A Spatially Resolved Single Cell Atlas of Human Gastrulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3 Embryology and Development
BIOL 6505 − INTRODUCTION TO FETAL MEDICINE 3. EMBRYOLOGY AND DEVELOPMENT Arlet G. Kurkchubasche, M.D. INTRODUCTION Embryology – the field of study that pertains to the developing organism/human Basic embryology –usually taught in the chronologic sequence of events. These events are the basis for understanding the congenital anomalies that we encounter in the fetus, and help explain the relationships to other organ system concerns. Below is a synopsis of some of the critical steps in embryogenesis from the anatomic rather than molecular basis. These concepts will be more intuitive and evident in conjunction with diagrams and animated sequences. This text is a synopsis of material provided in Langman’s Medical Embryology, 9th ed. First week – ovulation to fertilization to implantation Fertilization restores 1) the diploid number of chromosomes, 2) determines the chromosomal sex and 3) initiates cleavage. Cleavage of the fertilized ovum results in mitotic divisions generating blastomeres that form a 16-cell morula. The dense morula develops a central cavity and now forms the blastocyst, which restructures into 2 components. The inner cell mass forms the embryoblast and outer cell mass the trophoblast. Consequences for fetal management: Variances in cleavage, i.e. splitting of the zygote at various stages/locations - leads to monozygotic twinning with various relationships of the fetal membranes. Cleavage at later weeks will lead to conjoined twinning. Second week: the week of twos – marked by bilaminar germ disc formation. Commences with blastocyst partially embedded in endometrial stroma Trophoblast forms – 1) cytotrophoblast – mitotic cells that coalesce to form 2) syncytiotrophoblast – erodes into maternal tissues, forms lacunae which are critical to development of the uteroplacental circulation. -
Cytogenomic SNP Microarray - Fetal ARUP Test Code 2002366 Maternal Contamination Study Fetal Spec Fetal Cells
Patient Report |FINAL Client: Example Client ABC123 Patient: Patient, Example 123 Test Drive Salt Lake City, UT 84108 DOB 2/13/1987 UNITED STATES Gender: Female Patient Identifiers: 01234567890ABCD, 012345 Physician: Doctor, Example Visit Number (FIN): 01234567890ABCD Collection Date: 00/00/0000 00:00 Cytogenomic SNP Microarray - Fetal ARUP test code 2002366 Maternal Contamination Study Fetal Spec Fetal Cells Single fetal genotype present; no maternal cells present. Fetal and maternal samples were tested using STR markers to rule out maternal cell contamination. This result has been reviewed and approved by Maternal Specimen Yes Cytogenomic SNP Microarray - Fetal Abnormal * (Ref Interval: Normal) Test Performed: Cytogenomic SNP Microarray- Fetal (ARRAY FE) Specimen Type: Direct (uncultured) villi Indication for Testing: Patient with 46,XX,t(4;13)(p16.3;q12) (Quest: EN935475D) ----------------------------------------------------------------- ----- RESULT SUMMARY Abnormal Microarray Result (Male) Unbalanced Translocation Involving Chromosomes 4 and 13 Classification: Pathogenic 4p Terminal Deletion (Wolf-Hirschhorn syndrome) Copy number change: 4p16.3p16.2 loss Size: 5.1 Mb 13q Proximal Region Deletion Copy number change: 13q11q12.12 loss Size: 6.1 Mb ----------------------------------------------------------------- ----- RESULT DESCRIPTION This analysis showed a terminal deletion (1 copy present) involving chromosome 4 within 4p16.3p16.2 and a proximal interstitial deletion (1 copy present) involving chromosome 13 within 13q11q12.12. This -
The Rotated Hypoblast of the Chicken Embryo Does Not Initiate an Ectopic Axis in the Epiblast
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 10733-10737, November 1995 Developmental Biology The rotated hypoblast of the chicken embryo does not initiate an ectopic axis in the epiblast ODED KHANER Department of Cell and Animal Biology, The Hebrew University, Jerusalem, Israel 91904 Communicated by John Gerhart, University of California, Berkeley, CA, July 14, 1995 ABSTRACT In the amniotes, two unique layers of cells, of the hypoblast and that the orientation of the streak and axis the epiblast and the hypoblast, constitute the embryo at the can be predicted from the polarity of the stage XIII epiblast. blastula stage. All the tissues of the adult will derive from the Still it was thought that the polarity of the epiblast is sufficient epiblast, whereas hypoblast cells will form extraembryonic for axial development in experimental situations, although in yolk sac endoderm. During gastrulation, the endoderm and normal development the polarity of the hypoblast is dominant the mesoderm of the embryo arise from the primitive streak, (5, 6). These reports (1-3, 5, 6), taken together, would imply which is an epiblast structure through which cells enter the that cells of the hypoblast not only have the ability to change interior. Previous investigations by others have led to the the fate of competent cells in the epiblast to initiate an ectopic conclusion that the avian hypoblast, when rotated with regard axis, but also have the ability to repress the formation of the to the epiblast, has inductive properties that can change the original axis in committed cells of the epiblast. At the same fate of competent cells in the epiblast to form an ectopic time, the results showed that the epiblast is not wholly depen- embryonic axis. -
Pluripotency Factors Regulate Definitive Endoderm Specification Through Eomesodermin
Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Pluripotency factors regulate definitive endoderm specification through eomesodermin Adrian Kee Keong Teo,1,2 Sebastian J. Arnold,3 Matthew W.B. Trotter,1 Stephanie Brown,1 Lay Teng Ang,1 Zhenzhi Chng,1,2 Elizabeth J. Robertson,4 N. Ray Dunn,2,5 and Ludovic Vallier1,5,6 1Laboratory for Regenerative Medicine, University of Cambridge, Cambridge CB2 0SZ, United Kingdom; 2Institute of Medical Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138648; 3Renal Department, Centre for Clinical Research, University Medical Centre, 79106 Freiburg, Germany; 4Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom Understanding the molecular mechanisms controlling early cell fate decisions in mammals is a major objective toward the development of robust methods for the differentiation of human pluripotent stem cells into clinically relevant cell types. Here, we used human embryonic stem cells and mouse epiblast stem cells to study specification of definitive endoderm in vitro. Using a combination of whole-genome expression and chromatin immunoprecipitation (ChIP) deep sequencing (ChIP-seq) analyses, we established an hierarchy of transcription factors regulating endoderm specification. Importantly, the pluripotency factors NANOG, OCT4, and SOX2 have an essential function in this network by actively directing differentiation. Indeed, these transcription factors control the expression of EOMESODERMIN (EOMES), which marks the onset of endoderm specification. In turn, EOMES interacts with SMAD2/3 to initiate the transcriptional network governing endoderm formation. Together, these results provide for the first time a comprehensive molecular model connecting the transition from pluripotency to endoderm specification during mammalian development. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Gastrulation
Embryology of the spine and spinal cord Andrea Rossi, MD Neuroradiology Unit Istituto Giannina Gaslini Hospital Genoa, Italy [email protected] LEARNING OBJECTIVES: LEARNING OBJECTIVES: 1) To understand the basics of spinal 1) To understand the basics of spinal cord development cord development 2) To understand the general rules of the 2) To understand the general rules of the development of the spine development of the spine 3) To understand the peculiar variations 3) To understand the peculiar variations to the normal spine plan that occur at to the normal spine plan that occur at the CVJ the CVJ Summary of week 1 Week 2-3 GASTRULATION "It is not birth, marriage, or death, but gastrulation, which is truly the most important time in your life." Lewis Wolpert (1986) Gastrulation Conversion of the embryonic disk from a bilaminar to a trilaminar arrangement and establishment of the notochord The three primary germ layers are established The basic body plan is established, including the physical construction of the rudimentary primary body axes As a result of the movements of gastrulation, cells are brought into new positions, allowing them to interact with cells that were initially not near them. This paves the way for inductive interactions, which are the hallmark of neurulation and organogenesis Day 16 H E Day 15 Dorsal view of a 0.4 mm embryo BILAMINAR DISK CRANIAL Epiblast faces the amniotic sac node Hypoblast Primitive pit (primitive endoderm) faces the yolk sac Primitive streak CAUDAL Prospective notochordal cells Dias Dias During -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
Actin Binding LIM 1 (Ablim1) Negatively Controls Osteoclastogenesis by Regulating Cell Migration and Fusion
Received: 14 September 2017 | Accepted: 16 March 2018 DOI: 10.1002/jcp.26605 ORIGINAL RESEARCH ARTICLE Actin binding LIM 1 (abLIM1) negatively controls osteoclastogenesis by regulating cell migration and fusion Haruna Narahara1,2 | Eiko Sakai1 | Yu Yamaguchi1 | Shun Narahara1 | Mayumi Iwatake1,* | Kuniaki Okamoto1,† | Noriaki Yoshida2 | Takayuki Tsukuba1 1 Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Actin binding LIM 1 (abLIM1) is a cytoskeletal actin-binding protein that has been Nagasaki University, Nagasaki, Japan implicated in interactions between actin filaments and cytoplasmic targets. Previous 2 Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical biochemical and cytochemical studies have shown that abLIM1 interacts and co- Sciences, Nagasaki University, Nagasaki, Japan localizes with F-actin in the retina and muscle. However, whether abLIM1 regulates Correspondence osteoclast differentiation has not yet been elucidated. In this study, we examined the Takayuki Tsukuba, Department of Dental role of abLIM1 in osteoclast differentiation and function. We found that abLIM1 Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852- expression was upregulated during receptor activator of nuclear factor kappa-B ligand 8588, Japan. (RANKL)-induced osteoclast differentiation, and that a novel transcript of abLIM1 was Email: [email protected] exclusively expressed in osteoclasts. Overexpression of abLIM1 in the murine Funding information monocytic cell line, RAW-D suppressed osteoclast differentiation and decreased JSPS KAKENHI, Grant numbers: 15H05298, 16K15790, 17H04379 expression of several osteoclast-marker genes. By contrast, small interfering RNA-induced knockdown of abLIM1 enhanced the formation of multinucleated osteoclasts and markedly increased the expression of the osteoclast-marker genes. Mechanistically, abLIM1 regulated the localization of tubulin, migration, and fusion in osteoclasts. -
Segmentation and Specification of the Drosophila Mesoderm
Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Segmentation and specification of the Drosophila mesoderm Natalia Azpiazu, 1,3 Peter A. Lawrence, 2 Jean-Paul Vincent, 2 and Manfred Frasch 1'4 1Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029 USA; 2Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, UK Patterning of the developing mesoderm establishes primordia of the visceral, somatic, and cardiac tissues at defined anteroposterior and dorsoventral positions in each segment. Here we examine the mechanisms that locate and determine these primordia. We focus on the regulation of two mesodermal genes: bagpipe (hap), which defines the anlagen of the visceral musculature of the midgut, and serpent (srp), which marks the anlagen of the fat body. These two genes are activated in specific groups of mesodermal cells in the anterior portions of each parasegment. Other genes mark the anlagen of the cardiac and somatic mesoderm and these are expressed mainly in cells derived from posterior portions of each parasegment. Thus the parasegments appear to be subdivided, at least with respect to these genes, a subdivision that depends on pair-rule genes such as even-skipped (eve). We show with genetic mosaics that eve acts autonomously within the mesoderm. We also show that hedgehog (hh) and wingless (wg) mediate pair-rule gene functions in the mesoderm, probably partly by acting within the mesoderm and partly by inductive signaling from the ectoderm, hh is required for the normal activation of hap and srp in anterior portions of each parasegment, whereas wg is required to suppress bap and srp expression in posterior portions. -
Wnt16 Exerts Pleiotropic Effects on Bone and Lean Mass in Zebrafish
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.12.456120; this version posted August 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. wnt16 exerts pleiotropic effects on bone and lean mass in zebrafish Claire J. Watson1,2, Ernesto Morfin Montes de Oca1,2, Imke A.K. Fiedler3, Andrea R. Cronrath1,2, Lulu K. Callies1,2, Avery Angell Swearer1,2, Visali Sethuraman1,2, Ali R. Ahmed1,2, Adrian T. Monstad-Rios1,2, Maria F. Rojas1,2, W. Joyce Tang1,2, Edith M. Gardiner1,2, Bjorn Busse3, Yi-Hsiang Hsu4,5,6, Ronald Y. Kwon1,2,7 1Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle WA, USA 2Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle WA, USA 3Department of Osteology and Biomechanics, University Medical Center Hamburg- Eppendorf, Hamburg, Germany 4Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA 5Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA 6Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, Massachusetts, USA 7Corresponding author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.08.12.456120; this version posted August 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
Control of Dorsoventral Patterning of Somitic Derivatives by Notochord
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 5242-5246, June 1993 Developmental Biology Control of dorsoventral patterning of somitic derivatives by notochord and floor plate (BEN glycoprotein/muscle differentiation/cartilage/myotome/sclerotome) OLIVIER POURQUI0*t, MONIQUE COLTEY*, MARIE-AIM1E TEILLET*, CHARLES ORDAHLt, AND NICOLE M. LE DOUARIN* *Institut d'Embryologie Cellulaire et Moleculaire du Centre National de la Recherche Scientifique et du College de France, 49 bis Avenue de la Belle Gabrielle, 94 736 Nogent sur Marne Cedex, France; and tDepartment of Anatomy, School of Medicine, University of California at San Francisco, CA 94116 Contributed by Nicole M. Le Douarin, February 22, 1993 ABSTRACT We have examined the effect of implantation between the paraxial mesoderm and the neural tube and of a supernumerary notochord or floor plate on dorsoventral examined the grafts' effects on somitic cell differentiation. somitic organization. We show that notochord and floor plate Our results indicate that the notochord and floor plate are are able to inhibit the differentiation of the dorsal somitic able to "ventralize" the somitic mesoderm, as was shown by derivatives-i.e., axial muscles and dermis-thus converting others to occur for the neural tube. This suggests a central the entire somite into cartilage, which normally arises only role for the notochord not only in the dorsoventral organi- from its ventral part. We infer from these results that the zation ofthe neural tube but also in that ofsomitic mesoderm. dorsoventral patterning of somitic derivatives is controlled by sigals provided by ventral axial structures. MATERIALS AND METHODS In the vertebrate embryo, one manifestation of anteroposte- Chicken embryos (JA 57 from Institut de Sdlection Animale, rior polarity is the segmentation of the paraxial mesoderm Lyon, France) and quail embryos were obtained from com- into somites. -
Mutations Affecting Cell Fates and Cellular Rearrangements During Gastrulation in Zebrafish
Development 123, 67-80 67 Printed in Great Britain © The Company of Biologists Limited 1996 DEV3335 Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish Lilianna Solnica-Krezel†, Derek L. Stemple, Eliza Mountcastle-Shah, Zehava Rangini‡, Stephan C. F. Neuhauss, Jarema Malicki, Alexander F. Schier§, Didier Y. R. Stainier¶, Fried Zwartkruis**, Salim Abdelilah and Wolfgang Driever* Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, 13th Street, Bldg. 149, Charlestown, MA 02129, USA †Present address: Department of Molecular Biology, Vanderbilt University, Box 1820, Station B, Nashville, TN 37235, USA ‡Present address: Department of Oncology, Sharett Institute, Hadassah Hospital, Jerusalem 91120, Israel §Present address: Skirball Institute of Biomolecular Medicine, NYU Medical Center, 550 First Avenue, New York, NY 10016, USA ¶Present address: School of Medicine, Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94143-0554, USA **Present address: Laboratory for Physiological Chemistry, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands *Author for correspondence (e-mail: [email protected]) SUMMARY One of the major challenges of developmental biology is mutations in these two groups identify genes necessary for understanding the inductive and morphogenetic processes the formation, maintenance or function of the dorsal that shape the vertebrate embryo. In a large-scale genetic organizer and the ventral signaling pathway, respectively. screen for zygotic effect, embryonic lethal mutations in Mutations in the third group affect primarily cellular zebrafish we have identified 25 mutations that affect spec- rearrangements during gastrulation and have complex ification of cell fates and/or cellular rearrangements during effects on cell fates in the embryo.