Topical N-Grams: Phrase and Topic Discovery, with an Application to Information Retrieval
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  A Way with Words: Recent Advances in Lexical Theory and Analysis: a Festschrift for Patrick HanksA Way with Words: Recent Advances in Lexical Theory and Analysis: A Festschrift for Patrick Hanks Gilles-Maurice de Schryver (editor) (Ghent University and University of the Western Cape) Kampala: Menha Publishers, 2010, vii+375 pp; ISBN 978-9970-10-101-6, e59.95 Reviewed by Paul Cook University of Toronto In his introduction to this collection of articles dedicated to Patrick Hanks, de Schryver presents a quote from Atkins referring to Hanks as “the ideal lexicographer’s lexicogra- pher.” Indeed, Hanks has had a formidable career in lexicography, including playing an editorial role in the production of four major English dictionaries. But Hanks’s achievements reach far beyond lexicography; in particular, Hanks has made numerous contributions to computational linguistics. Hanks is co-author of the tremendously influential paper “Word association norms, mutual information, and lexicography” (Church and Hanks 1989) and maintains close ties to our field. Furthermore, Hanks has advanced the understanding of the relationship between words and their meanings in text through his theory of norms and exploitations (Hanks forthcoming). The range of Hanks’s interests is reflected in the authors and topics of the articles in this Festschrift; this review concentrates more on those articles that are likely to be of most interest to computational linguists, and does not discuss some articles that appeal primarily to a lexicographical audience. Following the introduction to Hanks and his career by de Schryver, the collection is split into three parts: Theoretical Aspects and Background, Computing Lexical Relations, and Lexical Analysis and Dictionary Writing. 1. Part I: Theoretical Aspects and Background Part I begins with an unfinished article by the late John Sinclair, in which he begins to put forward an argument that multi-word units of meaning should be given the same status in dictionaries as ordinary headwords.
- 
												  Finetuning Pre-Trained Language Models for Sentiment Classification of COVID19 TweetsTechnological University Dublin ARROW@TU Dublin Dissertations School of Computer Sciences 2020 Finetuning Pre-Trained Language Models for Sentiment Classification of COVID19 Tweets Arjun Dussa Technological University Dublin Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis Part of the Computer Engineering Commons Recommended Citation Dussa, A. (2020) Finetuning Pre-trained language models for sentiment classification of COVID19 tweets,Dissertation, Technological University Dublin. doi:10.21427/fhx8-vk25 This Dissertation is brought to you for free and open access by the School of Computer Sciences at ARROW@TU Dublin. It has been accepted for inclusion in Dissertations by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Finetuning Pre-trained language models for sentiment classification of COVID19 tweets Arjun Dussa A dissertation submitted in partial fulfilment of the requirements of Technological University Dublin for the degree of M.Sc. in Computer Science (Data Analytics) September 2020 Declaration I certify that this dissertation which I now submit for examination for the award of MSc in Computing (Data Analytics), is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the test of my work. This dissertation was prepared according to the regulations for postgraduate study of the Technological University Dublin and has not been submitted in whole or part for an award in any other Institute or University.
- 
												  An Evaluation of Machine Learning Approaches to Natural Language Processing for Legal Text ClassificationImperial College London Department of Computing An Evaluation of Machine Learning Approaches to Natural Language Processing for Legal Text Classification Supervisors: Author: Prof Alessandra Russo Clavance Lim Nuri Cingillioglu Submitted in partial fulfillment of the requirements for the MSc degree in Computing Science of Imperial College London September 2019 Contents Abstract 1 Acknowledgements 2 1 Introduction 3 1.1 Motivation .................................. 3 1.2 Aims and objectives ............................ 4 1.3 Outline .................................... 5 2 Background 6 2.1 Overview ................................... 6 2.1.1 Text classification .......................... 6 2.1.2 Training, validation and test sets ................. 6 2.1.3 Cross validation ........................... 7 2.1.4 Hyperparameter optimization ................... 8 2.1.5 Evaluation metrics ......................... 9 2.2 Text classification pipeline ......................... 14 2.3 Feature extraction ............................. 15 2.3.1 Count vectorizer .......................... 15 2.3.2 TF-IDF vectorizer ......................... 16 2.3.3 Word embeddings .......................... 17 2.4 Classifiers .................................. 18 2.4.1 Naive Bayes classifier ........................ 18 2.4.2 Decision tree ............................ 20 2.4.3 Random forest ........................... 21 2.4.4 Logistic regression ......................... 21 2.4.5 Support vector machines ...................... 22 2.4.6 k-Nearest Neighbours .......................
- 
												  Fasttext.Zip: Compressing Text Classification ModelsUnder review as a conference paper at ICLR 2017 FASTTEXT.ZIP: COMPRESSING TEXT CLASSIFICATION MODELS Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Herve´ Jegou´ & Tomas Mikolov Facebook AI Research fajoulin,egrave,bojanowski,matthijs,rvj,[email protected] ABSTRACT We consider the problem of producing compact architectures for text classifica- tion, such that the full model fits in a limited amount of memory. After consid- ering different solutions inspired by the hashing literature, we propose a method built upon product quantization to store word embeddings. While the original technique leads to a loss in accuracy, we adapt this method to circumvent quan- tization artefacts. Combined with simple approaches specifically adapted to text classification, our approach derived from fastText requires, at test time, only a fraction of the memory compared to the original FastText, without noticeably sacrificing quality in terms of classification accuracy. Our experiments carried out on several benchmarks show that our approach typically requires two orders of magnitude less memory than fastText while being only slightly inferior with respect to accuracy. As a result, it outperforms the state of the art by a good margin in terms of the compromise between memory usage and accuracy. 1 INTRODUCTION Text classification is an important problem in Natural Language Processing (NLP). Real world use- cases include spam filtering or e-mail categorization. It is a core component in more complex sys- tems such as search and ranking. Recently, deep learning techniques based on neural networks have achieved state of the art results in various NLP applications. One of the main successes of deep learning is due to the effectiveness of recurrent networks for language modeling and their application to speech recognition and machine translation (Mikolov, 2012).
- 
												  Lexical AnalysisFrom words to numbers Parsing, tokenization, extract information Natural Language Processing Piotr Fulmański Lecture goals • Tokenizing your text into words and n-grams (tokens) • Compressing your token vocabulary with stemming and lemmatization • Building a vector representation of a statement Natural Language Processing in Action by Hobson Lane Cole Howard Hannes Max Hapke Manning Publications, 2019 Terminology Terminology • A phoneme is a unit of sound that distinguishes one word from another in a particular language. • In linguistics, a word of a spoken language can be defined as the smallest sequence of phonemes that can be uttered in isolation with objective or practical meaning. • The concept of "word" is usually distinguished from that of a morpheme. • Every word is composed of one or more morphemes. • A morphem is the smallest meaningful unit in a language even if it will not stand on its own. A morpheme is not necessarily the same as a word. The main difference between a morpheme and a word is that a morpheme sometimes does not stand alone, but a word, by definition, always stands alone. Terminology SEGMENTATION • Text segmentation is the process of dividing written text into meaningful units, such as words, sentences, or topics. • Word segmentation is the problem of dividing a string of written language into its component words. Text segmentation, retrieved 2020-10-20, https://en.wikipedia.org/wiki/Text_segmentation Terminology SEGMENTATION IS NOT SO EASY • Trying to resolve the question of what a word is and how to divide up text into words we can face many "exceptions": • Is “ice cream” one word or two to you? Don’t both words have entries in your mental dictionary that are separate from the compound word “ice cream”? • What about the contraction “don’t”? Should that string of characters be split into one or two “packets of meaning?” • The single statement “Don’t!” means “Don’t you do that!” or “You, do not do that!” That’s three hidden packets of meaning for a total of five tokens you’d like your machine to know about.
- 
												  WELDA: Enhancing Topic Models by Incorporating Local Word ContextWELDA: Enhancing Topic Models by Incorporating Local Word Context Stefan Bunk Ralf Krestel Hasso Plattner Institute Hasso Plattner Institute Potsdam, Germany Potsdam, Germany [email protected] [email protected] ABSTRACT The distributional hypothesis states that similar words tend to have similar contexts in which they occur. Word embedding models exploit this hypothesis by learning word vectors based on the local context of words. Probabilistic topic models on the other hand utilize word co-occurrences across documents to identify topically related words. Due to their complementary nature, these models define different notions of word similarity, which, when combined, can produce better topical representations. In this paper we propose WELDA, a new type of topic model, which combines word embeddings (WE) with latent Dirichlet allo- cation (LDA) to improve topic quality. We achieve this by estimating topic distributions in the word embedding space and exchanging selected topic words via Gibbs sampling from this space. We present an extensive evaluation showing that WELDA cuts runtime by at least 30% while outperforming other combined approaches with Figure 1: Illustration of an LDA topic in the word embed- respect to topic coherence and for solving word intrusion tasks. ding space. The gray isolines show the learned probability distribution for the topic. Exchanging topic words having CCS CONCEPTS low probability in the embedding space (red minuses) with • Information systems → Document topic models; Document high probability words (green pluses), leads to a superior collection models; • Applied computing → Document analysis; LDA topic. KEYWORDS word by the company it keeps” [11]. In other words, if two words topic models, word embeddings, document representations occur in similar contexts, they are similar.
- 
												  Supervised and Unsupervised Word Sense Disambiguation on Word Embedding Vectors of Unambiguous SynonymsSupervised and Unsupervised Word Sense Disambiguation on Word Embedding Vectors of Unambiguous Synonyms Aleksander Wawer Agnieszka Mykowiecka Institute of Computer Science Institute of Computer Science PAS PAS Jana Kazimierza 5 Jana Kazimierza 5 01-248 Warsaw, Poland 01-248 Warsaw, Poland [email protected] [email protected] Abstract Unsupervised WSD algorithms aim at resolv- ing word ambiguity without the use of annotated This paper compares two approaches to corpora. There are two popular categories of word sense disambiguation using word knowledge-based algorithms. The first one orig- embeddings trained on unambiguous syn- inates from the Lesk (1986) algorithm, and ex- onyms. The first one is an unsupervised ploit the number of common words in two sense method based on computing log proba- definitions (glosses) to select the proper meaning bility from sequences of word embedding in a context. Lesk algorithm relies on the set of vectors, taking into account ambiguous dictionary entries and the information about the word senses and guessing correct sense context in which the word occurs. In (Basile et from context. The second method is super- al., 2014) the concept of overlap is replaced by vised. We use a multilayer neural network similarity represented by a DSM model. The au- model to learn a context-sensitive transfor- thors compute the overlap between the gloss of mation that maps an input vector of am- the meaning and the context as a similarity mea- biguous word into an output vector repre- sure between their corresponding vector represen- senting its sense. We evaluate both meth- tations in a semantic space.
- 
												  Investigating Classification for Natural Language Processing TasksUCAM-CL-TR-721 Technical Report ISSN 1476-2986 Number 721 Computer Laboratory Investigating classification for natural language processing tasks Ben W. Medlock June 2008 15 JJ Thomson Avenue Cambridge CB3 0FD United Kingdom phone +44 1223 763500 http://www.cl.cam.ac.uk/ c 2008 Ben W. Medlock This technical report is based on a dissertation submitted September 2007 by the author for the degree of Doctor of Philosophy to the University of Cambridge, Fitzwilliam College. Technical reports published by the University of Cambridge Computer Laboratory are freely available via the Internet: http://www.cl.cam.ac.uk/techreports/ ISSN 1476-2986 Abstract This report investigates the application of classification techniques to four natural lan- guage processing (NLP) tasks. The classification paradigm falls within the family of statistical and machine learning (ML) methods and consists of a framework within which a mechanical `learner' induces a functional mapping between elements drawn from a par- ticular sample space and a set of designated target classes. It is applicable to a wide range of NLP problems and has met with a great deal of success due to its flexibility and firm theoretical foundations. The first task we investigate, topic classification, is firmly established within the NLP/ML communities as a benchmark application for classification research. Our aim is to arrive at a deeper understanding of how class granularity affects classification accuracy and to assess the impact of representational issues on different classification models. Our second task, content-based spam filtering, is a highly topical application for classification techniques due to the ever-worsening problem of unsolicited email.
- 
												  Generative Topic Embedding: a Continuous Representation of DocumentsGenerative Topic Embedding: a Continuous Representation of Documents Shaohua Li1,2 Tat-Seng Chua1 Jun Zhu3 Chunyan Miao2 [email protected] [email protected] [email protected] [email protected] 1. School of Computing, National University of Singapore 2. Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY) 3. Department of Computer Science and Technology, Tsinghua University Abstract as continuous vectors in a low-dimensional em- bedding space (Bengio et al., 2003; Mikolov et al., Word embedding maps words into a low- 2013; Pennington et al., 2014; Levy et al., 2015). dimensional continuous embedding space The learned embedding for a word encodes its by exploiting the local word collocation semantic/syntactic relatedness with other words, patterns in a small context window. On by utilizing local word collocation patterns. In the other hand, topic modeling maps docu- each method, one core component is the embed- ments onto a low-dimensional topic space, ding link function, which predicts a word’s distri- by utilizing the global word collocation bution given its context words, parameterized by patterns in the same document. These their embeddings. two types of patterns are complementary. When it comes to documents, we wish to find a In this paper, we propose a generative method to encode their overall semantics. Given topic embedding model to combine the the embeddings of each word in a document, we two types of patterns. In our model, topics can imagine the document as a “bag-of-vectors”. are represented by embedding vectors, and Related words in the document point in similar di- are shared across documents.
- 
												  Linked Data Triples Enhance Document Relevance Classificationapplied sciences Article Linked Data Triples Enhance Document Relevance Classification Dinesh Nagumothu * , Peter W. Eklund , Bahadorreza Ofoghi and Mohamed Reda Bouadjenek School of Information Technology, Deakin University, Geelong, VIC 3220, Australia; [email protected] (P.W.E.); [email protected] (B.O.); [email protected] (M.R.B.) * Correspondence: [email protected] Abstract: Standardized approaches to relevance classification in information retrieval use generative statistical models to identify the presence or absence of certain topics that might make a document relevant to the searcher. These approaches have been used to better predict relevance on the basis of what the document is “about”, rather than a simple-minded analysis of the bag of words contained within the document. In more recent times, this idea has been extended by using pre-trained deep learning models and text representations, such as GloVe or BERT. These use an external corpus as a knowledge-base that conditions the model to help predict what a document is about. This paper adopts a hybrid approach that leverages the structure of knowledge embedded in a corpus. In particular, the paper reports on experiments where linked data triples (subject-predicate-object), constructed from natural language elements are derived from deep learning. These are evaluated as additional latent semantic features for a relevant document classifier in a customized news- feed website. The research is a synthesis of current thinking in deep learning models in NLP and information retrieval and the predicate structure used in semantic web research. Our experiments Citation: Nagumothu, D.; Eklund, indicate that linked data triples increased the F-score of the baseline GloVe representations by 6% P.W.; Ofoghi, B.; Bouadjenek, M.R.
- 
												  Document and Topic Models: Plsa10/4/2018 Document and Topic Models: pLSA and LDA Andrew Levandoski and Jonathan Lobo CS 3750 Advanced Topics in Machine Learning 2 October 2018 Outline • Topic Models • pLSA • LSA • Model • Fitting via EM • pHITS: link analysis • LDA • Dirichlet distribution • Generative process • Model • Geometric Interpretation • Inference 2 1 10/4/2018 Topic Models: Visual Representation Topic proportions and Topics Documents assignments 3 Topic Models: Importance • For a given corpus, we learn two things: 1. Topic: from full vocabulary set, we learn important subsets 2. Topic proportion: we learn what each document is about • This can be viewed as a form of dimensionality reduction • From large vocabulary set, extract basis vectors (topics) • Represent document in topic space (topic proportions) 푁 퐾 • Dimensionality is reduced from 푤푖 ∈ ℤ푉 to 휃 ∈ ℝ • Topic proportion is useful for several applications including document classification, discovery of semantic structures, sentiment analysis, object localization in images, etc. 4 2 10/4/2018 Topic Models: Terminology • Document Model • Word: element in a vocabulary set • Document: collection of words • Corpus: collection of documents • Topic Model • Topic: collection of words (subset of vocabulary) • Document is represented by (latent) mixture of topics • 푝 푤 푑 = 푝 푤 푧 푝(푧|푑) (푧 : topic) • Note: document is a collection of words (not a sequence) • ‘Bag of words’ assumption • In probability, we call this the exchangeability assumption • 푝 푤1, … , 푤푁 = 푝(푤휎 1 , … , 푤휎 푁 ) (휎: permutation) 5 Topic Models: Terminology (cont’d) • Represent each document as a vector space • A word is an item from a vocabulary indexed by {1, … , 푉}. We represent words using unit‐basis vectors.
- 
												  Lexical Sense Labeling and Sentiment Potential Analysis Using Corpus-Based Dependency Graphmathematics Article Lexical Sense Labeling and Sentiment Potential Analysis Using Corpus-Based Dependency Graph Tajana Ban Kirigin 1,* , Sanda Bujaˇci´cBabi´c 1 and Benedikt Perak 2 1 Department of Mathematics, University of Rijeka, R. Matejˇci´c2, 51000 Rijeka, Croatia; [email protected] 2 Faculty of Humanities and Social Sciences, University of Rijeka, SveuˇcilišnaAvenija 4, 51000 Rijeka, Croatia; [email protected] * Correspondence: [email protected] Abstract: This paper describes a graph method for labeling word senses and identifying lexical sentiment potential by integrating the corpus-based syntactic-semantic dependency graph layer, lexical semantic and sentiment dictionaries. The method, implemented as ConGraCNet application on different languages and corpora, projects a semantic function onto a particular syntactical de- pendency layer and constructs a seed lexeme graph with collocates of high conceptual similarity. The seed lexeme graph is clustered into subgraphs that reveal the polysemous semantic nature of a lexeme in a corpus. The construction of the WordNet hypernym graph provides a set of synset labels that generalize the senses for each lexical cluster. By integrating sentiment dictionaries, we introduce graph propagation methods for sentiment analysis. Original dictionary sentiment values are integrated into ConGraCNet lexical graph to compute sentiment values of node lexemes and lexical clusters, and identify the sentiment potential of lexemes with respect to a corpus. The method can be used to resolve sparseness of sentiment dictionaries and enrich the sentiment evaluation of Citation: Ban Kirigin, T.; lexical structures in sentiment dictionaries by revealing the relative sentiment potential of polysemous Bujaˇci´cBabi´c,S.; Perak, B. Lexical Sense Labeling and Sentiment lexemes with respect to a specific corpus.