Stark Effect in Rydberg States of Helium and Barium

Total Page:16

File Type:pdf, Size:1020Kb

Stark Effect in Rydberg States of Helium and Barium CTW. Lahane STARK EFFECT IN RYDBERG STATES OF HELIUM AND BARIUM STARK EFFECT IN RYDBERG STATES OF HELIUM AND BARIUM Free University Press is an imprint of: VU Boekhandel/Uitgeverij bv De Boelelaan 1105 1081 HV Amsterdam Phone: (0)20-444355 Telex: 18191 vuboe nl isbn 90-6256-750-5 cip nugi 819 © C.T.W. Lahaije, Amsterdam, 1989 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanically, by photocopying, by recording, or otherwise, without prior written permission from the author. VRIJE UNIVERSITEIT TE AMSTERDAM STARK EFFECT IN RYDBERG STATES OF HELIUM AND BARIUM ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Vrije Universiteit te Amsterdam, op gezag van de rector magnificus dr. C. Datema, hoogleraar aan de faculteit der letteren, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der natuurkunde en sterrenkunde op woensdag 18 januari 1989 te 15.30 uur in het hoofdgebouw van de universiteit, De Boelelaan 1105 door Christiaan Theodoras Wilhelmus Lahaije geboren te Eindhoven Free University Press Amsterdam 1989 Promotor: prof.dr. W. Hogervorst Referent prof.dr. RP.H. Rettschnick En dan nog iets mijn zoon, een laatste waarschuwing. Er worden te veel boeken geschreven en van al dat lezen wordje alleen maar moe. Prediker 12,12 Aan ....euh, dinges Voorwoord Na bijna vijfjaar is mijn promotie-onderzoek afgerond. Het resultaat, vastgelegd in de vorm van een proefschrift, ligt nu voor u. Geboeid door het fenomeen laser ben ik na mijn af- studeren in 1984 naar Amsterdam gekomen om een promotie-onderzoek aan te vangen op het gebied van laserspectroscopie aan atomen. De afgelopen jaren heb ik benut om mijn kennis op het gebied van lasertechnieken en van de quantummechanica te vergroten. Zoals duidelijk zal zijn ben ik dan ook degene die het meest van deze periode geprofiteerd heeft. Het inspirerend enthousiasme en de goede sfeer binnen de vakgroep atoomfysica zijn mede bepalend geweest voor de succesvolle afronding van mijn promotie-onderzoek. Op deze plaats zou ik dan ook iedereen willen bedanken die heeft bijgedragen aan het tot stand komen van dit proefschrift. Wim Hogervorst, als mijn promotor en directe begeleider was jij degene die het onder- zoek stuurde. Je bood mij echter de vrijheid om experimenten zelf gestalte te geven. Je enthousiasme voor het experiment, je aanstekelijk optimisme en onze wetenschappelijke dis- cussies zijn steeds een stimulans geweest. Je informele manier van werken en ongedwongen persoonlijkheid maakten het mogelijk ten allen tijde voor raad en daad bij je aan te kloppen. Prof. Dr. RJ'Ji. Rettschnick wil ik bedanken voor zijn bereidheid als referent op te wil- len treden. Jacques Bouma, jij vormde samen met Wim Hogervorst de kern van de groep. Dank voor je inventieve bijdragen op het technisch vlak. Onze ontspannende conversaties en jouw relativerende visie op wetenschappers en hun ambities zou ik nooit hebben willen missen. Met Ben Post en Mohamed Zaki Ewiss heb ik de eerste jaren van mijn promotie- onderzoek prettig samengewerkt. Mijn collega's gedurende de gehele promotie-periode waren Wim Vossen en Erwin Bente. In het halfduister van de kelder bracht Wim Vossen mij de beginselen bij van het uitlijnen van een ringlaser; mijn dank hiervoor. Dankbaar heb ik gebruik gemaakt van de door Erwin geschreven besturings- en analyse-programma' s. Tevens wil ik jullie bedanken voor de vele stimulerende wetenschappelijke discussies. Er heeft zich inmiddels een nieuwe generatie promovendi aangediend. Deze groep be- staat momenteel uit Robert de Graajf, Tony van der Veldt, Ilse Aben, Pieternel Levelt en Ger- rit Kuik. Vanaf deze plaats wil ik jullie bedanken voor de (veelal nachtelijke) assistentie die jullie tijdens het experimenteren verleend hebben. Tony van der Veldt in het bijzonder ben ik dank verschuldigd voor zijn medewerking aan de analyses. Wim Ubachs, de nieuwe vaste medewerker in de groep, wil ik bedanken voor het aanleveren van een aantal ideeën voor stel- lingen. Van alle studenten die hebben bijgedragen aan mijn promotie-onderzoek wil ik speciaal Stephen Lorié en Frans van der Meijs bedanken voor de plezierige samenwerking. I thank Dr. K. Sakimoto of the Institute of Space and Astronautical Science in Tokyo for our fruitful discussions concerning the theory of the Stark effect. De heren van de computergroep en van de mechanische en electronische werkplaatsen wil ik bedanken voor hun ondersteuning. Tevens wil ik de heer Pomper bedanken voor het verzorgen van de figuren in dit proefschrift. Werklast en tijdsdruk kenmerken de laatste maanden van een promotie-periode. Het persklaar maken van een proefschrift voor een zekere deadline behoort tot één van de meest zenuwslopende bezigheden van een promotie-onderzoek. Tegen mijn wil in werden sociale contacten verwaarloosd. Ik wil dan ook iedereen in mijn naaste omgeving bedanken voor hun begrip, belangstelling, steun en stimulans. Tenslotte wil ik Anja bedanken voor alle steun en vertrouwen. Contents Chapter 1 Introduction and summary Chapter 2 Theory 9 1. Introduction 9 2. Structure of two electron atoms 9 3. Stark effect in hydrogen 12 4. Stark effect in complex atoms; calculation^ methods 14 4.1 Fcrtubational treatment 16 4.1.1 Spherical base 16 4.1.2 Parabolic base 16 4.1.3 General features 17 4.2 Diagonalisation of the energy matrix 18 4.3 MQDT of the Stark effect 19 4.3.1 Basic outline 19 4.3.2 Basic functions 20 4.3.3 Frame transformation 21 4.3.4 MQDT for quasi-bound Stark states 22 4.3.5 MQDT for autoionizing Stark states 23 4.4 Implementation 26 Chapter 3 Stark manifolds of barium Rydberg states 29 1. Introduction 31 2. Background 32 3. Experimental setup 33 3.1 Atomic beam production and detection 33 3.2 Lasers 33 3.3 Energy values and intensities 33 4. Results and discussion 34 4.1 Determination of quantum defects of higher /-levels 34 4.2 Energy positions of manifold levels 36 4.3 Relative intensity distribution over a manifold 38 5. Conclusions 39 Chapter 4 Electric field induced avoided level crossings in bound Rydberg states of barium 41 1. Introduction 43 2. Experimental setup and results 43 3. Discussion 45 3.1 Theory 45 3 3 3.2 Avoided crossing F2 <-> SX 46 3 x 3.3 Avoided crossing F2 <-> Pi 48 4. Conclusions • 52 Chapters Stark manifolds and electric field induced avoided level crossings in helium Rydberg states 55 1. Introduction 57 2. Theoretical background 58 3. Experimental setup 60 4. Results and discussion 62 4.1 "Isolated" manifolds 62 4.2 Avoided crossings 64 4.2.1 Avoided crossings of two levels of adjacent manifolds 64 4.2.2 Threefold avoided crossings 68 4.3 Remarks 70 5. Conclusions 71 Chapter 6 Electric field effects in weakly autoionizing 5dnf J=5 states of barium 73 1. Introduction 75 2. Theory 76 3. Experimental setup and results 79 3.1 Experimental setup 79 3.2 Experimental results 80 4. Calculational results and discussion 83 4.1 Comparison MQDT method with experimental results 83 4.1.1 Input for MQDT program 83 4.1.2 Comparison between experiment and calculated m=0 spectrum 84 4.1.3 Spectra calculated for I m I = 0,1 and 2 components 86 4.1.4 Avoided crossings between the 5d63d level and n=60 manifold components 87 4.2 MQDT method versus diagonalisation procedure 88 4.3 General remarks 89 5. Conclusions 90 Samenvatting 93 Chapter 3 of this thesis is a reproduction of an article which appeared in "Zeitschrift fur Physik D: Atoms, Molecules and Clusters": Z. Phys. D: At. Mol. Clust. 7 (1987) 37. Chapter 4 is submitted for publication to "Zeitschrift fur Physik D: Atoms, Molecules and Clusters". Chapter 5 is submitted for publication to "Physical Review A". Chapter 6 will be submitted for publication in a slightly revised form. The articles are reproduced with the kind permission of the publishers. Chapter 1 Introduction and summary When a neutral atom is exposed to a static electric field F, its energy levels shift, split and broaden. The shift and splitting effect is usually associated with the name of Stark [1], although Lo Surdo [2] discovered it contemporaneously in 1913 (using a different method). The broadening effect was predicted by Oppenheimer [3] in 1928 to be a tunneling phenomenon and was first observed two years later by von Traubenberg et al. [4]. They meas- ured the quenching of spectral lines of the Balmer series in hydrogen in an electric field. The physics of atoms in external fields is of fundamental interest and is related to the general problem of the properties of isolated atoms in different physical environments [5,6]. Interest for this subject can be found in various fields of physics such as plasma physics [7], astrophysics [8,9,10] and precision time and frequency metrology [11]. Many atomic quantities, such as level energies, fine structure splittings etc., are known to high accuracy and are sensitive probes for external influences. On the other hand, knowledge of the external effects can be used to influence atomic or material processes. As an electric field is easily produced in the laboratory and can be measured precisely, a study of its interaction with isolated atoms (in excited states) is straightforward. Furthermore, from a theoretical point of view the basic atom-field interaction can be evaluated in an essentially exact form. In the past it was only possible to study atoms in their ground state or in low-lying excited states. Under those circumstances external fields are weak compared to the internal atomic fields. It was technically impossible to create laboratory fields which were sufficiently strong to significantly perturb atoms in their normal states.
Recommended publications
  • Electric Dipoles in Atoms and Molecules and the Stark Effect Publicação IF – 1663/2011
    Electric Dipoles in Atoms and Molecules and the Stark Effect Instituto de Física, Universidade de São Paulo, CP 66.318 05315-970, São Paulo, SP, Brasil Publicação IF – 1663/2011 21/06/2011 Electric Dipoles of Atoms and Molecules and the Stark Effect M. Cattani Instituto de Fisica, Universidade de S. Paulo, C.P. 66318, CEP 05315−970 S. Paulo, S.P. Brazil . E−mail: [email protected] Abstract. This article was written for undergraduate and postgraduate students of physics. We analyze the electric dipole moments (EDM) of atoms and molecules when they are isolated and when are placed in a uniform static electric field. This was done this because usually in text books and articles this separation is not clearly displayed. Key words: Electric dipole moments of atoms and molecules; Stark effect . (I) Introduction . Our goal is to write an article for undergraduate and postgraduate students of physics to study the electric dipole moments (EDM) of atoms and molecules when they are isolated and when they are placed in a uniform static electric field . We have done this because many times in text books and articles this separation is not clearly displayed. The dipole of an isolated system will be named natural or permanent EDM and that one which is generated by an external field will be named induced EDM. So, we begin recalling the definition of EDM adopted in basic physics courses 1−4 for an isolated aggregate of charges. If in a given system positive charges + q and negative −q are concentrated at different points we say that it has an EDM.
    [Show full text]
  • 22.51 Course Notes, Chapter 11: Perturbation Theory
    11. Perturbation Theory 11.1 Time-independent perturbation theory 11.1.1 Non-degenerate case 11.1.2 Degenerate case 11.1.3 The Stark effect 11.2 Time-dependent perturbation theory 11.2.1 Review of interaction picture 11.2.2 Dyson series 11.2.3 Fermi’s Golden Rule 11.1 Time-independent perturbation theory Because of the complexity of many physical problems, very few can be solved exactly (unless they involve only small Hilbert spaces). In particular, to analyze the interaction of radiation with matter we will need to develop approximation methods36 . 11.1.1 Non-degenerate case We have an Hamiltonian = + ǫV H H0 where we know the eigenvalue of the unperturbed Hamiltonian and we want to solve for the perturbed case H0 = 0 + ǫV , in terms of an expansion in ǫ (with ǫ varying between 0 and 1). The solution for ǫ 1 is the desired Hsolution. H → We assume that we know exactly the energy eigenkets and eigenvalues of : H0 k = E(0) k H0 | ) k | ) As is hermitian, its eigenkets form a complete basis k k = 11. We assume at first that the energy spectrum H0 k | )( | is not degenerate (that is, all the E(0) are different, in the next section we will study the degenerate case). The k L eigensystem for the total hamiltonian is then ( + ǫV ) ϕ = E (ǫ) ϕ H0 | k)ǫ k | k)ǫ where ǫ = 1 is the case we are interested in, but we will solve for a general ǫ as a perturbation in this parameter: (0) (1) 2 (2) (0) (1) 2 (2) ϕ = ϕ + ǫ ϕ + ǫ ϕ + ..., E = E + ǫE + ǫ E + ..
    [Show full text]
  • Qualification Exam: Quantum Mechanics
    Qualification Exam: Quantum Mechanics Name: , QEID#43228029: July, 2019 Qualification Exam QEID#43228029 2 1 Undergraduate level Problem 1. 1983-Fall-QM-U-1 ID:QM-U-2 Consider two spin 1=2 particles interacting with one another and with an external uniform magnetic field B~ directed along the z-axis. The Hamiltonian is given by ~ ~ ~ ~ ~ H = −AS1 · S2 − µB(g1S1 + g2S2) · B where µB is the Bohr magneton, g1 and g2 are the g-factors, and A is a constant. 1. In the large field limit, what are the eigenvectors and eigenvalues of H in the "spin-space" { i.e. in the basis of eigenstates of S1z and S2z? 2. In the limit when jB~ j ! 0, what are the eigenvectors and eigenvalues of H in the same basis? 3. In the Intermediate regime, what are the eigenvectors and eigenvalues of H in the spin space? Show that you obtain the results of the previous two parts in the appropriate limits. Problem 2. 1983-Fall-QM-U-2 ID:QM-U-20 1. Show that, for an arbitrary normalized function j i, h jHj i > E0, where E0 is the lowest eigenvalue of H. 2. A particle of mass m moves in a potential 1 kx2; x ≤ 0 V (x) = 2 (1) +1; x < 0 Find the trial state of the lowest energy among those parameterized by σ 2 − x (x) = Axe 2σ2 : What does the first part tell you about E0? (Give your answers in terms of k, m, and ! = pk=m). Problem 3. 1983-Fall-QM-U-3 ID:QM-U-44 Consider two identical particles of spin zero, each having a mass m, that are con- strained to rotate in a plane with separation r.
    [Show full text]
  • Chapter 8 Perturbation Theory, Zeeman Effect, Stark Effect
    Chapter 8 Perturbation Theory, Zeeman Effect, Stark Effect Unfortunately, apart from a few simple examples, the Schr¨odingerequation is generally not exactly solvable and we therefore have to rely upon approximative methods to deal with more realistic situations. Such methods include perturbation theory, the variational method and the WKB1-approximation. In our Scriptum we, however, just cope with perturbation theory in its simplest version. It is a systematic procedure for obtaining approximate solutions to the unperturbed problem which is assumed to be known exactly. 8.1 Time{Independent Perturbation Theory The method of perturbation theory is that we deform slightly { perturb { a known Hamil- tonian H0 by a new Hamiltonian HI, some potential responsible for an interaction of the system, and try to solve the Schr¨odingerequation approximately since, in general, we will be unable to solve it exactly. Thus we start with a Hamiltonian of the following form H = H0 + λ HI where λ 2 [0; 1] ; (8.1) where the Hamiltonian H0 is perturbed by a smaller term, the interaction HI with λ small. The unperturbed Hamiltonian is assumed to be solved and has well-known eigenfunctions and eigenvalues, i.e. 0 (0) 0 H0 n = En n ; (8.2) where the eigenfunctions are chosen to be normalized 0 0 m n = δmn : (8.3) The superscript " 0 " denotes the eigenfunctions and eigenvalues of the unperturbed system H0 , and we furthermore require the unperturbed eigenvalues to be non-degenerate (0) (0) Em 6= En ; (8.4) 1, named after Wentzel, Kramers and Brillouin. 151 152CHAPTER 8. PERTURBATION THEORY, ZEEMAN EFFECT, STARK EFFECT otherwise we would use a different method leading to the so-called degenerate perturbation theory.
    [Show full text]
  • Stark Effect
    Stark Effect The Stark effect is the shift in atomic energy levels caused by an external electric field. There are various regimes to consider. The one treated here is the so-called strong field case, where the shift in energy levels due to the external electric field is large compared to fine structure (although still small compared to the spacings between the unperturbed atomic levels.) In the strong field limit, the Stark effect is independent of electron spin. We start with the ordinary hydrogen Hamiltonian, p2 e2 H = − 0 2m r and add a term arising from a uniform electric field along the z axis. H0 = eEz: Note the + sign on this term. It is easily checked by remembering that the force on the electron due to this term would be obtained by taking −@z; which gives a force along the −z axis, as it should for an electron. To understand the matrix elements that are non-zero, it is useful to temporarily give the external electric field an arbitrary direction, H0 = eE·~ ~x The selection rules on the matrix elements of ~x are < n0; l0; m0j~xjn; l; m >=6 0; l0 = l ± 1: These follow from angular momentum conservation (~x has angular momentum 1), and parity (~x is odd under parity). Returning to the case of the electric field along the z axis, we have an additional selection rule on m; < n0; l0; m0jzjn; l; m >=6 0; l0 = l ± 1; m0 = m From these selection rules we see that non-zero matrix elements require different values of l.
    [Show full text]
  • Higher Orders of Perturbation Theory for the Stark Effect on an Atomic Multiplet I
    Journal of Experimental and Theoretical Physics, Vol. 96, No. 6, 2003, pp. 1006–1018. Translated from Zhurnal Éksperimental’noÏ i TeoreticheskoÏ Fiziki, Vol. 123, No. 6, 2003, pp. 1145–1159. Original Russian Text Copyright © 2003 by Bolgova, Ovsyannikov, Pal’chikov, Magunov, von Oppen. ATOMS, SPECTRA, RADIATION Higher Orders of Perturbation Theory for the Stark Effect on an Atomic Multiplet I. L. Bolgovaa, V. D. Ovsyannikova, V. G. Pal’chikovb,*, A. I. Magunovc, and G. von Oppend aPhysics Department, Voronezh State University, Voronezh, 394006 Russia bNational Research Institute for Physical–Technical and Radiotechnical Measurements, Mendeleevo, Moscow oblast, 141570 Russia *e-mail: [email protected] cInstitute of General Physics, Russian Academy of Sciences, Moscow, 119991 Russia dTechnical University, Berlin, D-10623, Germany Received November 28, 2002 Abstract—The contribution of higher order corrections to the Stark energy is calculated in the anticrossing region of atomic multiplet sublevels. Perturbation theory for close-lying levels is presented that is based on the Schrödinger integral equation with a completely reduced Green’s function. Analytic formulas are obtained for the splitting of two interacting fine-structure sublevels as a function of the field strength. These formulas take into account fourth-order resonance and nonresonance corrections to both the diagonal and the off-diagonal matrix elements of the dipole moment operator. By the method of the Fues model potential, a numerical anal- ysis of radial matrix elements of the second, third, and fourth orders is carried out that determine a variation in 3 3 the transition energy between n P0 and n P2 sublevels of a helium atom for n = 2, 3, 4, 5 in a uniform electric field.
    [Show full text]
  • Atomic Physics
    Atomic Physics High-precision quantum systems and the interaction of light and matter Dr Andrew Steane April 10, 2002 Contents 1 Themes in Atomic Physics 6 1.1 Some mathematical notations . 7 1.2 Atomic physics|some preliminaries . 8 1.2.1 The role of classical and quantum mechanics . 9 1.3 Introducing the atom . 9 2 Hydrogen 10 2.1 SchrÄodingerequation solution: Main features . 10 2.2 Comment . 13 2.3 Orbital angular momentum notation . 13 2.4 Some classical estimates . 14 2.5 How to remember hydrogen . 15 2.6 Hydrogen-like systems . 15 2.7 Main points . 16 2.8 Appendix on series solution of hydrogen equation, o® syllabus . 16 3 Grating spectroscopy and the emission and absorption spectrum of hydrogen 18 3.1 Main points for use of grating spectrograph . 18 1 3.2 Resolution . 19 3.3 Usefulness of both emission and absorption methods . 20 3.4 The spectrum for hydrogen . 20 3.5 What is going on when atoms emit and absorb light . 20 3.6 Main points . 21 4 How quantum theory deals with further degrees of freedom 22 4.1 Multi-particle wavefunctions . 22 4.2 Spin . 23 4.3 Main points . 24 5 Angular momentum in quantum systems 25 5.1 Main points . 28 6 Helium 29 6.1 Main features of the structure . 29 6.2 Splitting of singlets from triplets . 30 6.3 Exchange symmetry and the Pauli exclusion principle . 31 6.4 Exchange symmetry in helium . 34 6.5 Main points . 35 6.5.1 Appendix: detailed derivation of states and splitting .
    [Show full text]
  • A Stark-Effect Modulator for CO2 Laser Free-Space Communications
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2005 A Stark-Effect Modulator for CO2 Laser Free-Space Communications Ryan Lane Holloman University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Physics Commons Recommended Citation Holloman, Ryan Lane, "A Stark-Effect Modulator for CO2 Laser Free-Space Communications. " Master's Thesis, University of Tennessee, 2005. https://trace.tennessee.edu/utk_gradthes/2004 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Ryan Lane Holloman entitled "A Stark-Effect Modulator for CO2 Laser Free-Space Communications." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Physics. Stuart Elston, Major Professor We have read this thesis and recommend its acceptance: Donald Hutchinson, Robert Compton Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Ryan Lane Holloman entitled “A Stark- Effect Modulator for CO2 Laser Free-Space Communications.” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Physics.
    [Show full text]
  • Quantum Mechanics Department of Physics and Astronomy University of New Mexico
    Preliminary Examination: Quantum Mechanics Department of Physics and Astronomy University of New Mexico Fall 2004 Instructions: • The exam consists two parts: 5 short answers (6 points each) and your pick of 2 out 3 long answer problems (35 points each). • Where possible, show all work, partial credit will be given. • Personal notes on two sides of a 8X11 page are allowed. • Total time: 3 hours Good luck! Short Answers: S1. Consider a free particle moving in 1D. Shown are two different wave packets in position space whose wave functions are real. Which corresponds to a higher average energy? Explain your answer. (a) (b) ψ(x) ψ(x) ψ(x) ψ(x) ψ = 0 ψ(x) S2. Consider an atom consisting of a muon (heavy electron with mass m ≈ 200m ) µ e bound to a proton. Ignore the spin of these particles. What are the bound state energy eigenvalues? What are the quantum numbers that are necessary to completely specify an energy eigenstate? Write out the values of these quantum numbers for the first excited state. sr sr H asr sr S3. Two particles of spins 1 and 2 interact via a potential ′ = 1 ⋅ 2 . a) Which of the following quantities are conserved: sr sr sr 2 sr 2 sr sr sr sr 2 1 , 2 , 1 , 2 , = 1 + 2 , ? b) If s1 = 5 and s2 = 1, what are the possible values of the total angular momentum quantum number s? S4. The energy levels En of a symmetric potential well V(x) are denoted below. V(x) E4 E3 E2 E1 E0 x=-b x=-a x=a x=b (a) How many bound states are there? (b) Sketch the wave functions for the first three levels (n=0,1,2).
    [Show full text]
  • Summer Lecture Notes Hydrogen-Like Atoms, Transition Theory
    Summer Lecture Notes Hydrogen-like Atoms, Transition Theory Andrew Forrester September 7, 2006 Contents 1 Lecture 7 3 2 Preliminaries and Notation 3 3 Hydrogen-Like Atoms to Zeroth Order 4 3.1 The Hamiltonian . 4 3.2 Bound State Energy Eigenfunctions and Spectra . 5 3.3 Special Functions . 5 3.4 Useful Integrals and Expectation Values . 6 4 Approximation Methods for Bound States 8 4.1 Bound State Perturbation Theory . 8 4.1.1 Time-Independent, Non-Degenerate . 8 4.1.2 Time-Independent, Degenerate . 8 4.1.3 Time-Dependent (Non-Degenerate/Degenerate)? . 8 4.2 Variational Method . 8 4.3 Born-Oppenheimer Approximation (is this used inside other methods?) . 8 4.4 WKB (Wentzel-Kramers-Brillouin) Method . 8 5 Hydrogen-like Atom Effects and Corrections 9 5.1 General or External Effects . 9 5.1.1 (Electric Coupling?): Stark Effect . 9 5.1.2 (Magnetic Coupling): Zeeman Effect, Anomalous Zeeman Effect . 9 5.1.3 Angular Momentum Coupling . 10 5.1.4 van der Waals Effect . 10 5.1.5 Minimal Coupling(?) . 10 5.2 Internal Effects, or Corrections . 10 5.2.1 Reduced Mass Correction . 10 5.2.2 Relativistic Kinetic Energy Correction . 10 5.2.3 (Magnetic-(Electric/Magnetic) Coupling?): Spin-Orbit (LS) Coupling, Fine Structure . 10 5.2.4 (Magnetic Coupling?): Spin-Spin (SS) Coupling, Hyperfine Structure (A Per- manent Zeeman Effect) . 10 5.2.5 Finite Size of the Nucleus Correction . 10 5.2.6 Lamb Shift . 10 6 Examples 11 6.1 Helium Ground State . 11 6.2 Molecules: Born-Oppenheimer Approximation, Hydrogen Molecular Ion .
    [Show full text]
  • Theory of the Ac Stark Effect on the Atomic Hyperfine Structure And
    University of Nevada, Reno Theory of the ac Stark Effect on the Atomic Hyperfine Structure and Applications to Microwave Atomic Clocks A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics by Kyle Beloy Dr. Andrei Derevianko/Dissertation Advisor August, 2009 THE GRADUATE SCHOOL We recommend that the dissertation prepared under our supervision by KYLE BELOY entitled Theory of the ac Stark Effect on the Hyperfine Structure and Applications to Microwave Atomic Clocks be accepted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Andrei Derevianko, Ph. D., Advisor Jonathan Weinstein, Ph. D., Committee Member Peter Winkler, Ph. D., Committee Member Sean Casey, Ph. D., Committee Member Stephen Wheatcraft, Ph. D., Graduate School Representative Marsha H. Read, Ph. D., Associate Dean, Graduate School August, 2009 i Abstract Microwave atomic clocks are based on the intrinsic hyperfine energy interval in the ground state of an atom. In the presence of an oscillating electric field, the atomic system|namely, the hyperfine interval|becomes perturbed (the ac Stark effect). For the atomic sample in a clock, such a perturbation leads to an undesired shift in the clock frequency and, ultimately, to an inaccuracy in the measurement of time. Here a consistent perturbation formalism is presented for the theory of the ac Stark effect on the atomic hyperfine structure. By further implementing relativistic atomic many-body theory, this formalism is then utilized for two specific microwave atomic clock applications: a high-accuracy calculation of the blackbody radiation shift in the 133Cs primary frequency standard and a proposal for microwave clocks based on atoms in an engineered optical lattice.
    [Show full text]
  • Arxiv:1308.5205V2 [Physics.Atom-Ph] 11 Nov 2013
    Double Bragg diffraction: A tool for atom optics E. Giese,1 A. Roura,1 G. Tackmann,2 E. M. Rasel,2 and W. P. Schleich1 1Institut f¨urQuantenphysik and Center for Integrated Quantum Science and Technology IQST , Universit¨atUlm, Albert-Einstein-Allee 11, D-89081, Germany. 2Institut f¨urQuantenoptik, Leibniz Universit¨atHannover, Welfengarten 1, D-30167 Hannover, Germany. The use of retro-reflection in light-pulse atom interferometry under microgravity conditions nat- urally leads to a double-diffraction scheme. The two pairs of counterpropagating beams induce simultaneously transitions with opposite momentum transfer that, when acting on atoms initially at rest, give rise to symmetric interferometer configurations where the total momentum transfer is automatically doubled and where a number of noise sources and systematic effects cancel out. Here we extend earlier implementations for Raman transitions to the case of Bragg diffraction. In contrast with the single-diffraction case, the existence of additional off-resonant transitions between resonantly connected states precludes the use of the adiabatic elimination technique. Nevertheless, we have been able to obtain analytic results even beyond the deep Bragg regime by employing the so-called \method of averaging," which can be applied to more general situations of this kind. Our results have been validated by comparison to numerical solutions of the basic equations describing the double-diffraction process. I. INTRODUCTION ability to manipulate light. It should be noted that all cases mentioned so far involve static potentials (or effec- There has recently been a growing interest in the tive potentials) for the dynamics of the matter waves, possibilities that (ultra)cold atoms in microgravity offer which implies that the kinetic energy (the modulus of for long-time interferometry and its application to high- the wave-vector) before and after scattering remains the precision measurements [1{4].
    [Show full text]