Simulated Absorption Lines in the Circum-Galactic Medium

Total Page:16

File Type:pdf, Size:1020Kb

Simulated Absorption Lines in the Circum-Galactic Medium Simulated Absorption Lines in the Circum-Galactic Medium Bernhard Röttgers Garching 2017 Simulated Absorption Lines in the Circum-Galactic Medium Bernhard Röttgers Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Bernhard Röttgers aus Fürth München, den 15.5.2017 Erstgutachter: Prof. Dr. Simon D. M. White Zweitgutachter: Dr. Klaus Dolag Tag der mündlichen Prüfung: 3. Juli 2017 Contents Abstract xiii 1 Introduction 1 1.1 Preamble . .1 1.2 Recognising Galaxies as Such . .2 1.3 Defining Galaxies . .4 1.4 Galaxy Properties . .5 1.4.1 Classifying Galaxies and the Hubble Sequence . .5 1.4.2 Galaxy Statistics . .6 1.4.3 A Typical Galaxy . .7 1.5 Brief Overview of Galaxy Formation . .8 1.6 What is Missing? And Where to Go? . 10 2 Metals and Absorption in the Halo 15 2.1 Absorption Lines . 16 2.1.1 Lines and Ionisation Processes . 16 2.1.2 Lyman-α Absorption . 18 2.1.3 The Lyman-α Forest . 18 2.1.4 Classification of Lyman-α Absorbers . 18 2.1.5 H i in the CGM . 20 2.2 Metals . 21 2.2.1 The WHIM and the Missing Baryon Problem . 21 2.2.2 Metal Line Absorption Characteristics . 22 2.2.3 Constrains on Feedback Models . 26 2.3 Compendium . 26 3 A Multiphase Galaxy Formation Model 29 3.1 The Choice of the Galaxy Formation Code . 29 3.1.1 Options . 29 vi CONTENTS 3.1.2 Multiphase SPH . 30 3.2 Multiphase Hydrodynamics . 31 3.3 Two-Phase Stellar Feedback . 31 3.3.1 ‘Hot’ and Cold Phase . 32 3.3.2 Promotion / Delayed Heating . 32 3.3.3 Thermal and Kinetic Feedback from SNe and AGB Stars . 33 3.3.4 Radiation Pressure . 35 3.4 Star Formation . 35 3.5 Metals . 36 3.5.1 Metal Enrichment . 36 3.5.2 Metal Line Cooling . 37 3.5.3 Metal Diffusion . 37 3.6 The Simulation Sample . 38 4 The Analysing Framework and pygad 45 4.1 Motivation . 45 4.2 Binning and Plotting . 46 4.3 Analysis of the Simulations . 50 4.3.1 The Halo and the Galaxy . 50 4.3.2 Stellar luminosities . 51 4.3.3 Ionisation Fractions and H i ................... 51 4.3.4 Hydrogen Self-Shielding . 51 4.3.5 Self-Shielding of Metals . 53 4.4 Mock Absorption Line Spectra . 53 4.4.1 Line Spectra of Homogeneous Gas . 53 4.4.2 The Voigt Profile . 54 4.4.3 Equivalent Width and Curve of Growth . 55 4.4.4 Generating Spectra from Simulations . 58 4.4.5 SPH Particles as Atomic Gas Elements (SPAGE) . 58 4.4.6 SPH-Smoothed Spatial Grid Cells as Atomic Gas Elements (GriCAGE) . 59 4.4.7 Comparison of the Methods and my Fiducial Approach . 60 5 Results on Lyman-α Absorption 63 5.1 Motivation . 63 5.2 Results for H i and Lyman-α Lines . 64 5.2.1 Large Scale Picture . 64 5.2.2 Absorption at the Disc-Halo Interface . 67 Table Of Content vii 5.2.3 Velocity Structure and Line Shapes . 70 5.2.4 Radial Equivalent Width Profiles . 74 5.2.5 Angular Dependence of the Equivalent Widths . 78 5.3 Model and Resolution Dependence . 80 5.3.1 Different Simulations of Halo M1859 . 82 5.3.2 Absorption in Different Simulations Models . 83 6 Results for Metal Ions and Metal Line Absorption 89 6.1 Phase Space Distributions . 89 6.2 Ion Spatial Distributions and Flows . 91 6.2.1 Ion Flow Maps . 91 6.2.2 Escaping Gas . 93 6.2.3 Radial Velocity Profiles . 95 6.2.4 Metal Budget and Recycling . 97 6.3 Mg ii Lines . 100 6.4 O vi Lines . 104 6.5 Individual Lines and their Relations . 104 7 Summary 111 7.1 The Setting . 111 7.2 Results on the Lyman-α Absorption in the CGM . 113 7.3 Results on Metal Ions and Lines in the CGM . 115 A Large Smoothing Lengths in the Cold Phase 117 B Phase Space Distribution for Chosen Lines 121 Bibliography 123 Acknowledgements 133 viii Table Of Content List of Figures 1.1 Milky Way Panorama . .3 1.2 Andromeda Galaxy . 12 1.3 Hubble Tuning Fork . 13 1.4 Baryon Recycling . 14 2.1 Observational Constrains on the Baryon Budget in the CGM . 16 2.2 Example COS Absorption Spectra . 17 2.3 Lyman-α Forest . 19 2.4 Phase Diagram of EAGLE Simulation . 22 2.5 Mg ii EW Profile Fit . 25 3.1 Schematics of Stellar Feedback . 34 3.2 Stellar Mass-Halo Mass Relation for Simulation Suite . 39 3.3 Morphological Overview for Halo M0858 . 41 3.4 H i Fractions as a Function of Stellar Mass . 43 4.1 Smoothing Length Distribution in M0858 . 47 4.2 Quality of the Binning Routines in pygad ............... 49 4.3 Mock Spectra for M0858, Lines #9 through #12 . 60 5.1 H i Property Maps for M0858, Large Scale . 65 5.2 H i Equivalent Width Correlations for M0858, Large Scale . 66 5.3 H i Property Maps for M0858, Small Scale . 68 5.4 H i Equivalent Width Correlations for M0858, Small Scale . 69 5.5 Mock Spectra for M0858, Lines #5 through #8 . 70 5.6 Mock Spectra for M0858, Lines #1 through #4 . 71 5.7 Phase-Space of Mock Spectrum #9 of M0858 . 72 5.8 Phase Space Distribution for Chosen Lines . 73 5.9 H i Equivalent Width Profiles for Random Orientations (1) . 75 x List Of Figures 5.10 H i Equivalent Width Profiles for Random Orientations (2) . 76 5.11 H i Equivalent Width Profiles for Random Orientations Combined . 77 5.12 H i Equivalent Width Profiles for Edge-On Projections . 79 5.13 H i Property Maps for M0501 . 81 5.14 H i Property Maps for Different Models of Halo M1859 . 84 5.15 H i Equivalent Width Correlations for Different Models of Halo M1859 86 6.1 Phase Diagram with Ion Distribution for M0858/M0664 . 90 6.2 Star and Ion Maps for M0664 . 92 6.3 Star and Ion Maps for M0858 . 94 6.4 In- and Outflowing Fraction Profiles . 96 6.5 Radial Flow Rates . 98 6.6 Mass and Metal Profiles . 99 6.7 Mg ii Equivalent Width Profiles for Random Orientations (1) . 101 6.8 Mg ii Equivalent Width Profiles for Random Orientations (2) . 102 6.9 Mg ii λ2796Å Equivalent Width Profiles for Random Orientations Combined . 103 6.10 O vi Equivalent Width Profiles for Random Orientations (1) . 105 6.11 O vi Equivalent Width Profiles for Random Orientations (2) . 106 6.12 O vi λ1031 Equivalent Width Profiles for Random Orientations Com- bined . 107 6.13 Spectrum Decomposition . 109 A.1 Smoothing Length Histogram of the Two Phase . 118 A.2 Spatial Distribution of the Two Phases . 119 B.1 Phase Space Distribution for Chosen Lines . 122 List of Tables 1.1 Relative Number Densities of Galaxy Types . .7 3.1 Simulation Suite’s Halos Properties Overview . 40 3.2 Resolution Level Initial Particle Masses & Smoothing Lengths . 42 xii List Of Tables Zusammenfassung / Abstract Neuere Untersuchung der Absorptionslinien von Gas in the Halos von nahen Spi- ralgalaxien haben die allgegenwärtige Existenz des circum-galaktischen Mediums (CGM) offenbart. Ich nutze 12 kosmologische Zoom-Simulationen von Spiralgalax- ien um den physikalischen Ursprung der Absorptionslinien im CGM zu prüfen. Die Simulationen wurden mit einem mehrphasigem Smoothed Particle Hydrodynamics (SPH) Code mit zwei-phasigem Feedback durchgeführt, der auf Gadget basiert und Sternentstehung, Metallanreicherungen und stellares Feedback berücksichtigt. Ich entwickelte pygad, ein neues, Python-basiertes, modulares Paket, das ein zweck- mäßiges Framework und eine Vielzahl von Analysemodulen für die SPH Galaxiensim- ulationen stellt. Unter diesen findet sich eins für das Übertragen von SPH Größen auf räumliche Gitter and eines zur Generierung von künstlichen Absorptionsspek- tren aus SPH Simulationen, welche im Detail diskutiert werden. Im Allgemeinen zeigen die simulierten Galaxien radial abfallende Ly-α Äquivalentbreiten (ÄBs) von ∼1.1 Å bei 50 kpc bis 0.5 Å bei ∼250 kpc mit großer Streuung in akzeptabel Überein- stimmung mit Beobachtungen. Die simulierten Ly-α ÄBs korrelieren typischerweise nicht gut mit H i Säulendichten im CGM, da die Linien oft saturiert sind und die H i Geschwindigkeits-Struktur entlang der Sichtlinie die Absorptionslinie signifikant verbreitert. Nur Galaxien mit ungestörtem CGM zeigen eine gute Korrelation zwis- chen der H i Säulendichten und der ÄB Verteilungen. Wenn H i überwiegend in der Scheibenebene akkretiert wird, zeigen die Ly-α ÄBs eine Abhängigkeit vom azimu- talen Winkel, die in stärker gestörten Systemen, die eine Wechselwirkung unterliegen, ausgelöscht ist. Die ÄB Profile für Mg ii and O vi stimmen gut mit Beobachtungen überein. Insbesondere O vi ist besser reproduziert als in allen vorherigen Simulatio- nen. C iv and O vi Absorptionsmerkmale werden bis zu großen Radien beobachtet und die räumliche und Geschwindigkeits-Verteilung ist deutlich verschieden zu der von H i. Ich stelle fest, dass O vi.
Recommended publications
  • The Intergalactic Medium: Overview and Selected Aspects
    The Intergalactic Medium: Overview and Selected Aspects Tristan Dederichs [email protected] August 22, 2018 Contents 1 Introduction 2 2 Early universe and reionization 2 3 The Lyα forest 2 3.1 Observations . 2 3.2 Simulations . 4 3.3 The missing baryons problem . 6 4 Metal enrichment 7 4.1 Observations and simulations . 7 4.2 Dark Matter implications . 8 5 Conclusion 8 1 1 Introduction At the current epoch, most of the baryonic matter and roughly half of the dark matter reside in the space between the galaxies, the intergalactic medium (IGM) [1]. At earlier times, the IGM contained even higher fractions of all matter in the universe: 90% of all primordial baryons at z ≥ 1:5 and 95% of all dark matter at z = 6 [2, 1]. The ongoing research of the composition and evolution of the IGM is of great importance for the understanding of the formation of galaxies and tests of cosmological theories. However, the study of the IGM is complicated by the fact that the baryons contained in it can only be detected by their absorption signatures. Therefore, as A. A. Meiksin (2009) has put it, \the physical structures that give rise to the features must be modeled" [2]. I will start with a very brief overview of the early universe (up to the point where the term intergalactic started to be applicable), followed by an analysis of the most prominent feature of the IGM, the Lyman-alpha forest, both in observations and simulations. With the the missing baryon problem, a possible limitation to Lyman-alpha studies is considered.
    [Show full text]
  • A Tale of Two Paradigms: the Mutual Incommensurability of ΛCDM and MOND
    1 A Tale of Two Paradigms: the Mutual Incommensurability of ΛCDM and MOND Stacy S. McGaugh Abstract: The concordance model of cosmology, ΛCDM, provides a satisfactory description of the evolution of the universe and the growth of large scale structure. Despite considerable effort, this model does not at present provide a satisfactory description of small scale structure and the dynamics of bound objects like individual galaxies. In contrast, MOND provides a unique and predictively successful description of galaxy dynamics, but is mute on the subject of cosmology. Here I briefly review these contradictory world views, emphasizing the wealth of distinct, interlocking lines of evidence that went into the development of ΛCDM while highlighting the practical impossibility that it can provide a satisfactory explanation of the observed MOND phenomenology in galaxy dynamics. I also briefly review the baryon budget in groups and clusters of galaxies where neither paradigm provides an entirely satisfactory description of the data. Relatively little effort has been devoted to the formation of structure in MOND; I review some of what has been done. While it is impossible to predict the power spectrum of the microwave background temperature fluctuations in the absence of a complete relativistic theory, the amplitude ratio of the first to second peak was correctly predicted a priori. However, the simple model which makes this predictions does not explain the observed amplitude of the third and subsequent peaks. MOND anticipates that structure forms more quickly than in ΛCDM. This motivated the prediction that reionization would happen earlier in MOND than originally expected in ΛCDM, as subsequently observed.
    [Show full text]
  • Bibliography of Refereed Papers: Roger L
    Bibliography of refereed papers: Roger L. Davies 203 refereed papers, >24,000 citations, h=75 62 papers >100 citations; 13 papers >500 citations and one has more than 1000 citations. [203] Francesco D'Eugenio, Matthew Colless, Nicholas Scott, Arjen van der Wel, Roger L. Davies, Jesse van de Sande, Sarah M. Sweet, Sree Oh, Brent Groves, Rob Sharp, Matt S. Owers, Joss Bland-Hawthorn, Scott M. Croom, Sarah Brough, Julia J. Bryant, Michael Goodwin, Jon S. Lawrence, Nuria P. F. Lorente, and Samuel N. Richards. The SAMI Galaxy Survey: stellar population and structural trends across the Fundamental Plane. MNRAS, April 2021. [202] Scott M. Croom, Matt S. Owers, Nicholas Scott, Henry Poetrodjojo, Brent Groves, Jesse van de Sande, Tania M. Barone, Luca Cortese, Francesco D'Eugenio, Joss Bland-Hawthorn, Julia Bryant, Sree Oh, Sarah Brough, James Agostino, Sarah Casura, Barbara Catinella, Matthew Colless, Gerald Cecil, Roger L. Davies, Michael J. Drinkwater, Simon P. Driver, Ignacio Ferreras, Caroline Foster, Amelia Fraser-McKelvie, Jon Lawrence, Sarah K. Leslie, Jochen Liske, Angel´ R. L´opez-S´anchez, Nuria P. F. Lorente, Rebecca McElroy, Anne M. Medling, Danail Obreschkow, Samuel N. Richards, Rob Sharp, Sarah M. Sweet, Dan S. Taranu, Edward N. Taylor, Edoardo Tescari, Adam D. Thomas, James Tocknell, and Sam P. Vaughan. The SAMI Galaxy Survey: the third and final data release. MNRAS, February 2021. [201] Romina Ahumada and others. The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra. ApJS, 249(1):3, July 2020. [200] S.
    [Show full text]
  • Cetus - the Whale
    May 18 2021 Cetus - The Whale Observed: No Object Her Type Mag Alias/Notes IC 5384 Non-Existent NGC 7813 MCG -2-1-16 MK 936 IRAS 15-1215 PGC 287 IC 1528 Non-Existent NGC 7826 H29-8 Non-Existent Asterism IC 1533 Non-Existent NGC 34 Non-Existent NGC 17 NGC 58 Non-Existent NGC 47 PGC 967 MCG -1-1-55 IRAS 119-726 NGC 54 Glxy SB(r)a? 14.6 MCG -1-1-60 PGC 1011 NGC 59 Glxy SA(rs)0-: 13.1 ESO 539-4 MCG -4-1-26 PGC 1034 NGC 62 Glxy (R)SB(r)a: 12.3 MCG -2-1-43 IRAS 145-1345 PGC 1125 NGC 64 Glxy SB(s)bc 14 MCG -1-1-68 IRAS 149-706 PGC 1149 IC 5 Glxy E 14.8 MCG -2-1-47 IRAS 148-951 PGC 1145 NGC 73 Glxy SAB(rs)bc: 13.5 MCG -3-1-26 PGC 1211 NGC 65 Glxy SAB(rs)0-: 14.4 ESO 473-10A MCG -4-2-1 PGC 1229 NGC 66 Glxy SB(r)b pec 14.2 ESO 473-10 MCG -4-2-2 IRAS 165-2312 PGC 1236 IC 9 Glxy Sb(r) 16.1 MCG -2-2-1 IRAS 171-1423 PGC 1271 NGC 77 Glxy SA0-: 15.7 ESO 473-15 PGC 1290 NGC 102 Glxy S0/a 14.4 MCG -2-2-11 PGC 1542 NGC 107 Glxy Sbc 14.6 MCG -2-2-14 PGC 1606 NGC 111 Non-Existent NGC 113 Glxy SA0-: 13.5 MCG -1-2-16 PGC 1656 NGC 114 Glxy SB(rs)0: 14.7 UGC 259 MCG 0-2-27 MK 946 CGCG 383-14 KUG 24-20A PGC 1660 NGC 116 Non-Existent MCG -1-2-17 PGC 1671 NGC 117 Glxy S0+: sp 15.3 MCG 0-2-29 CGCG 383-15 PGC 1674 NGC 118 Glxy I0? 14.8 UGC 264 MCG 0-2-32 MK 947 CGCG 383-16 UM244 3ZW9 IRAS 247-203 PGC 1678 NGC 120 Glxy SB0^: 14.4 UGC 267 MCG 0-2-33 CGCG 383-17 PGC 1693 NGC 122 Non-Existent NGC 123 Non-Existent NGC 124 Glxy SA(s)c 13.7 UGC 271 MCG 0-2-38 CGCG 383-18 IRAS 253-205 PGC 1715 IC 15 Non-Existent IC 16 Glxy E? 14.7 MCG -2-2-17 IRAS 255-1322 PGC 1730 IC 17
    [Show full text]
  • The X-Ray Luminosity Function of Ultra Luminous X-Ray Sources in Collisional Ring Galaxies
    Draft version June 8, 2018 Typeset using LATEX twocolumn style in AASTeX62 The X-Ray Luminosity Function of Ultra Luminous X-Ray Sources in Collisional Ring Galaxies Anna Wolter,1 Antonella Fruscione,2 and Michela Mapelli3 1INAF-Osservatorio Astronomico di Brera, via Brera 28, 20121 Milano, Italy 2Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambdidge, MA, 02138 3INAF-Osservatorio Astronomico di Padova, vicolo dell'Osservatorio 5, 35122, Padova, Italy (Received March, 7th, 2018; Accepted June, 5th, 2018) Submitted to The Astrophysical Journal ABSTRACT Ring galaxies are fascinating laboratories: a catastrophic impact between two galaxies (one not much smaller than the other) has produced fireworks especially in the larger one, when hit roughly perpendicularly to the plane. We analyze the point sources, produced by the starburst episode following the impact, in the rings of seven galaxies and determine their X-ray luminosity function (XLF). In 39 −1 total we detect 63 sources, of which 50 have luminosity LX ≥ 10 erg s , classifying them as ultra luminous X-ray sources (ULXs). We find that the total XLF is not significantly different from XLFs derived for other kinds of galaxies, with a tendency of having a larger fraction of high X-ray luminosity objects. Both the total number of ULXs and the number of ULXs per unit star formation rate are found in the upper envelope of the more normal galaxies distribution. Further analysis would be needed to address the issue of the nature of the compact component in the binary system. Keywords: galaxies: individual (AM0644-741, Arp143, Arp148) - galaxies: peculiar - galaxies: star formation - X-ray binaries 1.
    [Show full text]
  • Astronomy Magazine 2011 Index Subject Index
    Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63
    [Show full text]
  • Doctor of Philosophy
    BIBLIOGRAPHY 152 Chapter 4 WALLABY Early Science - III. An H I Study of the Spiral Galaxy NGC 1566 ABSTRACT This paper reports on the atomic hydrogen gas (HI) observations of the spiral galaxy NGC 1566 using the newly commissioned Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope. This spiral galaxy is part of the Dorado loose galaxy group, which has a halo mass of 13:5 1 10 M . We measure an integrated HI flux density of 180:2 Jy km s− emanating from this ∼ galaxy, which translates to an HI mass of 1:94 1010 M at an assumed distance of 21:3 Mpc. Our × observations show that NGC 1566 has an asymmetric and mildly warped HI disc. The HI-to-stellar mass fraction (MHI/M ) of NGC 1566 is 0:29, which is high in comparison with galaxies that have ∗ the same stellar mass (1010:8 M ). We also derive the rotation curve of this galaxy to a radius of 50 kpc and fit different mass models to it. The NFW, Burkert and pseudo-isothermal dark matter halo profiles fit the observed rotation curve reasonably well and recover dark matter fractions of 0:62, 0:58 and 0:66, respectively. Down to the column density sensitivity of our observations 19 2 (NHI = 3:7 10 cm ), we detect no HI clouds connected to, or in the nearby vicinity of, the × − HI disc of NGC 1566 nor nearby interacting systems. We conclude that, based on a simple analytic model, ram pressure interactions with the IGM can affect the HI disc of NGC 1566 and is possibly the reason for the asymmetries seen in the HI morphology of NGC 1566.
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]
  • Ultraluminous X-Ray Sources in Arp 147
    ULTRALUMINOUS X-RAY SOURCES IN ARP 147 The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Rappaport, S., A. Levine, D. Pooley, and B. Steinhorn. “ULTRALUMINOUS X-RAY SOURCES IN ARP 147.” The Astrophysical Journal 721, no. 2 (September 9, 2010): 1348–1355. © 2010 The American Astronomical Society As Published http://dx.doi.org/10.1088/0004-637x/721/2/1348 Publisher IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/95696 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal, 721:1348–1355, 2010 October 1 doi:10.1088/0004-637X/721/2/1348 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ULTRALUMINOUS X-RAY SOURCES IN ARP 147 S. Rappaport1, A. Levine2, D. Pooley3, and B. Steinhorn1 1 37-602B, M.I.T. Department of Physics and Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02139, USA; [email protected] 2 37-575 M.I.T. Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02139, USA; [email protected] 3 Eureka Scientific, 5248 Valley View Road El Sobrante, CA 94803-3435, USA; [email protected] Received 2010 July 16; accepted 2010 August 2; published 2010 September 9 ABSTRACT The Chandra X-Ray Observatory was used to image the collisional ring galaxy Arp 147 for 42 ks.
    [Show full text]
  • The Evolution of the Intergalactic Medium Access Provided by California Institute of Technology on 01/11/17
    AA54CH09-McQuinn ARI 29 August 2016 8:37 ANNUAL REVIEWS Further Click here to view this article's online features: • Download figures as PPT slides • Navigate linked references • Download citations The Evolution of the • Explore related articles • Search keywords Intergalactic Medium Matthew McQuinn Department of Astronomy, University of Washington, Seattle, Washington 98195; email: [email protected] Annu. Rev. Astron. Astrophys. 2016. 54:313–62 Keywords First published online as a Review in Advance on intergalactic medium, IGM, physical cosmology, large-scale structure, July 22, 2016 quasar absorption lines, reionization, Lyα forest The Annual Review of Astronomy and Astrophysics is online at astro.annualreviews.org Abstract This article’s doi: The bulk of cosmic matter resides in a dilute reservoir that fills the space be- 10.1146/annurev-astro-082214-122355 Access provided by California Institute of Technology on 01/11/17. For personal use only. tween galaxies, the intergalactic medium (IGM). The history of this reservoir Annu. Rev. Astron. Astrophys. 2016.54:313-362. Downloaded from www.annualreviews.org Copyright c 2016 by Annual Reviews. is intimately tied to the cosmic histories of structure formation, star forma- All rights reserved tion, and supermassive black hole accretion. Our models for the IGM at intermediate redshifts (2 z 5) are a tremendous success, quantitatively explaining the statistics of Lyα absorption of intergalactic hydrogen. How- ever, at both lower and higher redshifts (and around galaxies) much is still unknown about the IGM. We review the theoretical models and measure- ments that form the basis for the modern understanding of the IGM, and we discuss unsolved puzzles (ranging from the largely unconstrained process of reionization at high z to the missing baryon problem at low z), highlighting the efforts that have the potential to solve them.
    [Show full text]
  • Arxiv:1812.04625V1 [Astro-Ph.CO] 11 Dec 2018 Lnkclaoaine L 06.Smlr U Slightly but (Ly- Similar, Lyman-Alpha from Obtained 2016)
    Draft version December 13, 2018 A Preprint typeset using LTEX style emulateapj v. 12/16/11 DETECTION OF THE MISSING BARYONS TOWARD THE SIGHTLINE OF H 1821+643 Orsolya E. Kovacs´ 1,2,3, Akos´ Bogdan´ 1, Randall K. Smith1, Ralph P. Kraft1, and William R. Forman1 1Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA; [email protected] 2Konkoly Observatory, MTA CSFK, H-1121 Budapest, Konkoly Thege M. ´ut 15-17, Hungary and 3E¨otv¨os University, Department of Astronomy, Pf. 32, 1518, Budapest, Hungary Draft version December 13, 2018 ABSTRACT Based on constraints from Big Bang nucleosynthesis and the cosmic microwave background, the baryon content of the high-redshift Universe can be precisely determined. However, at low redshift, about one-third of the baryons remain unaccounted for, which poses the long-standing missing baryon problem. The missing baryons are believed to reside in large-scale filaments in the form of warm-hot intergalactic medium (WHIM). In this work, we employ a novel stacking approach to explore the hot phases of the WHIM. Specifically, we utilize the 470 ks Chandra LETG data of the luminous quasar, H 1821+643, along with previous measurements of UV absorption line systems and spectroscopic redshift measurements of galaxies toward the quasar’s sightline. We repeatedly blueshift and stack the X-ray spectrum of the quasar corresponding to the redshifts of the 17 absorption line systems. Thus, we obtain a stacked spectrum with 8.0 Ms total exposure, which allows us to probe X-ray absorption lines with unparalleled sensitivity.
    [Show full text]
  • Astronomy 2009 Index
    Astronomy Magazine 2009 Index Subject Index 1RXS J160929.1-210524 (star), 1:24 4C 60.07 (galaxy pair), 2:24 6dFGS (Six Degree Field Galaxy Survey), 8:18 21-centimeter (neutral hydrogen) tomography, 12:10 93 Minerva (asteroid), 12:18 2008 TC3 (asteroid), 1:24 2009 FH (asteroid), 7:19 A Abell 21 (Medusa Nebula), 3:70 Abell 1656 (Coma galaxy cluster), 3:8–9, 6:16 Allen Telescope Array (ATA) radio telescope, 12:10 ALMA (Atacama Large Millimeter/sub-millimeter Array), 4:21, 9:19 Alpha (α) Canis Majoris (Sirius) (star), 2:68, 10:77 Alpha (α) Orionis (star). See Betelgeuse (Alpha [α] Orionis) (star) Alpha Centauri (star), 2:78 amateur astronomy, 10:18, 11:48–53, 12:19, 56 Andromeda Galaxy (M31) merging with Milky Way, 3:51 midpoint between Milky Way Galaxy and, 1:62–63 ultraviolet images of, 12:22 Antarctic Neumayer Station III, 6:19 Anthe (moon of Saturn), 1:21 Aperture Spherical Telescope (FAST), 4:24 APEX (Atacama Pathfinder Experiment) radio telescope, 3:19 Apollo missions, 8:19 AR11005 (sunspot group), 11:79 Arches Cluster, 10:22 Ares launch system, 1:37, 3:19, 9:19 Ariane 5 rocket, 4:21 Arianespace SA, 4:21 Armstrong, Neil A., 2:20 Arp 147 (galaxy pair), 2:20 Arp 194 (galaxy group), 8:21 art, cosmology-inspired, 5:10 ASPERA (Astroparticle European Research Area), 1:26 asteroids. See also names of specific asteroids binary, 1:32–33 close approach to Earth, 6:22, 7:19 collision with Jupiter, 11:20 collisions with Earth, 1:24 composition of, 10:55 discovery of, 5:21 effect of environment on surface of, 8:22 measuring distant, 6:23 moons orbiting,
    [Show full text]