A Generalised Testbed for Analysing Block and Stream Ciphers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
25 Years of Linear Cryptanalysis -Early History and Path Search Algorithm
25 Years of Linear Cryptanalysis -Early History and Path Search Algorithm- Asiacrypt 2018, December 3 2018 Mitsuru Matsui © Mitsubishi Electric Corporation Back to 1990… 2 © Mitsubishi Electric Corporation FEAL (Fast data Encipherment ALgorithm) • Designed by Miyaguchi and Shimizu (NTT). • 64-bit block cipher family with the Feistel structure. • 4 rounds (1987) • 8 rounds (1988) • N rounds(1990) N=32 recommended • Key size is 64 bits (later extended to 128 bits). • Optimized for 8-bit microprocessors (no lookup tables). • First commercially successful cipher in Japan. • Inspired many new ideas, including linear cryptanalysis. 3 © Mitsubishi Electric Corporation FEAL-NX Algorithm [Miyaguchi 90] subkey 4 © Mitsubishi Electric Corporation The Round Function of FEAL 2-byte subkey Linear Relations 푌 2 = 푋1 0 ⊕ 푋2 0 푌 2 = 푋1 0 ⊕ 푋2 0 ⊕ 1 (푁표푡푎푡푖표푛: 푌 푖 = 푖-푡ℎ 푏푖푡 표푓 푌) 5 © Mitsubishi Electric Corporation Linear Relations of the Round Function Linear Relations 푂 16,26 ⊕ 퐼 24 = 퐾 24 K 푂 18 ⊕ 퐼 0,8,16,24 = 퐾 8,16 ⊕ 1 푂 10,16 ⊕ 퐼 0,8 = 퐾 8 S 0 푂 2,8 ⊕ 퐼 0 = 퐾 0 ⊕ 1 (푁표푡푎푡푖표푛: 퐴 푖, 푗, 푘 = 퐴 푖 ⊕ 퐴 푗 ⊕ 퐴 푘 ) S1 O I f S0 f 3-round linear relations with p=1 S1 f modified round function f at least 3 subkey (with whitening key) f bytes affect output6 6 © Mitsubishi Electric Corporation History of Cryptanalysis of FEAL • 4-round version – 100-10000 chosen plaintexts [Boer 88] – 20 chosen plaintexts [Murphy 90] – 8 chosen plaintexts [Biham, Shamir 91] differential – 200 known plaintexts [Tardy-Corfdir, Gilbert 91] – 5 known plaintexts [Matsui, Yamagishi -
Investigating Profiled Side-Channel Attacks Against the DES Key
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925, Vol. 2020, No. 3, pp. 22–72. DOI:10.13154/tches.v2020.i3.22-72 Investigating Profiled Side-Channel Attacks Against the DES Key Schedule Johann Heyszl1[0000−0002−8425−3114], Katja Miller1, Florian Unterstein1[0000−0002−8384−2021], Marc Schink1, Alexander Wagner1, Horst Gieser2, Sven Freud3, Tobias Damm3[0000−0003−3221−7207], Dominik Klein3[0000−0001−8174−7445] and Dennis Kügler3 1 Fraunhofer Institute for Applied and Integrated Security (AISEC), Germany, [email protected] 2 Fraunhofer Research Institution for Microsystems and Solid State Technologies (EMFT), Germany, [email protected] 3 Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany, [email protected] Abstract. Recent publications describe profiled single trace side-channel attacks (SCAs) against the DES key-schedule of a “commercially available security controller”. They report a significant reduction of the average remaining entropy of cryptographic keys after the attack, with surprisingly large, key-dependent variations of attack results, and individual cases with remaining key entropies as low as a few bits. Unfortunately, they leave important questions unanswered: Are the reported wide distributions of results plausible - can this be explained? Are the results device- specific or more generally applicable to other devices? What is the actual impact on the security of 3-key triple DES? We systematically answer those and several other questions by analyzing two commercial security controllers and a general purpose microcontroller. We observe a significant overall reduction and, importantly, also observe a large key-dependent variation in single DES key security levels, i.e. -
Block Ciphers and the Data Encryption Standard
Lecture 3: Block Ciphers and the Data Encryption Standard Lecture Notes on “Computer and Network Security” by Avi Kak ([email protected]) January 26, 2021 3:43pm ©2021 Avinash Kak, Purdue University Goals: To introduce the notion of a block cipher in the modern context. To talk about the infeasibility of ideal block ciphers To introduce the notion of the Feistel Cipher Structure To go over DES, the Data Encryption Standard To illustrate important DES steps with Python and Perl code CONTENTS Section Title Page 3.1 Ideal Block Cipher 3 3.1.1 Size of the Encryption Key for the Ideal Block Cipher 6 3.2 The Feistel Structure for Block Ciphers 7 3.2.1 Mathematical Description of Each Round in the 10 Feistel Structure 3.2.2 Decryption in Ciphers Based on the Feistel Structure 12 3.3 DES: The Data Encryption Standard 16 3.3.1 One Round of Processing in DES 18 3.3.2 The S-Box for the Substitution Step in Each Round 22 3.3.3 The Substitution Tables 26 3.3.4 The P-Box Permutation in the Feistel Function 33 3.3.5 The DES Key Schedule: Generating the Round Keys 35 3.3.6 Initial Permutation of the Encryption Key 38 3.3.7 Contraction-Permutation that Generates the 48-Bit 42 Round Key from the 56-Bit Key 3.4 What Makes DES a Strong Cipher (to the 46 Extent It is a Strong Cipher) 3.5 Homework Problems 48 2 Computer and Network Security by Avi Kak Lecture 3 Back to TOC 3.1 IDEAL BLOCK CIPHER In a modern block cipher (but still using a classical encryption method), we replace a block of N bits from the plaintext with a block of N bits from the ciphertext. -
Related-Key Cryptanalysis of 3-WAY, Biham-DES,CAST, DES-X, Newdes, RC2, and TEA
Related-Key Cryptanalysis of 3-WAY, Biham-DES,CAST, DES-X, NewDES, RC2, and TEA John Kelsey Bruce Schneier David Wagner Counterpane Systems U.C. Berkeley kelsey,schneier @counterpane.com [email protected] f g Abstract. We present new related-key attacks on the block ciphers 3- WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. Differen- tial related-key attacks allow both keys and plaintexts to be chosen with specific differences [KSW96]. Our attacks build on the original work, showing how to adapt the general attack to deal with the difficulties of the individual algorithms. We also give specific design principles to protect against these attacks. 1 Introduction Related-key cryptanalysis assumes that the attacker learns the encryption of certain plaintexts not only under the original (unknown) key K, but also under some derived keys K0 = f(K). In a chosen-related-key attack, the attacker specifies how the key is to be changed; known-related-key attacks are those where the key difference is known, but cannot be chosen by the attacker. We emphasize that the attacker knows or chooses the relationship between keys, not the actual key values. These techniques have been developed in [Knu93b, Bih94, KSW96]. Related-key cryptanalysis is a practical attack on key-exchange protocols that do not guarantee key-integrity|an attacker may be able to flip bits in the key without knowing the key|and key-update protocols that update keys using a known function: e.g., K, K + 1, K + 2, etc. Related-key attacks were also used against rotor machines: operators sometimes set rotors incorrectly. -
Camellia: a 128-Bit Block Cipher Suitable for Multiple Platforms
Copyright NTT and Mitsubishi Electric Corporation 2000 Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms † ‡ † Kazumaro Aoki Tetsuya Ichikawa Masayuki Kanda ‡ † ‡ ‡ Mitsuru Matsui Shiho Moriai Junko Nakajima Toshio Tokita † Nippon Telegraph and Telephone Corporation 1-1 Hikarinooka, Yokosuka, Kanagawa, 239-0847 Japan {maro,kanda,shiho}@isl.ntt.co.jp ‡ Mitsubishi Electric Corporation 5-1-1 Ofuna, Kamakura, Kanagawa, 247-8501 Japan {ichikawa,matsui,june15,tokita}@iss.isl.melco.co.jp September 26, 2000 Abstract. We present a new 128-bit block cipher called Camellia. Camellia sup- ports 128-bit block size and 128-, 192-, and 256-bit key lengths, i.e. the same interface specifications as the Advanced Encryption Standard (AES). Camellia was carefully designed to withstand all known cryptanalytic attacks and even to have a sufficiently large security leeway for use of the next 10-20 years. There are no hidden weakness inserted by the designers. It was also designed to have suitability for both software and hardware implementations and to cover all possible encryption applications that range from low-cost smart cards to high-speed network systems. Compared to the AES finalists, Camellia offers at least comparable encryption speed in software and hardware. An optimized implementation of Camellia in assembly language can en- crypt on a PentiumIII (800MHz) at the rate of more than 276 Mbits per second, which is much faster than the speed of an optimized DES implementation. In ad- dition, a distinguishing feature is its small hardware design. The hardware design, which includes key schedule, encryption and decryption, occupies approximately 11K gates, which is the smallest among all existing 128-bit block ciphers as far as we know. -
Known and Chosen Key Differential Distinguishers for Block Ciphers
Known and Chosen Key Differential Distinguishers for Block Ciphers Ivica Nikoli´c1?, Josef Pieprzyk2, Przemys law Soko lowski2;3, Ron Steinfeld2 1 University of Luxembourg, Luxembourg 2 Macquarie University, Australia 3 Adam Mickiewicz University, Poland [email protected], [email protected], [email protected], [email protected] Abstract. In this paper we investigate the differential properties of block ciphers in hash function modes of operation. First we show the impact of differential trails for block ciphers on collision attacks for various hash function constructions based on block ciphers. Further, we prove the lower bound for finding a pair that follows some truncated differential in case of a random permutation. Then we present open-key differential distinguishers for some well known round-reduced block ciphers. Keywords: Block cipher, differential attack, open-key distinguisher, Crypton, Hierocrypt, SAFER++, Square. 1 Introduction Block ciphers play an important role in symmetric cryptography providing the basic tool for encryp- tion. They are the oldest and most scrutinized cryptographic tool. Consequently, they are the most trusted cryptographic algorithms that are often used as the underlying tool to construct other cryp- tographic algorithms. One such application of block ciphers is for building compression functions for the hash functions. There are many constructions (also called hash function modes) for turning a block cipher into a compression function. Probably the most popular is the well-known Davies-Meyer mode. Preneel et al. in [27] have considered all possible modes that can be defined for a single application of n-bit block cipher in order to produce an n-bit compression function. -
Miss in the Middle
Miss in the middle By: Gal Leonard Keret Miss in the Middle Attacks on IDEA, Khufu and Khafre • Written by: – Prof. Eli Biham. – Prof. Alex Biryukov. – Prof. Adi Shamir. Introduction • So far we used traditional differential which predict and detect statistical events of highest possible probability. Introduction • A new approach is to search for events with probability one, whose condition cannot be met together (events that never happen). Impossible Differential • Random permutation: 휎 푀0 = 푎푛푦 퐶 표푓 푠푖푧푒 푀0. • Cipher (not perfect): 퐸 푀0 = 푠표푚푒 퐶 표푓 푠푖푧푒 푀0. • Events (푚 ↛ 푐) that never happen distinguish a cipher from a random permutation. Impossible Differential • Impossible events (푚 ↛ 푐) can help performing key elimination. • All the keys that lead to impossibility are obviously wrong. • This way we can filter wrong key guesses and leaving the correct key. Enigma – for example • Some of the attacks on Enigma were based on the observation that letters can not be encrypted to themselves. 퐸푛푖푔푚푎(푀0) ≠ 푀0 In General • (푀0, 퐶1) is a pair. If 푀0 푀0 → 퐶1. • 푀 ↛ 퐶 . 0 0 Some rounds For any key • ∀ 푘푒푦| 퐶1 → 퐶0 ↛ is an impossible key. Cannot lead to 퐶0. Some rounds Find each keys Decrypt 퐶1back to 퐶0. IDEA • International Data Encryption Algorithm. • First described in 1991. • Block cipher. • Symmetric. • Key sizes: 128 bits. • Block sizes: 64 bits. ⊕ - XOR. ⊞ - Addition modulo 216 ⊙ - Multiplication modulo 216+1 Encryption security • Combination of different mathematical groups. • Creation of "incompatibility“: ∗ • 푍216+1 → 푍216 ∗ • 푍216 → 푍216+1 ∗ ∗ Remark: 푍216+1 doesn’t contain 0 like 푍216 , so in 푍216+1 0 will be converted to 216 since 0 ≡ 216(푚표푑 216). -
Report on the AES Candidates
Rep ort on the AES Candidates 1 2 1 3 Olivier Baudron , Henri Gilb ert , Louis Granb oulan , Helena Handschuh , 4 1 5 1 Antoine Joux , Phong Nguyen ,Fabrice Noilhan ,David Pointcheval , 1 1 1 1 Thomas Pornin , Guillaume Poupard , Jacques Stern , and Serge Vaudenay 1 Ecole Normale Sup erieure { CNRS 2 France Telecom 3 Gemplus { ENST 4 SCSSI 5 Universit e d'Orsay { LRI Contact e-mail: [email protected] Abstract This do cument rep orts the activities of the AES working group organized at the Ecole Normale Sup erieure. Several candidates are evaluated. In particular we outline some weaknesses in the designs of some candidates. We mainly discuss selection criteria b etween the can- didates, and make case-by-case comments. We nally recommend the selection of Mars, RC6, Serp ent, ... and DFC. As the rep ort is b eing nalized, we also added some new preliminary cryptanalysis on RC6 and Crypton in the App endix which are not considered in the main b o dy of the rep ort. Designing the encryption standard of the rst twentyyears of the twenty rst century is a challenging task: we need to predict p ossible future technologies, and wehavetotake unknown future attacks in account. Following the AES pro cess initiated by NIST, we organized an op en working group at the Ecole Normale Sup erieure. This group met two hours a week to review the AES candidates. The present do cument rep orts its results. Another task of this group was to up date the DFC candidate submitted by CNRS [16, 17] and to answer questions which had b een omitted in previous 1 rep orts on DFC. -
Linear (Hull) and Algebraic Cryptanalysis of the Block Cipher PRESENT
Linear (Hull) and Algebraic Cryptanalysis of the Block Cipher PRESENT Jorge Nakahara Jr1, Pouyan Sepehrdad1, Bingsheng Zhang2, Meiqin Wang3 1EPFL, Lausanne, Switzerland 2Cybernetica AS, Estonia and University of Tartu, Estonia 3Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, China Estonian Theory Days, 2-4.10.2009 Outline Why cryptanalysis?! Outline Outline Contributions The PRESENT Block Cipher Revisited Algebraic Cryptanalysis of PRESENT Linear Cryptanalysis of PRESENT Linear Hulls of PRESENT Conclusions Acknowledgements Outline Outline Contributions we performed linear analysis of reduced-round PRESENT exploiting fixed-points (and other symmetries) of pLayer exploiting low Hamming Weight bitmasks using iterative linear relations first linear hull analysis of PRESENT: 1st and 2nd best trails known-plaintext and ciphertext-only attack settings revisited algebraic analysis of 5-round PRESENT in less than 3 min best attacks on up to 26-round PRESENT (out of 31 rounds) Outline Outline The PRESENT Block Cipher block cipher designed by Bogdanov et al. at CHES’07 aimed at RFID tags, sensor networks (hardware environments) SPN structure 64-bit block size, 80- or 128-bit key size, 31 rounds one full round: xor with round subkey, S-box layer, bit permutation (pLayer) key schedule: 61-bit left rotation, S-box application, and xor with counter Outline Outline The PRESENT Block Cipher Computational graph of one full round of PRESENT Outline Outline Previous attack complexities on reduced-round -
Chapter 3 – Block Ciphers and the Data Encryption Standard
Symmetric Cryptography Chapter 6 Block vs Stream Ciphers • Block ciphers process messages into blocks, each of which is then en/decrypted – Like a substitution on very big characters • 64-bits or more • Stream ciphers process messages a bit or byte at a time when en/decrypting – Many current ciphers are block ciphers • Better analyzed. • Broader range of applications. Block vs Stream Ciphers Block Cipher Principles • Block ciphers look like an extremely large substitution • Would need table of 264 entries for a 64-bit block • Arbitrary reversible substitution cipher for a large block size is not practical – 64-bit general substitution block cipher, key size 264! • Most symmetric block ciphers are based on a Feistel Cipher Structure • Needed since must be able to decrypt ciphertext to recover messages efficiently Ideal Block Cipher Substitution-Permutation Ciphers • in 1949 Shannon introduced idea of substitution- permutation (S-P) networks – modern substitution-transposition product cipher • These form the basis of modern block ciphers • S-P networks are based on the two primitive cryptographic operations we have seen before: – substitution (S-box) – permutation (P-box) (transposition) • Provide confusion and diffusion of message Diffusion and Confusion • Introduced by Claude Shannon to thwart cryptanalysis based on statistical analysis – Assume the attacker has some knowledge of the statistical characteristics of the plaintext • Cipher needs to completely obscure statistical properties of original message • A one-time pad does this Diffusion -
Security Analysis of an Encryption Scheme Based on Nonpositional Polynomial Notations
Open Eng. 2016; 6:250–258 Research Article Open Access Nursulu Kapalova* and Dilmukhanbet Dyusenbayev Security analysis of an encryption scheme based on nonpositional polynomial notations DOI 10.1515/eng-2016-0034 unique providing that bases are pairwise relatively prime. Received May 05, 2016; accepted Jun 28, 2016 As distinct from classical RNSs, irreducible polynomials over GF(2) that is binary polynomials serve as bases in Abstract: The aim of the research was to conduct a cryp- NPNs [1–6]. tographic analysis of an encryption scheme developed Based on NPNs, nonconventional algorithms for en- on the basis of nonpositional polynomial notations to cryption, digital signatures and cryptographic key ex- estimate the algorithm strength. Nonpositional polyno- change have been developed [3, 7–9]. This paper is con- mial notations (NPNs) are residue number systems (RNSs) cerned with an investigation of the strength of a noncon- based on irreducible polynomials over GF(2). To evalu- ventional encryption scheme against cryptanalysis. The ate if the algorithms developed on the basis of NPNs are core of the algorithm under study is as follows. secure, mathematical models of cryptanalysis involving algebraic, linear and differential methods have been de- 1. First of all, an NPN is formed with its working bases signed. The cryptanalysis is as follows. A system of non- consisting of chosen irreducible polynomials linear equations is obtained from a function transforming p x p x ... p x plaintext into ciphertext with a key. Next, a possibility of 1( ), 2( ), , S( ) (1) transition of the nonlinear system to a linear one is consid- over GF(2) of degrees m1, m2, .. -
State of the Art in Lightweight Symmetric Cryptography
State of the Art in Lightweight Symmetric Cryptography Alex Biryukov1 and Léo Perrin2 1 SnT, CSC, University of Luxembourg, [email protected] 2 SnT, University of Luxembourg, [email protected] Abstract. Lightweight cryptography has been one of the “hot topics” in symmetric cryptography in the recent years. A huge number of lightweight algorithms have been published, standardized and/or used in commercial products. In this paper, we discuss the different implementation constraints that a “lightweight” algorithm is usually designed to satisfy. We also present an extensive survey of all lightweight symmetric primitives we are aware of. It covers designs from the academic community, from government agencies and proprietary algorithms which were reverse-engineered or leaked. Relevant national (nist...) and international (iso/iec...) standards are listed. We then discuss some trends we identified in the design of lightweight algorithms, namely the designers’ preference for arx-based and bitsliced-S-Box-based designs and simple key schedules. Finally, we argue that lightweight cryptography is too large a field and that it should be split into two related but distinct areas: ultra-lightweight and IoT cryptography. The former deals only with the smallest of devices for which a lower security level may be justified by the very harsh design constraints. The latter corresponds to low-power embedded processors for which the Aes and modern hash function are costly but which have to provide a high level security due to their greater connectivity. Keywords: Lightweight cryptography · Ultra-Lightweight · IoT · Internet of Things · SoK · Survey · Standards · Industry 1 Introduction The Internet of Things (IoT) is one of the foremost buzzwords in computer science and information technology at the time of writing.