and then progressively heavier elements will be fused in and around the core. The Sun will never fuse carbon however, instead it will shed its outer layers forming a planetary nebula. In time, things calm down, a small sparkling star called a white dwarf star will remain. This tiny remnant will have a mass of around half that of our present Sun, but will be the size of the Earth. In the end, we are left with an old Solar System, where little is left of the inner planets. It is likely that anything within the orbit of the Earth will have been swallowed by the Sun as it expanded through the red giant phase. Although the future white dwarf Solar System will seem very alien to present day, some things won’t change. Jupiter’s orbit might have receded with the drop in solar mass, it will remain a planetary heavyweight, causing disruption in asteroid orbits. Using known asteroid data, the motion of these chunks of rocks are allowed to evolve, and over millions of years, they may get thrown out of the Solar System, or more interestingly, pushed closer to the white dwarf. Once the whole system has settled down, resonances in the asteroid belt will become amplified; Kirkwood Gaps (caused by gravitational resonance with Jupiter) will widen, and according to Deus simulations, the edges of these gaps will become perturbed even more, making more asteroids available to be tidally disrupted and shredded to dust. In the next issue of the Eclipse, I will review what causes a Supernova and let the readers in on the final results. I shall call it - Ashes to ashes, dust to dust. HUGE “GOD OF CHAOS” ASTEROID TO PASS NEAR EARTH IN 2029. NASA has ruled out a collision with earth during another flyby near earth in 2036. A 1,110-foot-wide asteroid named for the Egyptian god of chaos will fly past earth in 2029 within the distance of some orbiting spacecraft, according to reports. The asteroid, 99942 Apophis, will come within 19,000 miles of earth on April 13, a decade from now, but scientists at the Planetary Defense Conference are already preparing for the encounter, Newsweek reported. They plan to discuss the asteroid’s effects on earth’s gravity, potential research opportunities and even how to deflect an incoming asteroid in a theoretical scenario. 6 Scientists say most asteroids that pass near earth aren’t more than 30 feet wide, making Apophis, named for an Egyptian god of chaos, a rare opportunity for research. The asteroid will be visible to the naked eye and will look like a moving star point of light, according to NASA. It will pass over the United States in the early evening. BLACK HOLE SPITS OUT HIGH-ENERGY JETS AT NEAR LIGHT SPEED. Above. A NASA image shows the M87 galaxy, in the middle of which is the black hole that was imaged for the first time earlier this month (bottom-most box). The top zoomed-in box shows the shockwaves caused by jets of plasma spewed out from the black hole. A stunning new image reveals two jets of high-energy material being spewed at nearly light-speed from the first-ever photographed black hole. The supermassive black hole, M87 — dubbed Pōwehi — lives 55 million light-years away from Earth in a galaxy called Messier 87. The new image of M87 was released by NASA's Jet Propulsion Laboratory. Supermassive black holes gobble up everything around them. But some particles don't fall into the black hole and instead — for reasons still unknown to scientists — are propelled out of the hole at a high speed, in opposite directions. All Your Questions About the New Black Hole Image Answered 7 When the particles in these high-speed jets interact with gas in the vast, empty space around a black hole, the particles slow down and create shockwaves. Those shockwaves give off radiation that our devices can detect. This photo of M87 shows those shockwaves created by the jets flying out of Pōwehi's grasp — one aiming almost straight toward our planet and the other flying away from Earth, according to a statement from NASA’s Jet Propulsion Laboratory. The high-speed jet that's racing toward Earth is visible on the right of the zoomed-in photo. The straight part of the line reveals the high-speed jet itself; where the line begins to curve — because the particles are slowing down — is where the shockwave begins. The brightness of the jet is amplified because it's traveling at high speed in our direction, according to the statement. But the jet traveling in the opposite direction (on the left-hand side of the image) is moving so quickly away from us that it's invisible. The shockwave it creates, however, is visible and resembles the letter "C." NASA's Spitzer Space Telescope measured the infrared light emanating from this galaxy. That’s in contrast to the radio waves that were stitched together to produce the first-ever photo of a black hole, which was released earlier this month.
Recommended publications
  • Optical Astronomy Catalogues, Coordinates Visible Objects on the Sky • Stars • Planets • Comets & Asteroids • Nebulae & Galaxies
    Astrophysics Content: 2+2, 2×13×90 = 2 340 minutes = 39 hours Tutor: Martin Žáček [email protected] department of Physics, room 49 On-line informations: http://fyzika.feld.cvut.cz/~zacek/ … this presentation Many years (20?) teaching astrophysics (Prof. Petr Kulhanek), many texts and other materials but mostly in Czech (for example electronic journal Aldebaran Bulletin). 2011 … first year of teaching Astrophysics in English 2012-16 … 2017 … about 6 students, lextures on Thursday 11:00 lecture and 12:45 exercise https://www.fel.cvut.cz/cz/education/bk/predmety/12/77/p12773704.html ... AE0B02ASF https://www.fel.cvut.cz/cz/education/bk/predmety/12/78/p12784304.html ... AE0M02ASF Syllabus Classes: Astronomy & astrophysics 1. Astrophysics, history and its place in context of natural sciences. 2. Foundations of astronomy, history, its methods, instruments. 3. Solar system, inner and outer planets, Astronomical coordinates. Physics of stars 4. Statistics of stars, HR diagram. The star formation and evolution. Hyashi line. 5. Final evolutionary stages. White dwarfs, neutron stars, black holes. 6. Variable stars. Cepheids. Novae and supernovae stars. Binary systems. 7. Other galactic and extragalactic objects, nebulae, star clusters, galaxies. Cosmology 8. Principle of special and general theory of relativity. Relativistic experiments. 9. Cosmology. The Universe evolution, cosmological principle. Friedman models. 10. Supernovae Ia, cosmological parameters of the Universe, dark matter and dark energy. 11. Elementary particles, fundamental forces, quantum field theory, Feynman diagrams. 12. The origin of the Universe. Quark-gluon plasma. Nucleosynthesis. Microwave background radiation. 13. Cosmology with the inflationary phase, long-scale structure of the Universe. 14. Reserve Syllabus Practices: Astronomy & astrophysics 1.
    [Show full text]
  • Winter Messier List Observing Club
    Winter Messier List Observing Club Raleigh Astronomy Club Version 1.1 24 November 2012 Introduction Welcome to the Winter Messier List Observing Club. The objects on this list represent many of the most prominent deep sky objects (Globular Clusters, Open Clusters, Nebula, Galaxies) visible from mid-northern latitudes. The Messier list of objects was compiled in the 1700’s by the French comet hunter Charles Messier and his associates as a list of objects to not confuse with their primary goal of discovering new comets. What they really produced, was a list of many of the best deep sky objects for astronomers to enjoy. Observing the Messier List is an excellent way for beginning astronomers to learn the night sky. This club is intended for those who wish to tour the Messier objects while adding more structure to their observing activities. Club members who wish to work their way through the Messier objects, a season at a time, will find this list to be a helpful guide. Two certificate levels are offered, Silver and Gold. The Silver certificate is earned by viewing and logging all objects on the list while using Go-To or Digital Setting Circles to help locate the Messier objects. The Gold certificate is earned by those who view and log all the objects while only using charts and star hopping to locate them. Anyone who intends to use their RAC list results as a stepping-stone to the Astronomlcal League Messier certificate, MUST work to the Gold certificate rules. Rules To earn the Winter Messier List certificate, you must: 1.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • 1 the Comets of Caroline Herschel (1750-1848)
    Inspiration of Astronomical Phenomena, INSAP7, Bath, 2010 (www.insap.org) 1 publication: Culture and Cosmos, Vol. 16, nos. 1 and 2, 2012 The Comets of Caroline Herschel (1750-1848), Sleuth of the Skies at Slough Roberta J. M. Olson1 and Jay M. Pasachoff2 1The New-York Historical Society, New York, NY, USA 2Hopkins Observatory, Williams College, Williamstown, MA, USA Abstract. In this paper, we discuss the work on comets of Caroline Herschel, the first female comet-hunter. After leaving Bath for the environs of Windsor Castle and eventually Slough, she discovered at least eight comets, five of which were reported in the Philosophical Transactions of the Royal Society. We consider her public image, astronomers' perceptions of her contributions, and the style of her astronomical drawings that changed with the technological developments in astronomical illustration. 1. General Introduction and the Herschels at Bath Building on the research of Michael Hoskini and our book on comets and meteors in British art,ii we examine the comets of Caroline Herschel (1750-1848), the first female comet-hunter and the first salaried female astronomer (Figure 1), who was more famous for her work on nebulae. She and her brother William revolutionized the conception of the universe from a Newtonian one—i.e., mechanical with God as the great clockmaker watching over its movements—to a more modern view—i.e., evolutionary. Figure 1. Silhouette of Caroline Herschel, c. 1768, MS. Gunther 36, fol. 146r © By permission of the Oxford University Museum of the History of Science Inspiration of Astronomical Phenomena, INSAP7, Bath, 2010 (www.insap.org) 2 publication: Culture and Cosmos, Vol.
    [Show full text]
  • Alexandre Amorim -.:: GEOCITIES.Ws
    Alexandre Amorim (org) 2 3 PREFÁCIO O Boletim Observe! é uma iniciativa da Coordenação de Observação Astronômica do Núcleo de Estudo e Observação Astronômica “José Brazilício de Souza” (NEOA-JBS). Durante a reunião administrativa do NEOA-JBS em maio de 2010 foi apresentada a edição de Junho de 2010 para apreciação dos demais coordenadores do Núcleo onde houve aprovação unânime em usar o Boletim Observe! como veículo de informação das atividades e, principalmente, observações astronômicas. O Boletim Observe! é publicado mensalmente em formato eletrônico ou impresso separadamente, prezando pela simplicidade das informações e encorajando os leitores a observar, registrar e publicar os eventos astronômicos. Desde a sua primeira edição o Boletim Observe! conta com a colaboração espontânea de diversos astrônomos amadores e profissionais. Toda edição do Observe! do mês de dezembro é publicado um índice dos artigos do respectivo ano. Porém, desde aquela edição de Junho de 2010 foram publicados centenas de artigos e faz-se necessário consultar assuntos que foram tratados nas edições anteriores do Observe! e seus respectivos autores. Para isso publicaremos anualmente esse Índice de Assuntos, permitindo a consulta rápida dos temas abordados. Florianópolis, 1º de dezembro de 2018 Alexandre Amorim Coordenação de Observação Astronômica do NEOA-JBS 4 Ano I (2010) Nº 1 – Junho 2010 Eclipse da Lua em 26 de junho de 2010 Amorim, A. Júpiter sem a Banda Equatorial Sul Amorim, A. Conjunção entre Júpiter e Urano Amorim, A. Causos do Avelino Alves, A. A. Quem foi Eugênia de Bessa? Amorim, A. Nº 2 – Julho 2010 Aprendendo a dimensionar as distâncias angulares no céu Neves, M.
    [Show full text]
  • OCTOBER 2011 Next Meeting
    PRET ORI A CENT RE ASSA - OCT OBER 2011 PAGE 1 NEWSLETTER OCTOBER 2011 Next meeting Venue: The auditorium behind the main building at Christian Brothers College (CBC), Mount Edmund, Pretoria Road, Silverton, Pretoria. Date and time: Wednesday 26 October at 19h15. Programme: • Beginner’s Corner: "Introduction to spectroscopy" by Tom Field. (See bottom of page 10 of this newsletter.) • What’s Up? by Danie Barnardo. • 10 minute break — library will be open. • Main talk: "Destination Moon" by Patricia Skelton. • Socializing over tea/coffee and biscuits. The chairperson at the meeting will be Pat Kühn. Next observing evening: Friday 21 October at the Pretoria Centre Observatory, which is also situated at CBC. Turn left immediately after entering the main gate and follow the road. Arrive from sunset onwards. CONTENTS OF THIS NEWSLETTER Chairman's report of last month’s meeting 2 Solar eclipse series 2 Last month’s observing evening 3 The Crab Nebula viewing season Is almost upon us 4 Photographing the Moon’s parallax 5 Summary of “What’s Up?” to be presented on 26 October 6 For the Pretoria ASSA Deep Sky Observers (or any observer) 7 Feature of the month: Comet Elenin 8 News items 9 Basics: The blink comparator 10 Note about “Beginner’s Corner” on 26 October 10 Arp 273 - two interacting galaxies 11 Pretoria Centre committee 11 PAGE 2 PRET ORI A CENT RE ASSA - OCT OBER 2011 Chairman's report of last month’s meeting Beginner’s corner featured a fascinating presentation which amounted to an exposition of astronomical sleuthing by James Thomas.
    [Show full text]
  • The Comet's Tale
    THE COMET’S TALE Journal of the Comet Section of the British Astronomical Association Number 33, 2014 January Not the Comet of the Century 2013 R1 (Lovejoy) imaged by Damian Peach on 2013 December 24 using 106mm F5. STL-11k. LRGB. L: 7x2mins. RGB: 1x2mins. Today’s images of bright binocular comets rival drawings of Great Comets of the nineteenth century. Rather predictably the expected comet of the century Contents failed to materialise, however several of the other comets mentioned in the last issue, together with the Comet Section contacts 2 additional surprise shown above, put on good From the Director 2 appearances. 2011 L4 (PanSTARRS), 2012 F6 From the Secretary 3 (Lemmon), 2012 S1 (ISON) and 2013 R1 (Lovejoy) all Tales from the past 5 th became brighter than 6 magnitude and 2P/Encke, 2012 RAS meeting report 6 K5 (LINEAR), 2012 L2 (LINEAR), 2012 T5 (Bressi), Comet Section meeting report 9 2012 V2 (LINEAR), 2012 X1 (LINEAR), and 2013 V3 SPA meeting - Rob McNaught 13 (Nevski) were all binocular objects. Whether 2014 will Professional tales 14 bring such riches remains to be seen, but three comets The Legacy of Comet Hunters 16 are predicted to come within binocular range and we Project Alcock update 21 can hope for some new discoveries. We should get Review of observations 23 some spectacular close-up images of 67P/Churyumov- Prospects for 2014 44 Gerasimenko from the Rosetta spacecraft. BAA COMET SECTION NEWSLETTER 2 THE COMET’S TALE Comet Section contacts Director: Jonathan Shanklin, 11 City Road, CAMBRIDGE. CB1 1DP England. Phone: (+44) (0)1223 571250 (H) or (+44) (0)1223 221482 (W) Fax: (+44) (0)1223 221279 (W) E-Mail: [email protected] or [email protected] WWW page : http://www.ast.cam.ac.uk/~jds/ Assistant Director (Observations): Guy Hurst, 16 Westminster Close, Kempshott Rise, BASINGSTOKE, Hampshire.
    [Show full text]
  • Just What Are Those Sky Chart "M" and "NGC" Numbers? by Barry D
    Just what are those Sky Chart "M" and "NGC" Numbers? By Barry D. Malpas – Special to the Williams-Grand Canyon News – 2014 November One of the pastimes for some early sky observers was to locate new comets. Charles Messier (1730-1817) was a French comet hunter during the late 1700s, and discovered 13 new comets between 1760 and 1785. His interest in astronomy, and comets in particular, was influenced by seeing the great comet of 1744, and the comet of 1759 (of which Edmond Halley had believed the comets of 1531, 1607, and 1682 were the same and had predicted the comet’s 1759 apparition which is now known as Halley's Comet.) At this time telescopes were relatively small. The understanding of supernovae, or galaxies, was not yet in the current knowledge, as such objects only appeared as blurry smudges that did not move across the sky. In order not to waste time and become frustrated with viewing fuzzy objects that resembled, but were not, comets, Messier compiled a list of 110 of these celestial blurs which we now refer to as Messier, or "M Objects." The Messier Catalog has become a very popular list of "Deep Sky Objects" among amateur astronomers around the world because it consists of most of the galaxies, nebulae and star clusters easily observable with binoculars or small telescopes in the northern skies. Now, however, the objects in the list are the source of interest, as opposed to the reason the compilation was originally intended by Messier. At large astronomical get-togethers, known as "star parties", there is often a "Messier Marathon" competition to view the most Messier Objects during one observing night.
    [Show full text]
  • Finding Long Lost Lexellʼs Comet: the Fate of the First Discovered Near-Earth Object
    The Astronomical Journal, 155:163 (13pp), 2018 April https://doi.org/10.3847/1538-3881/aab1f6 © 2018. The American Astronomical Society. All rights reserved. Finding Long Lost Lexellʼs Comet: The Fate of the First Discovered Near-Earth Object Quan-Zhi Ye (叶泉志)1,2 , Paul A. Wiegert3,4 , and Man-To Hui (许文韬)5 1 Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA; [email protected] 2 Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA 3 Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada 4 Centre for Planetary Science and Exploration, The University of Western Ontario, London, Ontario N6A 5B8, Canada 5 Department of Earth, Planetary and Space Sciences, UCLA, Los Angeles, CA 90095-1567, USA Received 2017 December 14; revised 2018 February 16; accepted 2018 February 20; published 2018 March 22 Abstract Jupiter-family Comet D/1770 L1 (Lexell) was the first discovered Near-Earth Object (NEO) and passed the Earth on 1770 July 1 at a recorded distance of 0.015 au. The comet was subsequently lost due to unfavorable observing circumstances during its next apparition followed by a close encounter with Jupiter in 1779. Since then, the fate of D/Lexell has attracted interest from the scientific community, and now we revisit this long-standing question. We investigate the dynamical evolution of D/Lexell based on a set of orbits recalculated using the observations made by Charles Messier, the comet’s discoverer, and find that there is a 98% chance that D/Lexell remains in the solar system by the year of 2000.
    [Show full text]
  • The Messier Objects
    WHAT’S IN The Messier Objects THE NIGHT SKY? Bonus Material The Messier objects are a list of 110 deep-sky objects that were catalogued by a French astronomer called Charles Messier. He created this list in the 1700’s when he was looking for comets. He wanted to keep track of the things he could see in the night sky, so he wouldn’t confuse them for comets. The Messier objects all have names that start with the letter M (for Messier), followed by a number. For example, M13 is a Messier object which can be found in the Hercules constellation. Types of Messier objects Globular Clusters – These are spherical Supernova Remnants – When a very large (round) systems of ancient stars held together star (more than 5 times the size of our Sun) by gravity. They are dense systems, which uses up all its fuel, it collapses. The collapse contain thousands or millions of stars. From happens so quickly that the outer layers of Earth, they look like small, blurry blobs in the star explode! A supernova remnant is the the night sky. The globular cluster in the hot, expanding cloud of gas that is given off in picture is M13, which is found in the Hercules this explosion. The supernova remnant in the constellation. picture is M1, which is more commonly named the Crab Nebula. Types of Messier objects continued... Galaxies – A huge collection of dust, gas, Open Cluster – An open cluster is a loose billons of stars and their solar systems group of hundreds or thousands of stars.
    [Show full text]
  • Snake River Skies the Newsletter of the Magic Valley Astronomical Society
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting MVAS President’s Message June 2018 Saturday, June 9th 2018 7:00pm at the Toward the end of last month I gave two presentations to two very different groups. Herrett Center for Arts & Science College of Southern Idaho. One was at the Sawtooth Botanical Gardens in their central meeting room and covered the spring constellations plus some simple setups for astrophotography. Public Star Party Follows at the The other was for the Sun Valley Company and was a telescope viewing session Centennial Observatory given on the lawn near the outdoor pavilion. The composition of the two groups couldn’t be more different and yet their queries and interests were almost identical. Club Officers Both audiences were genuinely curious about the universe and their questions covered a wide range of topics. How old is the moon? What is a star made of? Tim Frazier, President How many exoplanets are there? And, of course, the big one: Is there life out [email protected] there? Robert Mayer, Vice President The SBG’s observing session was rained out but the skies did clear for the Sun [email protected] Valley presentation. As the SV guests viewed the moon and Jupiter, I answered their questions and pointed out how one of Jupiter’s moons was disappearing Gary Leavitt, Secretary behind the planet and how the mountains on our moon were casting shadows into [email protected] the craters. Regardless of their age, everyone was surprised at the details they 208-731-7476 could see and many expressed their amazement at what was “out there”.
    [Show full text]
  • Charles Messier
    Cambridge University Press 0521803861 - The Observing Guide to the Messier Marathon: A Handbook and Atlas Don Machholz Excerpt More information Part 1 Handbook © Cambridge University Press www.cambridge.org Cambridge University Press 0521803861 - The Observing Guide to the Messier Marathon: A Handbook and Atlas Don Machholz Excerpt More information 1 Charles Messier Charles Messier lived and worked during a pivotal point in visual astronomical history. He was one of the first comet hunters, discovering new comets over a span of four decades, and recording nearly every observable comet during his career. His comet hunting resulted in an extensive knowledge of the night sky, enabling him to organize a catalog of galaxies, clusters and nebulae. This list of heavenly wonders, known as the Messier Catalogue, has become one of the most popular lists of its kind. It includes many of the brightest and best-known objects in the night sky. Yet the 110 marvels are few enough that even the beginning amateur astronomer of today can find them all, or nearly all, of them in one night. Born on June 26, 1730, in Lorraine, France, Charles was the tenth of twelve children.1 His father died when he was eleven. Three years later, in early 1744, the young Charles observed the brilliant multi- tailed comet of 1744. A month after his eighteenth birthday, in July 1748, he observed an annular solar eclipse from his home town. In October 1751 he went to Paris in search of a new life. His skill in penmanship and drafting landed him employment as a record keeper at a small observatory at the Hotel de Cluny.
    [Show full text]