Overview of Thistle Management in Australia Measures

Total Page:16

File Type:pdf, Size:1020Kb

Overview of Thistle Management in Australia Measures Plant Protection Quarterly Vol.11 Supplement 2 1996 285 must be taken into account when consid- ering their response to herbicidal control Overview of thistle management in Australia measures. Biocontrol agents too can be very discriminating, even down to the B.M. Sindel, Department of Agronomy and Soil Science, Co-operative Research level of thistle ecotype. For example, the Centre for Weed Management Systems, University of New England, Armidale, ecology of saffron thistle (Carthamus New South Wales 2351, Australia. lanatus) is quite different to many of the other thistles. Saffron thistle on one hand can be characterized as preferring regu- Summary genetically modify thistles to be spine- larly disturbed areas with coarse dry top- Thistles have a high profile in the weed less? soil, but with good reserves of moisture in flora of Australia and are of particular There are two postcards on my office the deeper subsoil, whereas, most of the concern to graziers in the temperate pin board. Appropriately, the first is from other major thistles reviewed at this work- southern regions where they are often Edinburgh, Scotland, and is of the ‘Scottish shop are typically dominant on soils rich in the dominant weeds of improved pas- thistle’ (Cirsium vulgare). The second post- phosphate and nitrogen, and possibly tures. While thistles have morphological card, this time appropriately from the Uni- regularly cultivated and/or irrigated areas similarities and are closely linked taxo- versity of Oxford, England, says: ‘The (Doing 1972). As a result, saffron thistle is a nomically, they are nevertheless ecologi- more I study the more I know; the more I major weed in both pastures and crops cally diverse, both between species and know the more I forget; the more I forget, whereas many of the other thistles are a within species. Consequently, some man- the less I know; so why study?’ nuisance in pastures alone. So it is worth- agement practices, e.g. biological control, The purpose of this synthesis paper is to while stating again that we are not dealing may need to be aimed at specific ecotypic draw together in broad terms the presen- with a homogenous group of weeds when groups, while other management prac- tations from the Thistle Management we talk about the thistles. Consequently, tices, e.g. pasture competition, may be Workshop and to ask ‘what do we know many control measures will have to be able to be applied more unilaterally. This about thistles’, ‘what don’t we know aimed at individual species, and even paper overviews the presentations made about them’, and ‘what should we try and ecotypes within species. Others, such as at the Thistle Management Workshop find out that will be of practical use in this- pasture competition, may act more unilat- and synthesizes them into three broad tle management’. Do we already know erally. categories—ecology/biology, manage- the key to thistle management (if there is The factors that promote thistle inva- ment tactics, and farmer attitudes and one) or are we still searching? If a key ex- sion (often an increase in soil nutrient sta- constraints on control—and examines ists and we have not yet found it, does it lie tus combined with overgrazing and lack what is currently known about thistles, in obtaining more information, securing of reseeding) are also often responsible for what is not known about them and where more resources, developing new methods changes in the relative abundance of indi- should research be aimed to yield results or in engendering greater commitment vidual thistle species. Such changes, which which will be of most practical use to from those who attempt to control this- are continually occurring in the Australian thistle management in Australia. tles? weed flora (Kloot 1987), further compli- This workshop produced some excellent cate the already complex issue of thistle Introduction presentations of current thinking and re- management. For example, McGufficke There is no other group of plants in Aus- search in regard to thistle management (1996) experienced changes on his prop- tralia, and perhaps in the world, which bet- and if I am to synthesize these papers then erty near Jindabyne, New South Wales, ter epitomizes weeds than the thistles. A by definition I must put them together to from dominance of spear (or black) thistle cursory glance at some local sources of make up a complex whole. And in some (Cirsium vulgare) to saffron thistle and then weed information confirms this idea. The respects, weed management is necessarily Scotch (Onopordum sp.) thistle. Similarly, brochure which describes the Co- becoming more complex as land manag- over the course of 25 years on a property operative Research Centre (CRC) for ers negotiate the trend towards herbicide at Crookwell, New South Wales, an area Weed Management Systems—‘Weaken- resistance, reduced cultivation and an- that was once dominated by native ing Weeds to Strengthen Australia’—has a tagonism to pesticides. Ironically, the com- redgrass (possibly Bothriochloa macra) photograph of Carduus tenuiflorus plexity of the thistle group is one of the changed to subterranean clover, then to (winged slender thistle) on the front. The over-riding themes that has been evident variegated thistle (Silybum marianum) and logo of the Weed Society of New South through the presentations from this work- finally to Onopordum sp. (Carter 1970). Wales, displayed prominently on its news- shop and one which I highlighted in my Although management practices may letter, A Good Weed, is of a thistle. The review of the ecology and control of this- alter the soil and pasture conditions and Australian weed books by Hyde-Wyatt tles in Australia (Sindel 1991). lead to changes in thistle dominance, the and Morris (1980), Wilding et al. (1986), While thistles are often grouped under relative importance of different thistle spe- Auld and Medd (1987), Auld et al. (1987), one broad umbrella (for some very good cies in Australian pastures has not been Parsons and Cuthbertson (1992), and the reasons, not the least of which are their studied. new ‘Crop Weeds of Northern Australia’ morphological and taxonomic similari- by Wilson et al. (1995), all depict thistles of ties), they are nevertheless a group of Significance one type or another on their front covers. plants which are ecologically diverse— There can be little doubt that thistles are a What is it about thistles which gives both between species and within species, major concern for graziers in the temper- them this unique standing? Is it their often as has been highlighted for saffron thistle ate regions of southern Australia. In a re- sharp spines and prickles (for that is what (Peirce 1990). It might be concluded from cent mail survey of grazier attitudes to partly defines a thistle in the family Michael (1996) that part of the reason for weeds on the Northern Tablelands of New Asteraceae), their inherent beauty when this diversity in Australia is also due to the South Wales (Sindel 1996), graziers were in flower, or the combination and tension presence of taxonomic groups which are asked to rank up to five major weeds in between these two features? Someone as yet unidentified, particularly in relation order of importance on their farms. A once said: ‘Give me a thistle without to the Onopordum thistles. score of five was assigned to the top thorns and I will give you a pasture plant’. Peirce (1996) rightly emphasized that ranked weed in each case, a score of four Is technology now at the stage that we can the variability in the behaviour of thistles to the second worst weed and so on down 286 Plant Protection Quarterly Vol.11 Supplement 2 1996 Table 1. The most troublesome weeds among the graziers surveyed from the Ecology/biology Tablelands of northern New South Wales (from Sindel 1996). Baseline data There would be few of the defence force A B Weed Presumed species Number of respondents Score personnel who would not argue that it is Saffron thistle Carthamus lanatus L. 22 90 essential that you first ‘know your enemy’ Blackberry Rubus fruticosus L. s.lat. 12 38 before you make an attack on them. Oth- Nodding thistle Carduus nutans L. ssp. nutans 8 31 erwise, your attack is likely to be ineffec- Bathurst burr Xanthium spinosum L. 7 31 tive and you will not be able to assess what Spear thistle Cirsium vulgare (Savi) Ten. 7 27 damage you have caused once that attack Thistles (generally) 6 20 has been carried out. In this regard, Pettit Scotch thistle Onopordum spp. 4 19 et al. (1996) have appropriately done their Horehound Marrubium vulgare L. 7 18 reconnaissance work on Onopordum and Slender thistles Carduus pycnocephalus L. 5 12 have now laid baseline data against which Carduus tenuiflorus Curtis to assess the effectiveness of biological Variegated thistle Silybum marianum (L.) Gaertner 3 12 control. Rat’s tail fescue Vulpia spp. 3 12 Seed banks in the soil A Number of respondents from the Tablelands who listed a particular species among Sheppard (1996) highlighted the fact that their five worst weeds. nearly all thistle species are relatively B Combined score of weed importance from rankings given by all 29 respondents from short-lived and reproduce entirely by seed the Tablelands. and that this must guide the formulation of control strategies. As a result, the con- to one. Forty six weed species were listed introduction to this country, continues to tinued infestation of pastures and crops by in total by the 29 respondents. Table 1 lists spread (Parsons 1973, Medd and Smith thistles depends largely on the persistence those weeds which had a combined score 1978). of viable seeds on and below the soil sur- of 12 or greater.
Recommended publications
  • Slender Thistles LC0229 Department of Primary Industries ISSN 1329-833X
    Updated: August 2007 Slender Thistles LC0229 Department of Primary Industries ISSN 1329-833X Common and scientific names in colour. All seeds have a group of plumes (the pappus) about three times as long as the seed for wind dispersal. Slender thistle, shore thistle Roots - branched, slender or stout tap root. Carduus pycnocephalus L. (slender thistle) Carduus tenuiflorus Curt. (winged slender thistle) Family Asteraceae (daisy family) Origin and distribution Slender thistles are native to Europe and North Africa. The range of C. pycnocephalus extends to Asia Minor and Pakistan while that of C. tenuiflorus extends northwards to Britain and Scandinavia. They are a problem in many areas of the world. Both species were present in Victoria during the 1880s and now occur throughout much of the State. Slender thistles are troublesome weeds in pastures and wastelands, favouring areas of winter rainfall and soils of moderate to high fertility. The two species often occur together in mixed populations. Description Erect annual herbs, commonly 60 to 100 cm high but up to 2m, reproducing by seed. Seed germinates in the 6 weeks Figure 1. Slender thistle, Carduus tenuiflorus. following the autumn break. Seedlings develop into rosettes and remain in the rosette stage over winter. Flowering stems are produced in early spring and flowering continues from September to December. Plants die in early summer after flowering, but dead stems can remain standing for months. Stems - flowering stems are single or multiple from the base, branched, strongly ribbed and slightly woolly. Spiny wings occur along most of the length of flowering stems. Leaves - rosette leaves 15 to 25 cm long, stalked and Figure 2.
    [Show full text]
  • Coleoptera Chrysomelidae) of Sicily: Recent Records and Updated Checklist
    DOI: 10.1478/AAPP.982A7 AAPP j Atti della Accademia Peloritana dei Pericolanti Classe di Scienze Fisiche, Matematiche e Naturali ISSN 1825-1242 Vol. 98, No. 2, A7 (2020) THE CASSIDINAE AND CRYPTOCEPHALINI (COLEOPTERA CHRYSOMELIDAE) OF SICILY: RECENT RECORDS AND UPDATED CHECKLIST COSIMO BAVIERA a∗ AND DAVIDE SASSI b ABSTRACT. This paper compiles an updated checklist of the Sicilian Cassidinae and Cryptocephalini species (Coleoptera: Chrysomelidae, Cassidinae and Cryptocephalinae) starting from a critical bibliographic screening and adding new material, mainly collected by the first author in the last few decades. A total of 61 species is reported, withnew data for many rarely collected taxa. The provided data expand the known distribution of many uncommon species in Sicily. Two species are recorded for the first time: Cassida inopinata Sassi and Borowiec, 2006 and Cryptocephalus (Cryptocephalus) bimaculatus Fabricius, 1781 and two uncertain presences are confirmed: Cassida deflorata Suffrian, 1844 and Cassida nobilis Linné, 1758. The presence of other sixteen species is considered questionable and needs further confirmation. 1. Introduction Leaf beetles are all phytophagous Coleoptera. They are usually of a rather stout build, with a rounded or oval shape, often brightly coloured or with metallic hues. Worldwide some 32500 species in 2114 genera of Chrysomelidae have been described (Slipi´ nski´ et al. 2011), the majority of which occur in the tropics as is the case with numerous other Coleoptera families. Currently, the leaf beetle subfamily Cassidinae comprises the tortoise beetles (Cassidinae s. str.) and the hispine beetles (Hispinae s. str.) (Borowiec 1995; Hsiao and Windsor 1999; Chaboo 2007). So far, the Cassidinae list about 6300 described species within more than 340 genera, being the second most speciose subfamily of leaf beetles (Borowiec and Swi˛etoja´ nska´ 2014).
    [Show full text]
  • Milk Thistle
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF EXOTIC T RU E T HISTL E S RACHEL WINSTON , RICH HANSEN , MA R K SCH W A R ZLÄNDE R , ER IC COO M BS , CA R OL BELL RANDALL , AND RODNEY LY M FHTET-2007-05 U.S. Department Forest September 2008 of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Italian thistle. Photo: ©Saint Mary’s College of California. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • Insects and Fungi Associated with Carduus Thistles (Com­ Positae)
    t I:iiW 12.5 I:iiW 1.0 W ~ 1.0 W ~ wW .2 J wW l. W 1- W II:"" W "II ""II.i W ft ~ :: ~ ........ 1.1 ....... j 11111.1 I II f .I I ,'"'' 1.25 ""11.4 111111.6 ""'1.25 111111.4 11111 /.6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART I NATIONAL BlIREAU Of STANDARDS-1963-A NATIONAL BUREAU OF STANDARDS-1963-A I~~SECTS AND FUNGI ;\SSOCIATED WITH (~ARDUUS THISTLES (COMPOSITAE) r.-::;;;:;· UNITED STATES TECHNICAL PREPARED BY • DEPARTMENT OF BULLETIN SCIENCE AND G AGRICULTURE NUMBER 1616 EDUCATION ADMINISTRATION ABSTRACT Batra, S. W. T., J. R. Coulson, P. H. Dunn, and P. E. Boldt. 1981. Insects and fungi associated with Carduus thistles (Com­ positae). U.S. Department of Agriculture, Technical Bulletin No. 1616, 100 pp. Six Eurasian species of Carduus thistles (Compositae: Cynareael are troublesome weeds in North America. They are attacked by about 340 species of phytophagous insects, including 71 that are oligophagous on Cynareae. Of these Eurasian insects, 39 were ex­ tensively tested for host specificity, and 5 of them were sufficiently damf..ghg and stenophagous to warrant their release as biological control agents in North America. They include four beetles: Altica carduorum Guerin-Meneville, repeatedly released but not estab­ lished; Ceutorhynchus litura (F.), established in Canada and Montana on Cirsium arvense (L.) Scop.; Rhinocyllus conicus (Froelich), widely established in the United States and Canada and beginning to reduce Carduus nutans L. populations; Trichosirocalus horridus ~Panzer), established on Carduus nutans in Virginia; and the fly Urophora stylata (F.), established on Cirsium in Canada.
    [Show full text]
  • Draft Written Findings for Turkish Thistle, Carduus Cinereus
    DRAFT: WRITTEN FINDINGS OF THE WASHINGTON STATE NOXIOUS WEED CONTROL BOARD Scientific Name: Carduus cinereus M.Bieb. Synonyms: Carduus pycnocephalus L. subsp. cinereus (M.Bieb.) P.H.Davis; Carduus arabicus Jacq. subsp. cinereus (M.Bieb.) Kazmi Common Name: Turkish thistle, Spanish thistle Family: Asteraceae Legal Status: being considered for listing on the monitor list or the state noxious weed list Description and Variation: Turkish thistle’s description is adapted from Gaskin et al. (2019) unless otherwise cited. Refer to Gaskin et al. (2019) for Turkish thistle’s full botanical description as well as the genetic research that determined these plants to be this new species in North America. Overall habit: Turkish thistle is an annual thistle with winged stems that can grow up to 4 feet tall. Its basal leaves are up to 4 inches long, and stem leaves reduce in size moving up the stem. Flower heads are compressed, non-spherical, and single or in loose clusters. Each purplish flower head is typically on a short hairy stem or may be stemless. Images: left, Turkish thistle plants can flower when they are as small as 3 inches or can grow up to 4 feet tall depending on growing conditions (right image), images by Mark Porter, Oregon Department of Agriculture. Stems: Turkish thistle stems can vary greatly in size depending on habitat conditions, growing from 3 to 48 inches tall, (7.7 to 120 cm) (Porter 2020, Gaskin et al. 2019). Stems are unbranched to openly branched, and loosely covered with soft woolly hairs (tomentose). The stems are winged, with teeth of wings to 0.2 inches (5 mm) long and wing spines to 0.4 inches (10 mm) long.
    [Show full text]
  • The Leaf-Feeding Beetle, Cassida Rubiginosa, Has No Impact on Carduus Pycnocephalus (Slender Winged Thistle) Regardless of Physical Constraints on Plant Growth
    Mills et al. New Zealand Plant Protection 73 (2020) 49–56 https://doi.org/10.30843/nzpp.2020.73.11722 The leaf-feeding beetle, Cassida rubiginosa, has no impact on Carduus pycnocephalus (slender winged thistle) regardless of physical constraints on plant growth Jonty Mills, Sarah Jackman, Chikako van Koten, and Michael Cripps* AgResearch, Lincoln Science Centre, Private Bag 4749, Lincoln, New Zealand *Corresponding author: [email protected] (Original submission received 4 September 2020; accepted in revised form 15 November 2020) Abstract The leaf-feeding beetle, Cassida rubiginosa, is an oligophagous biocontrol agent capable of feeding on most species in the tribe Cardueae (thistles and knapweeds). The beetle was released in New Zealand in 2007, primarily to control Cirsium arvense (Californian thistle), with the recognition that it had potential to control multiple thistle weeds. The objective of this study was to test the impact of different densities of Cassida rubiginosa larvae (0, 50, 100, or 200 per plant) on the growth and reproductive performance of the annual thistle weed, Carduus pycnocephalus (slender winged thistle). Since the effectiveness of biocontrol agents is often enhanced when plants are stressed, different levels of growth constraint were imposed by growing the weed in different pot sizes (0.5, 1, 5, and 12 litres). We hypothesised that feeding damage by Cassida rubiginosa larvae would have a greater impact on the weed when grown in smaller pots, since root growth would be constrained, and the weed’s ability to compensate for feeding damage would be restricted. Contrary to our hypothesis, pot size had no effect on feeding damage by Cassida rubiginosa on Carduus pycnocephalus.
    [Show full text]
  • Slender Thistles Common and Scientific Names
    Source: http://agriculture.vic.gov.au/agriculture/pests-diseases-and-weeds/weeds/a-z-of- weeds/slender-thistles Downloaded 11/11/2015. Slender Thistles Common and scientific names Slender thistle, shore thistle Carduus pycnocephalus L. (slender thistle) Carduus tenuiflorus Curt. (winged slender thistle) Family Asteraceae (daisy family) Origin and distribution Slender thistles are native to Europe and North Africa. The range of C. pycnocephalus extends to Asia Minor and Pakistan while that of C. tenuiflorus extends northwards to Britain and Scandinavia. They are a problem in many areas of the world. Both species were present in Victoria during the 1880s and now occur throughout much of the state. Slender thistles are troublesome weeds in pastures and wastelands, favouring areas of winter rainfall and soils of moderate to high fertility. The two species oftenoccur together in mixed populations. Description Erect annual herbs, commonly 60 to 100 cm high but up to 2m, reproducing by seed. Seed germinates in the 6 weeks following the autumn break. Seedlings develop into rosettes and remain in the rosette stage over winter. Flowering stems are produced in early spring and flowering continues from September to December. Plants die in early summer after flowering, but dead stems can remain standing for months. Stems - flowering stems are single or multiple from the base, branched, strongly ribbed and slightly woolly. Spiny wings occur along most of the length of flowering stems. Leaves - rosette leaves 15 to 25 cm long, stalked and deeply lobed with numerous spines on each lobe. Stem leaves shorter, deeply lobed with spines along the margin and with the base forming wings along the stem.
    [Show full text]
  • Study of Some Pucciniales Encountered on Weeds in Morocco
    Available online at www.ijpab.com ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 2 (4): 254-264 (2014) Research Article INTERNATIONAL JO URNAL OF PURE & APPLIED BIOSCIENCE Study of some Pucciniales encountered on weeds in Morocco Mohammed KHOUADER, El Mostafa DOUIRI, Mohamed CHLIYEH, Ali OUTCOUMIT, Amina OUAZZANI TOUHAMI, Rachid BENKIRANE and Allal DOUIRA* Laboratoire de Botanique, Biotechnologie et Protection des Plantes, Faculté des Sciences, Université Ibn Tofail, Kénitra, Morocco *Corresponding Author E-mail: [email protected] ABSTRACT This work is a contribution to the study of the Pucciniales fungi (Basidiomycetes) of Morocco. Surveys in northern Atlantic Morocco have allowed collecting a dozen species of plants (Euphorbia segetalis, E. peplus, Carduus tenuiflorus and Centaurea calcitrapa) infected by rust. The different observed symptoms have been described in the laboratory and a microscopic study of spores allowed identifying the responsible pathogens for these symptoms: Melampsora euphorbiae, Melampsora euphorbiae-pepli, Puccinia calcitrapae and Puccinia carduorum. The obtained results may help to know the diversification of host Pucciniales and the description of other new species for fungal diversity of Morocco. Key words : Morocco, Weeds, Pucciniales, symptoms, description. INTRODUCTION The Pucciniales, considered as obligatory parasites of plants, they are represented by more than 7000 species 3,8 . The Puccinia genus has more than 4877 species widespread in all regions of the world, including 650 species are pathogenic to grasses 2 and others are pathogens on Lily, Umbelliferae and Compositae 35 . Most of these species are heteroxenous, especially those that feed on grasses 35 . In Morocco, Puccinia genus is represented by 250 species 23,24 while the Melampsora genus is represented by only 18 species 25 which can interfere with different plant species.
    [Show full text]
  • Coleoptera: Chrysomelidae
    Travaux du Muséum National d’Histoire Naturelle «Grigore Antipa» Vol. 60 (2) pp. 477–494 DOI: 10.1515/travmu-2017-0011 Research paper Catalogue of Cassidinae (Coleoptera: Chrysomelidae) from the New Leaf Beetles Collection from “Grigore Antipa” National Museum of Natural History (Bucharest) (Part II) Sanda MAICAN1, *, Rodica SERAFIM2 1Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independenţei, 060031 Bucharest, P.O. Box 56–53, Romania. 2“Grigore Antipa” National Museum of Natural History, Kiseleff 1, 011341 Bucharest, Romania. *corresponding author, e-mail: [email protected] Received: June 30, 2017; Accepted: November 7, 2017; Available online: December 28, 2017; Printed: December 31, 2017 Abstract. The paper reports data on the species of Cassidinae preserved in the new Chrysomelidae Collection of “Grigore Antipa” National Museum of Natural History (Bucharest). A total of 852 specimens, representing four genera and 31 species are listed. Out of them, 11 species are recently entered in this collection. New distributional data for some rare species of Cassida in Romanian fauna are given. Key words: Chrysomelidae, Cassidinae, collections, “Grigore Antipa” National Museum of Natural History, Bucharest. INTRODUCTION The subfamily Cassidinae includes about 16% of leaf beetle species diversity and forms the second largest clade of Chrysomelidae family, after Galerucinae (Chabo, 2007). In old sense, Cassidinae (commonly named tortoise beetles) and Hispinae (leaf-mining beetles) were considered distinct subfamilies (Seeno & Wilcox, 1982). Cassidinae s.str. includes 2,906 species from 154 genera placed in 19 tribes (Seeno & Wilcox, 1982) or 12 tribes (Borowiec, 1999), and Hispinae s.str. comprises 2,980 species grouped in 170 genera and 24 tribes (Seeno & Wilcox, 1982; Staines, 2002; Chabo, 2007).
    [Show full text]
  • Carduus Cinereus (Asteraceae) – New to North America
    CARDUUS CINEREUS (ASTERACEAE) – NEW TO NORTH AMERICA Authors: Gaskin, John F., Coombs, Eric, Kelch, Dean G., Keil, David J., Porter, Mark, et. al. Source: Madroño, 66(4) : 142-147 Published By: California Botanical Society URL: https://doi.org/10.3120/0024-9637-66.4.142 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Madroño on 25 Mar 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by United States Department of Agriculture National Agricultural Library (NAL) MADRONO˜ , Vol. 66, No. 4, pp. 142–147, 2019 CARDUUS CINEREUS (ASTERACEAE) – NEW TO NORTH AMERICA JOHN F. GASKIN USDA ARS, 1500 North Central Avenue, Sidney, MT 59270 USA [email protected] ERIC COOMBS 870 S 2400 W, Logan, UT 84321 USA DEAN G. KELCH California Department of Food and Agriculture, 1220 N St., Sacramento, CA 95814 USA DAVID J.
    [Show full text]
  • Cryptogams and Vascular Plants
    Bush Blitz – ACT Nov 26 - Dec 6 2018 ACT Bush Blitz Cryptogams and vascular plants Nov 26 - Dec 6 2018 Submitted: April 5th 2019 Updated: August 29th 2020 Cécile Gueidan, Chris Cargill, Simone Louwhoff, Dave Albrecht and Nimal Karunajeewa Nomenclature and taxonomy used in this report is consistent with: The Australian Plant Name Index (APNI) http://www.anbg.gov.au/databases/apni-about/index.html The Australian Plant Census (APC) http://www.anbg.gov.au/chah/apc/about-APC.html AusMoss http://data.rbg.vic.gov.au/cat/mosscatalogue The Catalogue of Australian Liverworts and Hornworts http://www.anbg.gov.au/abrs/liverwortlist/liverworts_intro.html The Checklist of the Lichens of Australia and its Island Territories https://www.anbg.gov.au/abrs/lichenlist/introduction.html Page 1 of 20 Bush Blitz – ACT Nov 26 - Dec 6 2018 Contents Contents .................................................................................................................................. 2 List of contributors ................................................................................................................... 2 Abstract ................................................................................................................................... 4 1. Introduction ...................................................................................................................... 4 2. Methods .......................................................................................................................... 4 2.1 Site selection ............................................................................................................
    [Show full text]