Algebraic and Geometric Topology

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic and Geometric Topology http://dx.doi.org/10.1090/pspum/032.2 PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS Volume XXXII, Part 2 ALGEBRAIC AND GEOMETRIC TOPOLOGY AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND 1978 PROCEEDINGS OF THE SYMPOSIUM IN PURE MATHEMATICS OF THE AMERICAN MATHEMATICAL SOCIETY HELD AT STANFORD UNIVERSITY STANFORD, CALIFORNIA AUGUST 2-21, 1976 EDITED BY R. JAMES MILGRAM Prepared by the American Mathematical Society with partial support from National Science Foundation grant MCS 76-01696 Library of Congress Cataloging in Publication Data Symposium in Pure Mathematics, Stanford University, 1976. Algebraic and geometric topology. (Proceedings of symposia in pure mathematics; v. 32) "Proceedings of the Symposium in Pure Mathematics of the American Mathema• tical Society, held at Stanford University, Stanford, California, August 2—21, 1976." Bibliography: v. 1, p. v. 2, p. 1. Algebraic topology—Congresses. 2. Manifolds (Mathematics)—Congresses. 3. Global analysis (Mathematics)—Congresses. I. Milgram, R. James. II. American Mathematical Society. III. Title. IV. Series. QA612.S93 1976 514'.2 78-14304 ISBN 0-8218-1432-X (v. 1) ISBN 0-8218-1433-8 (v. 2) COPYING AND REPRINTING. Individual readers of this publication, and nonprofit li• braries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publi• cation (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Executive Director, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940. The appearance of the code on the first page of an article in this book indicates the copyright owner's consent for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that the fee of $1.00 plus $.25 per page for each copy be paid directly to the Copyright Clearance Center, Inc., 21 Congress Street, Salem, Massachusetts 01970. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. AMS (MOS) subject classifications (1970). Primary 53C15, 53C30, 53C35, 53C40, 55-XX, 57Axx, 57Bxx, 57Cxx, 57Dxx, 58Bxx, 58C25, 58Dxx, 58Gxx. Copyright © 1978 by the American Mathematical Society Reprinted 1989 Printed in the United States of America All rights reserved except those granted to the United States Government. This book may not be reproduced in any form without permission of the publishers. The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. © PREFACE The American Mathematical Society held its 24th Summer Research Institute at Stanford University from August 2-21, 1976. The topic of the meeting was Alge• braic and Geometric Topology. Particular emphasis was placed on Algebraic K- and L-Theory, Surgery and Surgery Classifying Spaces, Group Actions on Mani• folds, and 3 and 4 Manifold Theory. The organizing committee consisted of Raoul Bott, William Browder (Co- chairman), Pierre Conner, Robion Kirby, Richard Lashof, R. James Milgram (Chairman), Daniel Quillen, and P. Emery Thomas (Co-chairman). The main lecturers were Raoul Bott, Richard Lashof and Mel Rothenberg, Syl- vain Cappell and Julius Shaneson, C. McA. Gordon, Robert Edwards, Allen Hatcher and Jack Wagoner, Wu. C. Hsiang, Max Karoubi, R. James Milgram, Daniel Quillen, Laurence Siebenmann, and C. T. C. Wall. Special hour lectures were given by Gregory Brumfiel, William Jaco, Robion Kirby, Ronnie Lee, James Lin, lb Madsen, John Morgan, Robert Oliver, Ted Petrie, P. Emery Thomas, F. Waldhausen, and James West. There was also a series of problem sessions run by Raoul Bott (foliations), W. C. Hsiang (group actions and surgery), R. Kirby (3 and 4 manifolds), and C. T. C. Wall (algebraic K- and £-theory). Among the more active seminars were 3 and 4 manifolds (Kirby), Kervaire in• variant (Browder—E. Brown), Homotopy theory (E. Thomas—M. Mahowald), Algebraic K- and L- theory (J. Wagoner), Group actions (W. C. Hsiang), Folia• tions (Bott), Geometry of manifolds (L. Siebenmann), and Surgery and surgery classifying spaces (R. Lashof). These proceedings include write ups of most of the main lectures, as well as selected seminar talks, and most of the problem sessions. The institute was sponsored by the National Science Foundation under contract number MCS 76-01696. The organizing committee wishes to thank Dorothy Smith of the American Mathematical Society for her help in running and organizing the conference. R. JAMES MILGRAM STANFORD UNIVERSITY ni TABLE OF CONTENTS Structure of Topological Manifolds TAKAO MATUMOTO, Triangulation of manifolds 3 DAVID E. GALEWSKI AND RONALD J. STERN, Simpiicial triangulations of topological manifolds 7 ALLAN L. EDMONDS, Fibering topological manifolds ..13 Low Dimensional Manifolds FRIEDHELM WALDHAUSEN, Recent results on sufficiently large 3-manifolds 21 A. J. CASSON AND C. MCA. GORDON, On slice knots in dimension three 39 JOHN R. STALLINGS, Constructions of fibred knots and links ...55 HUGH M. HILDEN AND JOSE M. MONTESINOS, A method of constructing 3-manifolds and its application to the computation of the /^-invariant 61 WILLIAM JACO AND PETER B. SHALEN, A new decomposition theorem for irreducible sufficiently-large 3-manifolds 71 MICHAEL FREEDMAN AND ROBION KIRBY, A geometric proof of Rochlin's theorem .85 YUKIO MATSUMOTO, Secondary intersectional properties of 4-manifolds and Whitney's trick ...99 Geometry of Differential Manifolds and Algebraic Varieties E. REES AND E. THOMAS, Smoothings of isolated singularities ....Ill JOHN O. MORGAN, Hodge theory for the algebraic topology of smooth algebraic varieties ....119 SYLVAIN E. CAPPELL AND JULIUS L. SHANESON, An introduction to embeddings, immersions and singularities in codimension two 129 DONALD DAVIS AND MARK MAHOWALD, Immersions of projective spaces 151 WILLIAM D. HOMER, Singularities in lens spaces ..155 FRANZ W. KAMBER AND PHILIPPE TONDEUR, Characteristic classes and Koszul complexes ....159 WENSOR LING, Translations on M x R ... 167 WALTER D. NEUMANN, Homotopy invariance of Atiyah invariants .....181 HERBERT SHULMAN, Covering dimension and characteristic classes for foliations 189 JOHN W. WOOD, A connected sum decomposition for complete intersections 191 STEPHEN SHING-TOUNG YAU, Normal singularities of surfaces. 195 v VI TABLE OF CONTENTS //-Spaces, Loop Spaces, and CW Complexes JAMES P. LIN, On the topology of finite /f~spaces 201 JOHN R. HARPER, On the construction of mod p /2-spaces 207 ERIK KJAER PEDERSEN, Smoothings of ff-spaees 215 PETER J. KAHN, The homotopy-dimension of nilpotent spaces 217 JOEL M. COHEN, Complexes of cohomological dimension two. 221 F. R. COHEN, M. E. MAHOWALD AND R. J. MILGRAM, The stable decomposition for the double loop space of a sphere 225 J. P. MAY, H^ ring spectra and their applications .....229 F. R. COHEN, Little cubes and the classifying space for w-sphere fibrations ...245 Problems W. BROWDER AND W. C. HSIANG, Some problems on homotopy theory, manifolds and transformation groups .251 COMPILED BY MARK MOSTOW AND PAUL SCHWEITZER, Foliation problem session (R. Bott)..... 269 ROB KIRBY, Problems in low dimensional manifold theory 273 FRIEDHELM WALDHAUSEN, Some problems on 3-manifolds 313 .
Recommended publications
  • Campus Profile Sept 2018.Indd
    CAMPUS PROFILE AND POINTS OF DISTINCTION campus profileOCTOBER 2018 CAMPUS PROFILE AND POINTS OF DISTINCTION At the University of California San Diego, we constantly push boundaries and challenge expectations. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to take risks and redefine conventional wisdom. Today, as one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth, and make our world a better place. UC San Diego’s main campus is located near the Pacific Ocean on 1,200 acres of coastal woodland in La Jolla, California. The campus sits on land formerly inhabited by Kumeyaay tribal members, the original native inhabitants of San Diego County. UC San Diego’s rich academic portfolio includes six undergraduate colleges, five academic divisions, and five graduate and professional schools. BY THE NUMBERS • 36,624 Total campus enrollment (as of Fall 2017); • 16 Number of Nobel laureates who have taught the largest number of students among colleges on campus and universities in San Diego County. • 201 Memberships held by current and emeriti • 97,670 Total freshman applications for 2018 faculty in the National Academy of Sciences (73), National Academy of Engineering (84), • 4.13 Admitted freshman average high school GPA and National Academy of Medicine (44). • $4.7 billion Fiscal year 2016-17 revenues; • 4 Scripps Institution of Oceanography operates 20 percent of this total is revenue from contracts three research vessels and an innovative Floating and grants, most of which is from the federal Instrument Platform (FLIP), enabling faculty, government for research.
    [Show full text]
  • Math 601 Algebraic Topology Hw 4 Selected Solutions Sketch/Hint
    MATH 601 ALGEBRAIC TOPOLOGY HW 4 SELECTED SOLUTIONS SKETCH/HINT QINGYUN ZENG 1. The Seifert-van Kampen theorem 1.1. A refinement of the Seifert-van Kampen theorem. We are going to make a refinement of the theorem so that we don't have to worry about that openness problem. We first start with a definition. Definition 1.1 (Neighbourhood deformation retract). A subset A ⊆ X is a neighbourhood defor- mation retract if there is an open set A ⊂ U ⊂ X such that A is a strong deformation retract of U, i.e. there exists a retraction r : U ! A and r ' IdU relA. This is something that is true most of the time, in sufficiently sane spaces. Example 1.2. If Y is a subcomplex of a cell complex, then Y is a neighbourhood deformation retract. Theorem 1.3. Let X be a space, A; B ⊆ X closed subspaces. Suppose that A, B and A \ B are path connected, and A \ B is a neighbourhood deformation retract of A and B. Then for any x0 2 A \ B. π1(X; x0) = π1(A; x0) ∗ π1(B; x0): π1(A\B;x0) This is just like Seifert-van Kampen theorem, but usually easier to apply, since we no longer have to \fatten up" our A and B to make them open. If you know some sheaf theory, then what Seifert-van Kampen theorem really says is that the fundamental groupoid Π1(X) is a cosheaf on X. Here Π1(X) is a category with object pints in X and morphisms as homotopy classes of path in X, which can be regard as a global version of π1(X).
    [Show full text]
  • The Fundamental Group and Seifert-Van Kampen's
    THE FUNDAMENTAL GROUP AND SEIFERT-VAN KAMPEN'S THEOREM KATHERINE GALLAGHER Abstract. The fundamental group is an essential tool for studying a topo- logical space since it provides us with information about the basic shape of the space. In this paper, we will introduce the notion of free products and free groups in order to understand Seifert-van Kampen's Theorem, which will prove to be a useful tool in computing fundamental groups. Contents 1. Introduction 1 2. Background Definitions and Facts 2 3. Free Groups and Free Products 4 4. Seifert-van Kampen Theorem 6 Acknowledgments 12 References 12 1. Introduction One of the fundamental questions in topology is whether two topological spaces are homeomorphic or not. To show that two topological spaces are homeomorphic, one must construct a continuous function from one space to the other having a continuous inverse. To show that two topological spaces are not homeomorphic, one must show there does not exist a continuous function with a continuous inverse. Both of these tasks can be quite difficult as the recently proved Poincar´econjecture suggests. The conjecture is about the existence of a homeomorphism between two spaces, and it took over 100 years to prove. Since the task of showing whether or not two spaces are homeomorphic can be difficult, mathematicians have developed other ways to solve this problem. One way to solve this problem is to find a topological property that holds for one space but not the other, e.g. the first space is metrizable but the second is not. Since many spaces are similar in many ways but not homeomorphic, mathematicians use a weaker notion of equivalence between spaces { that of homotopy equivalence.
    [Show full text]
  • Algebraic Topology
    Algebraic Topology Vanessa Robins Department of Applied Mathematics Research School of Physics and Engineering The Australian National University Canberra ACT 0200, Australia. email: [email protected] September 11, 2013 Abstract This manuscript will be published as Chapter 5 in Wiley's textbook Mathe- matical Tools for Physicists, 2nd edition, edited by Michael Grinfeld from the University of Strathclyde. The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology. arXiv:1304.7846v2 [math-ph] 10 Sep 2013 1 Contents 1 Introduction 3 2 Homotopy Theory 4 2.1 Homotopy of paths . 4 2.2 The fundamental group . 5 2.3 Homotopy of spaces . 7 2.4 Examples . 7 2.5 Covering spaces . 9 2.6 Extensions and applications . 9 3 Homology 11 3.1 Simplicial complexes . 12 3.2 Simplicial homology groups . 12 3.3 Basic properties of homology groups . 14 3.4 Homological algebra . 16 3.5 Other homology theories . 18 4 Cohomology 18 4.1 De Rham cohomology . 20 5 Morse theory 21 5.1 Basic results . 21 5.2 Extensions and applications . 23 5.3 Forman's discrete Morse theory . 24 6 Computational topology 25 6.1 The fundamental group of a simplicial complex . 26 6.2 Smith normal form for homology . 27 6.3 Persistent homology . 28 6.4 Cell complexes from data . 29 2 1 Introduction Topology is the study of those aspects of shape and structure that do not de- pend on precise knowledge of an object's geometry.
    [Show full text]
  • Serre's Conjecture II: a Survey
    Serre’s conjecture II: a survey Philippe Gille Dedicated to Parimala Abstract We provide a survey of Serre’s conjecture II (1962) on the vanishing of Galois cohomology for simply connected semisimple groups defined over a field of cohomological dimension 2. ≤ Math subject classification: 20G05. 1 Introduction Serre’s original conjecture II (1962) states that the Galois cohomology set H1(k,G) vanishes for a semisimple simply connected algebraic group G defined over a perfect field of cohomological dimension 2 [53, 4.1] [54, II.3.1]. This means that G- ≤ § torsors (or principal homogeneous spaces) over Spec(k) are trivial. For example, if A is a central simple algebra defined over a field k and c k , ∈ × the subvariety X := nrd(y)=c GL (A) c { }⊂ 1 of elements of reduced norm c is a torsor under the special linear group G = SL1(A) which is semisimple and simply connected. If cd(k) 2, we thus expect that this ≤ G-torsor is trivial, i.e., X (k) = /0.Applying this to all c k , we thus expect that c ∈ × the reduced norm map A k is surjective. × → × For imaginary number fields, the surjectivity of reduced norms goes back to Eich- ler in 1938 (see [40, 5.4]). For function fields of complex surfaces, this follows § from the Tsen-Lang theorem because the reduced norm is a homogeneous form of degree deg(A) in deg(A)2-indeterminates [54, II.4.5]. In the general case, the surjec- Philippe Gille DMA, UMR 8553 du CNRS, Ecole normale superieure,´ 45 rue d’Ulm, F-75005 Paris, France e-mail: [email protected] 37 38 Philippe Gille tivity of reduced norms is due to Merkurjev-Suslin in 1981 [60, Th.
    [Show full text]
  • Prospects in Topology
    Annals of Mathematics Studies Number 138 Prospects in Topology PROCEEDINGS OF A CONFERENCE IN HONOR OF WILLIAM BROWDER edited by Frank Quinn PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY 1995 Copyright © 1995 by Princeton University Press ALL RIGHTS RESERVED The Annals of Mathematics Studies are edited by Luis A. Caffarelli, John N. Mather, and Elias M. Stein Princeton University Press books are printed on acid-free paper and meet the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources Printed in the United States of America by Princeton Academic Press 10 987654321 Library of Congress Cataloging-in-Publication Data Prospects in topology : proceedings of a conference in honor of W illiam Browder / Edited by Frank Quinn. p. cm. — (Annals of mathematics studies ; no. 138) Conference held Mar. 1994, at Princeton University. Includes bibliographical references. ISB N 0-691-02729-3 (alk. paper). — ISBN 0-691-02728-5 (pbk. : alk. paper) 1. Topology— Congresses. I. Browder, William. II. Quinn, F. (Frank), 1946- . III. Series. QA611.A1P76 1996 514— dc20 95-25751 The publisher would like to acknowledge the editor of this volume for providing the camera-ready copy from which this book was printed PROSPECTS IN TOPOLOGY F r a n k Q u in n , E d it o r Proceedings of a conference in honor of William Browder Princeton, March 1994 Contents Foreword..........................................................................................................vii Program of the conference ................................................................................ix Mathematical descendants of William Browder...............................................xi A. Adem and R. J. Milgram, The mod 2 cohomology rings of rank 3 simple groups are Cohen-Macaulay........................................................................3 A.
    [Show full text]
  • Cohomological Dimension of the Braid and Mapping Class Groups of Surfaces Daciberg Lima Gonçalves, John Guaschi, Miguel Maldonado
    Embeddings and the (virtual) cohomological dimension of the braid and mapping class groups of surfaces Daciberg Lima Gonçalves, John Guaschi, Miguel Maldonado To cite this version: Daciberg Lima Gonçalves, John Guaschi, Miguel Maldonado. Embeddings and the (virtual) cohomo- logical dimension of the braid and mapping class groups of surfaces. Confluentes Mathematici, Institut Camille Jordan et Unité de Mathématiques Pures et Appliquées, 2018, 10 (1), pp.41-61. hal-01377681 HAL Id: hal-01377681 https://hal.archives-ouvertes.fr/hal-01377681 Submitted on 11 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EMBEDDINGS AND THE (VIRTUAL) COHOMOLOGICAL DIMENSION OF THE BRAID AND MAPPING CLASS GROUPS OF SURFACES DACIBERG LIMA GONC¸ALVES, JOHN GUASCHI, AND MIGUEL MALDONADO Abstract. In this paper, we make use of the relations between the braid and mapping class groups of a compact, connected, non-orientable surface N without boundary and those of its orientable double covering S to study embeddings of these groups and their (virtual) cohomological dimensions. We first generalise results of [4, 14] to show that the mapping class group MCG(N; k) of N relative to a k-point subset embeds in the mapping class group MCG(S; 2k) of S relative to a 2k-point subset.
    [Show full text]
  • New Ideas in Algebraic Topology (K-Theory and Its Applications)
    NEW IDEAS IN ALGEBRAIC TOPOLOGY (K-THEORY AND ITS APPLICATIONS) S.P. NOVIKOV Contents Introduction 1 Chapter I. CLASSICAL CONCEPTS AND RESULTS 2 § 1. The concept of a fibre bundle 2 § 2. A general description of fibre bundles 4 § 3. Operations on fibre bundles 5 Chapter II. CHARACTERISTIC CLASSES AND COBORDISMS 5 § 4. The cohomological invariants of a fibre bundle. The characteristic classes of Stiefel–Whitney, Pontryagin and Chern 5 § 5. The characteristic numbers of Pontryagin, Chern and Stiefel. Cobordisms 7 § 6. The Hirzebruch genera. Theorems of Riemann–Roch type 8 § 7. Bott periodicity 9 § 8. Thom complexes 10 § 9. Notes on the invariance of the classes 10 Chapter III. GENERALIZED COHOMOLOGIES. THE K-FUNCTOR AND THE THEORY OF BORDISMS. MICROBUNDLES. 11 § 10. Generalized cohomologies. Examples. 11 Chapter IV. SOME APPLICATIONS OF THE K- AND J-FUNCTORS AND BORDISM THEORIES 16 § 11. Strict application of K-theory 16 § 12. Simultaneous applications of the K- and J-functors. Cohomology operation in K-theory 17 § 13. Bordism theory 19 APPENDIX 21 The Hirzebruch formula and coverings 21 Some pointers to the literature 22 References 22 Introduction In recent years there has been a widespread development in topology of the so-called generalized homology theories. Of these perhaps the most striking are K-theory and the bordism and cobordism theories. The term homology theory is used here, because these objects, often very different in their geometric meaning, Russian Math. Surveys. Volume 20, Number 3, May–June 1965. Translated by I.R. Porteous. 1 2 S.P. NOVIKOV share many of the properties of ordinary homology and cohomology, the analogy being extremely useful in solving concrete problems.
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • The Seifert-Van Kampen Theorem Via Covering Spaces
    Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques i Informàtica Universitat de Barcelona The Seifert-Van Kampen theorem via covering spaces Autor: Roberto Lara Martín Director: Dr. Javier José Gutiérrez Marín Realitzat a: Departament de Matemàtiques i Informàtica Barcelona, 29 de juny de 2017 Contents Introduction ii 1 Category theory 1 1.1 Basic terminology . .1 1.2 Coproducts . .6 1.3 Pushouts . .7 1.4 Pullbacks . .9 1.5 Strict comma category . 10 1.6 Initial objects . 12 2 Groups actions 13 2.1 Groups acting on sets . 13 2.2 The category of G-sets . 13 3 Homotopy theory 15 3.1 Homotopy of spaces . 15 3.2 The fundamental group . 15 4 Covering spaces 17 4.1 Definition and basic properties . 17 4.2 The category of covering spaces . 20 4.3 Universal covering spaces . 20 4.4 Galois covering spaces . 25 4.5 A relation between covering spaces and the fundamental group . 26 5 The Seifert–van Kampen theorem 29 Bibliography 33 i Introduction The Seifert-Van Kampen theorem describes a way of computing the fundamen- tal group of a space X from the fundamental groups of two open subspaces that cover X, and the fundamental group of their intersection. The classical proof of this result is done by analyzing the loops in the space X and deforming them into loops in the subspaces. For all the details of such proof see [1, Chapter I]. The aim of this work is to provide an alternative proof of this theorem using covering spaces, sets with actions of groups and category theory.
    [Show full text]
  • THE DIMENSION of the TORELLI GROUP 1. Introduction Let S Be A
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 23, Number 1, January 2010, Pages 61–105 S 0894-0347(09)00643-2 Article electronically published on July 10, 2009 THE DIMENSION OF THE TORELLI GROUP MLADEN BESTVINA, KAI-UWE BUX, AND DAN MARGALIT 1. Introduction Let S be a surface (unless specified otherwise, we take all surfaces to be con- nected, orientable, and of finite type). Let Mod(S)bethemapping class group of S, + + defined as π0(Homeo (S)), where Homeo (S) is the group of orientation-preserving homeomorphisms of S.TheTorelli group I(S) is the kernel of the natural action of Mod(S)onH1(S, Z). When S is Sg, the closed surface of genus g, this action is symplectic (it preserves the algebraic intersection number), and it is a classical fact that Mod(Sg) surjects onto Sp(2g, Z). All of this information is encoded in the following short exact sequence: 1 −→I(Sg) −→ Mod(Sg) −→ Sp(2g, Z) −→ 1. Cohomological dimension. For a group G,wedenotebycd(G)itscohomological dimension, which is the supremum over all n so that there exists a G-module M with Hn(G, M) =0. Theorem A. For g ≥ 2, we have cd(I(Sg)) = 3g − 5. ∼ Since Mod(S0)=1,wehaveI(S0) = 1. Also, it is a classical fact that Mod(S1) = Sp(2, Z)=SL(2, Z), and so I(S1)isalsotrivial. The lower bound for Theorem A was already given by Mess [36] in an unpublished paper from 1990. Theorem 1.1 (Mess). For g ≥ 2, we have cd(I(Sg)) ≥ 3g − 5.
    [Show full text]