2.7 Turing Machines and Grammars We Now Turn Our Attention Back to Turing Machines As Language Acceptors

Total Page:16

File Type:pdf, Size:1020Kb

2.7 Turing Machines and Grammars We Now Turn Our Attention Back to Turing Machines As Language Acceptors 2.7 Turing Machines and Grammars We now turn our attention back to Turing Machines as language acceptors. We have already seen in Sec. 2.4 how Turing Machines define two classes of languages, i.e., recursive language and recursively enumerable languages, depending on whether string membership in the respective languages can be decided on or merely accepted. Recursive and Recursively Enumerable Languages Accepting Vs Deciding M accepts a language when it halts on every member string. M decides a language when it halts (resp. hangs) on a string that is (resp. is not) a member of the language. Accepting, Deciding and Languages Recursive Languages are decidable. Recursively Enumerable are accepted (recognised) by Turing Machines. Slide 58 Chomsky Language Class Hierarchy Regular Languages: Recognised by Regular Grammars. Context Free Languages: Recognised by Context Free Gram- mars. ... Phrase Structured Languages: Recognised by Phrase Struc- tured Grammars. Slide 59 One alternative way how to categorise languages is using (Phrase Structured) Grammars. But how do these language classes compare in relation to those defined by types of Turing Machines? In an earlier course, we have already laid some foundation towards answering this question by considering machines that characterise these language classes. For instance, recall that regular languages were recognised by Finite State Automata. We also saw how the inverse of a regular language was also recognised by an FSA. Thus, if we could construct two Turing Machines corresponding to the FSMs that recognise a regular language L, and its inverse, L,respectively, then we could construct a third Turing Machine from these two Turing Machines that dovetails the two is search of whether x L and x L; the third Turing Machine terminates as soon as either of the sub-tms terminate and returns2 true is the2 Turing Machine accepting x L terminates as false if the Turing Machine accepting x L terminates. Clearly, this third Turing Machine2 will always terminate since, for any x,we have either x2 L or else x L. This leads us to conclude that regular languages are included as part of the recursive languages.2 The2 observation is complete by noting that a Turing Machine can easily act as an 45 Regular Grammars and Recursive Languages Theorem 41. LReg ⇢LRec Proof. Consider both inclusion relations: : FSA transitions can be encoded as Turing Machine transitions ✓ as δ(q1,a)=(q2, R) : Palindromes, 6◆ R R w(w) ,wa(w) w ⌃⇤,a ⌃ , | 2 2 are in but not in . LRec LReg Slide 60 FSA; all transitions would need to be of the form δ(q1,a)=(q2, R) whereby we only read from the tape and transition internally from one state to the other, never writing on the tape or moving in the other direction. This brief (and informal) analysis allows us to affirm our intuition that regular languages are included in recursive languages i.e., Reg Rec. In an earlier exercise we also discussed how palindromes areL decidable✓L and by this fact we conclude that they included in recursive languages. However, palindromes could not be recognised by FSAs (recall that we needed more powerful machines like Pushdown Automata for this). This allows us to establish the strict inclusion Lreg ⇢Lrec In the next subsections we will attempt to complete the picture of how phrase structured languages relate to recursive and recursively enumerable languages. 2.7.1 Turing Machines and Context Free Languages Context Free languages (CFLs) are languages that are recognised by Context Free Grammars, i.e., grammars whose production rules are of the form N (N ⌃)⇤. They are also languages that are recognised by a type of machine called Pushdown automata.! The type[ we considered in an earlier course were actually Non- deterministic PushDown Automata (NPDAs). We shall used this key information to show how languages recognised by Turing Machines relate to CFLs. The relationship we will show is outlined on Slide 61, i.e., that there is a strict inclusion between CFL and recursive languages. In order to show this we have to demonstrate that: 1. Every CFL can be decided by some Turing Machine. 2. There are recursive languages that are not CFL. As in the case of Slide 60, in order to prove the second point above, we only need to find one witness language, which together with the first point above would mean that the set of Recursive languages is 46 Context Free Langauges Theorem 42. Context Free Languages are strictly included in Recursive Languages. LCFG ⇢LRec Proof. Consider both inclusion relations: : CFG can be converted in Chomsky Normal Form where ✓ derivations for strings w are bounded by at most 2 w 1 steps. | |− : The language anbncn n 0 is in but not in . 6◆ { | ≥ } LRec LCFG Slide 61 strictly larger than that of Context Free Languages. The language anbncn n 0 satisfies our needs as this witness language. Recall that, in an earlier course, we had established{ that| this≥ } language could not be recognised by any Context Free Grammar. Moreover, on Slide 35 we showed how we can construct a Turing Machine that can decide this language i.e., showing that it is recursive. This leaves us with the task of showing that every CFL is decidable by a Turing Machine. It turns out that, with our present machinery, the proof to show this would be rather involving5. Instead here we prove a weaker result, namely that CFL are included in the set of recursively enumerable languages. This follows from Lemma 43 of Slide 62. Context Free Langauges and Recursively Enumerable Languages Lemma 43 (CFL and Acceptability). Every CFL can be recog- nised by some Turing Machine. Proof. Use 2-tape non-deterministic Turing Machine whereby: 1st tape simulates input tape with head moving only to the • right. 2nd tape simulates the stack (push and pop) using a string. • Slide 62 (Proof Outline). If a language is Context Free, then there exists a NDPA that can recognise it. Unfortunately, the inherent non-determinism in NPDAs does not allow us to state much about the termination of every 5This proof involves converting the CFG to its Chomsky Normal Form. Then we use the result that, for CFGs in normal form, any derivation of string w is bounded and requires at most 2n 1steps,wheren = w .Sincederivationshavean upper-bound, we can construct a membership checking Turing Machine− that always terminates| (and| returns a negative answer after 2n 1derivationsteps.) − 47 run of such a machine. All that NDPA recognition gives us is that there exists at least one run that accepts strings in the recognised CFL i.e., we only have termination guarantees for strings in the language and the non-determinism of the machine prohibits us from stating anything about decidability. Nevertheless, we can use a 2 tape Turing Machine to easily simulate an NPDA, whereby we use the first tape as the input tape (leaving the input string untouched and always moving the head to the right) and use the second tape to simulate the NDPA stack (adding to and removing from symbols at the rightmost position of the string on the second tape). In order to keep the simulation simpler, we can even use a non- deterministic Turing Machine.Such a simulation together with results form Sections 2.6.2 and 2.6.3 guarantee that there exists some deterministic Turing Machine that can simulate the NDPA and therefore recognise the language. 2.7.2 Turing Machines and Phrase Structured Languages Generic (Phrase Structured) Grammars (PSG), like Turing Machines, can be seen as a mechanical description for transforming a string to some other string. There are three key di↵erences however between the two models of computation: Turing Machines, at least the plain vanilla variant, are deterministic. This is not the case for PSG, • where the production rules may allow non-deterministic derivations i.e., ↵ β1,↵ β2 for the same substring ↵. Moreover, PSG allow expansions to happen at multiple points! in the! string being generated whereas Turing Machines can only alter the string at the location pointed to by the head. PSG do not express any explicit notion of state whereas Turing Machine descriptions are more in- • tentional i.e., closer to an ”implementation”. In fact, state plays a central role in order to determine computation termination in Turing Machines. String acceptance in Turing Machines starts from the string and works its way back, whereas PSG • string acceptance works in reverese by generating the string. Phrase Structured Langauges and Recursively Enumer- able Languages Both transform strings to strings but: Turing Machines, at least the plain vanilla variant, are de- • terministic. PSG do not express any explicit notion of state. • String acceptance in Turing Machines starts from the string • and works its way back, whereas PSG string acceptance works in reverese by generating the string. Slide 63 In what follows we will show that, despite these discrepancies, the two formalisms are equally expressive. By this we mean that every language that can be recognised by PSG, i.e., any PSL, can be recognised by a Turing Machine, and also that any language recognised by a Turing Machine can be recognised by a PSG. Thm. 44 on Slide 64 formalises this statement whereby, for the sake of notational consistency, we denote PSL as and recursively enumerable languages as . LPSG LRE In order to show RE PSG we need to establish some correspondence between computation on a Turing Machine and stringL ✓ derivationsL in a Phrase Structure Grammar. We start by formulating a string 48 Phrase Structured Langauges and Recursively Enumer- able Languages Theorem 44. = LPSG LRE Proof. We need to show: 1. LPSG ✓LRE 2.
Recommended publications
  • Computability and Complexity
    Computability and Complexity Lecture Notes Winter Semester 2016/2017 Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria [email protected] July 18, 2016 Contents List of Definitions5 List of Theorems7 List of Theses9 List of Figures9 Notions, Notations, Translations 12 1. Introduction 18 I. Computability 23 2. Finite State Machines and Regular Languages 24 2.1. Deterministic Finite State Machines...................... 25 2.2. Nondeterministic Finite State Machines.................... 30 2.3. Minimization of Finite State Machines..................... 38 2.4. Regular Languages and Finite State Machines................. 43 2.5. The Expressiveness of Regular Languages................... 58 3. Turing Complete Computational Models 63 3.1. Turing Machines................................ 63 3.1.1. Basics.................................. 63 3.1.2. Recognizing Languages........................ 68 3.1.3. Generating Languages......................... 72 3.1.4. Computing Functions.......................... 74 3.1.5. The Church-Turing Thesis....................... 79 Contents 3 3.2. Turing Complete Computational Models.................... 80 3.2.1. Random Access Machines....................... 80 3.2.2. Loop and While Programs....................... 84 3.2.3. Primitive Recursive and µ-recursive Functions............ 95 3.2.4. Further Models............................. 106 3.3. The Chomsky Hierarchy............................ 111 3.4. Real Computers................................
    [Show full text]
  • Recursively Enumerable and Recursive Languages
    Review • Languages and Grammars – Alphabets, strings, languages • Regular Languages – Deterministic Finite and Nondeterministic Automata – Equivalence of NFA and DFA Regular Expressions CS 301 - Lecture 23 – Regular Grammars – Properties of Regular Languages – Languages that are not regular and the pumping lemma Recursive and Recursively • Context Free Languages – Context Free Grammars – Derivations: leftmost, rightmost and derivation trees Enumerable Languages – Parsing and ambiguity – Simplifications and Normal Forms – Nondeterministic Pushdown Automata – Pushdown Automata and Context Free Grammars Fall 2008 – Deterministic Pushdown Automata – Pumping Lemma for context free grammars – Properties of Context Free Grammars • Turing Machines – Definition, Accepting Languages, and Computing Functions – Combining Turing Machines and Turing’s Thesis – Turing Machine Variations – Universal Turing Machine and Linear Bounded Automata – Today: Recursive and Recursively Enumerable Languages Definition: A language is recursively enumerable Recursively Enumerable if some Turing machine accepts it and Recursive Languages 1 Let L be a recursively enumerable language Definition: A language is recursive and M the Turing Machine that accepts it if some Turing machine accepts it and halts on any input string For string w : if w∈ L then M halts in a final state In other words: if w∉ L then M halts in a non-final state A language is recursive if there is or loops forever a membership algorithm for it Let L be a recursive language and M the Turing Machine
    [Show full text]
  • Computability
    Computability Tao Jiang Ming Li Department of Computer Science Department of Computer Science McMaster University University of Waterloo Hamilton, Ontario L8S 4K1, Canada Waterloo, Ontario N2L 3G1, Canada Bala Ravikumar Kenneth W. Regan Department of Computer Science Department of Computer Science University of Rhode Island State University of New York at Bu®alo Kingston, RI 02881, USA Bu®alo, NY 14260, USA 1 Introduction In the last two chapters, we have introduced several important computational models, including Turing machines, and Chomsky's hierarchy of formal grammars. In this chapter, we will explore the limits of mechanical computation as de¯ned by these models. We begin with a list of fundamental problems for which automatic computational solution would be very useful. One of these is the universal simulation problem: can one design a single algorithm that is capable of simulating any algorithm? Turing's demonstration that the answer is yes [Turing, 1936] supplied the proof for Babbage's dream of a single machine that could be programmed to carry out any computational task. We introduce a simple Turing machine programming language called \GOTO" in order to facilitate our own design of a universal machine. Next, we describe the schemes of primitive recur- sion and ¹-recursion, which enable a concise, mathematical description of computable functions that is independent of any machine model. We show that the ¹-recursive functions are the same as those computable on a Turing machine, and describe some computable functions including one that solves a second problem on our list. The success in solving ends there, however. We show in the last section of this chapter that 1 all of the remaining problems on our list are unsolvable by Turing machines, and subject to the Church-Turing thesis, have no mechanical or human solver at all.
    [Show full text]
  • Turing Machines: an Introduction
    CIT 596 – Theory of Computation 1 Turing Machines: An Introduction We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Non- deterministic Finite Automata with ²-Transitions, Pushdown Automata, and Deterministic Pushdown Automata. However, none of the above “seem to be” as powerful as a real com- puter, right? We now turn our attention to a much more powerful abstract model of a computing device: a Turing machine. This model is believed to do everything that a real computer can do. °c Marcelo Siqueira — Spring 2005 CIT 596 – Theory of Computation 2 Turing Machines: An Introduction A Turing machine is somewhat similar to a finite automaton, but there are important differences: 1. A Turing machine can both write on the tape and read from it. 2. The read-write head can move both to the left and to the right. 3. The tape is infinite. 4. The special states for rejecting and accepting take immediate effect. °c Marcelo Siqueira — Spring 2005 CIT 596 – Theory of Computation 3 Turing Machines: An Introduction Formally, a Turing machine is a 7-tuple, (Q, Σ, Γ, δ, q0, qaccept, qreject), where Q is the (finite) set of states, Σ is the input alphabet such that Σ does not contain the special blank symbol t, Γ is the tape alphabet such that t∈ Γ and Σ ⊆ Γ, δ : Q × Γ → Q × Γ ×{L, R} is the transition function, q0 ∈ Q is the start state, qaccept ∈ Q is the accept state, and qreject ∈ Q is the reject state, where qaccept 6= qreject.
    [Show full text]
  • Theory of Computation Summary
    Theory of Computation (CS 46) Sets and Functions We write 2A for the set of subsets of A. Definition. A set, A, is countably infinite if there exists a bijection from A to the natural numbers. Note. This allows us to enumerate A, using the order from the bijection. Definition. A set is countable if it is finite or countably infinite. It is uncountable otherwise. Theorem. If A is a subset of a countable set, then A is countable. Theorem. N ´ N is countable. Corollary. A countable union of countable sets is countable. Programs Definition. A program is a finite string (ordered set of symbols) over a finite alphabet. Note. This is distinct from the process associated with the program, which may be infinite. Theorem. The number of programs is countable. Proof. The number of strings of length k is finite, and the set of all programs is the union of this countable number of countable sets. Theorem. The number of functions from the natural numbers to {0,1} is uncountably infinite. Corollary. There are more functions than possible programs. Thus, some functions are not computable. Languages Definition. An alphabet (S) is a finite set of symbols. A string is a finite sequence from an alphabet. The set of all strings over an alphabet is denoted S*. · |w| is the length of the string w. · ak = aa … a (k times) Definition. A language is a subset of S*. The following operations are defined on languages: · L1 + L2 is the union of the two languages · L1 · L2 = {l1l2 | l1 ÎL1 and l2 Î L2} is the concatenation of two languages.
    [Show full text]
  • QUESTION BANK SOLUTION Unit 1 Introduction to Finite Automata
    FLAT 10CS56 QUESTION BANK SOLUTION Unit 1 Introduction to Finite Automata 1. Obtain DFAs to accept strings of a’s and b’s having exactly one a.(5m )(Jun-Jul 10) 2. Obtain a DFA to accept strings of a’s and b’s having even number of a’s and b’s.( 5m )(Jun-Jul 10) L = {Œ,aabb,abab,baba,baab,bbaa,aabbaa,---------} 3. Give Applications of Finite Automata. (5m )(Jun-Jul 10) String Processing Consider finding all occurrences of a short string (pattern string) within a long string (text string). This can be done by processing the text through a DFA: the DFA for all strings that end with the pattern string. Each time the accept state is reached, the current position in the text is output. Finite-State Machines A finite-state machine is an FA together with actions on the arcs. Statecharts Statecharts model tasks as a set of states and actions. They extend FA diagrams. Lexical Analysis Dept of CSE, SJBIT 1 FLAT 10CS56 In compiling a program, the first step is lexical analysis. This isolates keywords, identifiers etc., while eliminating irrelevant symbols. A token is a category, for example “identifier”, “relation operator” or specific keyword. 4. Define DFA, NFA & Language? (5m)( Jun-Jul 10) Deterministic finite automaton (DFA)—also known as deterministic finite state machine—is a finite state machine that accepts/rejects finite strings of symbols and only produces a unique computation (or run) of the automaton for each input string. 'Deterministic' refers to the uniqueness of the computation. Nondeterministic finite automaton (NFA) or nondeterministic finite state machine is a finite state machine where from each state and a given input symbol the automaton may jump into several possible next states.
    [Show full text]
  • Languages and Finite Automata
    class19.pdf • Page 2. RE and Recursive. Linz 6th, §11.1 • Def RE. Linz 6th Definition 11.1 • Def Recursive. Linz 6th Definition 11.2 • Page 28. ∃ lang not RE. Linz 6th, §11.1 • [Thm 11.2 by counting argument] • Thm 11.3 by diagonalization • Page 50. Recursive is 푝푟표푝푒푟 푠푢푏푠푒푡 of RE Linz 6th, §11.1 • [Thm 11.4 If L and L complement both re, then both recursive. L recursive, then L complement recursive.] • Thm 11.5 ∃ a non-recursive, but re language 1 Recursively Enumerable and Recursive Languages 2 Recall Definition (class 18.pdf) Definition 10.4, Linz, 6th, page 279 Let S be a set of strings. An enumeration procedure for S is a Turing Machine that generates all strings of one by one and each string is generated in finite time. 3 Definition: A language is recursively enumerable if some Turing machine accepts it 4 Let L be a recursively enumerable language and M the Turing Machine that accepts it For string w : if w L then halts in a final state if w L then halts in a non-final state or loops forever 5 Definition (11.2, page 287): A language is recursive if some Turing machine accepts it and halts on any input string In other words: A recursive language has a membership algorithm. 6 Let L be a recursive language and M the Turing Machine that accepts it L is a recursive language if there is a Turing Machine M such that For any string w : if w L then halts in a final state if w L then halts in a non-final state 7 We will prove: 1.
    [Show full text]
  • Theory of Computation Final Exam
    Theory of Computation Final Exam. 2007 NAME: .................................................. Student ID.: .................................................. 1 1 (72 pts)) True or false? (Score = Right - 2 Wrong.) Mark ‘O’ for true; ‘×’ for false. i 1. .....O..... {a |i is prime} is not context free. n n 2. .....X..... {(a b) |n ≥ 1} is context free. n m 3. .....X..... {(a b) |m, n ≥ 1} is context free. 4. .....O..... If L1 is context free and L2 is regular, then L1/L2 is context free. (Note that L1/L2 = {x | ∃y ∈ L2, xy ∈ L1}) 5. .....X..... If L1/L2 and L1 are context free, then L2 must be recursive. 6. .....X..... If L1 and L1 ∪ L2 are context free, then L2 must be context free. 7. .....O..... If L1 is context free and L2 is regular, then L1 − L2 is context free. 8. .....X..... If L1 is regular and L2 is context free, then L1 − L2 is context free. 9. .....O..... If L1 is regular and L2 is context-free, then L1 ∩ L2 must be a CFL. 10. .....O..... If L1 and L2 are CFLs, then L1 ∪ L2 must be a CFL. R R 11. .....O..... If L is context free, then L (={x |x ∈ L}) is also context free. 12. .....X..... Nondeterministic and deterministic versions of PDAs are equivalent. 13. .....O..... If a language L does not satisfy the conditions stated in the pumping lemma for CFLs, then L is not context-free. 14. .....X..... Every infinite set of strings over a single letter alphabet Σ (={a}) contains an infinite context free subset. 15. .....X..... Every infinite context-free set contains an infinite regular subset.
    [Show full text]
  • Public Sector Exams
    Theory & Practice Book Computer Science & IT for Public Sector Exams ISRO, DRDO, BARC, BEL, HAL, NTPC, ONGC, BHEL, SAIL, GAIL, MTNL, FCI, ECL, ATC, DMRC, HLL, UPRVNL, CSPEB, OPTCL.... Corporate Office: 44-A/1, Kalu Sarai, New Delhi-16 | Regd. Office: 25-A, Ber Sarai, New Delhi-16 Website: www.madeeasypublications.org | Phone: 011-26560862, 011-32059862 MADE EASY Publications Corporate Office: 44-A/1, Kalu Sarai, New Delhi-16; Regd. Office: 25-A, Ber Sarai, New Delhi-16 Website: www.madeeasypublications.org; Phone: 011-26560862, 011-9958995830 E-mail: [email protected]; [email protected] Theory & Practice Book for Computer Science & IT Copyright © 2013, by MADE EASY Publications. All rights are reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photo-copying, recording or otherwise), without the prior written permission of the above mentioned publisher of this book. First Edition: 2010 Second Edition: 2012 Third Edition: 2013 IBSN: 978-93-81069-32-5 Typesetat: MADE EASY Publications, New Delhi-110016 PREFACE “Theory & Practice Book on Computer Science” contains theory including basic concepts and formulae and nearly 3000 questions with answers and explanations. The authors (MADE EASY Team) are very well aware of the requirements of the Public Sector Examinations like ISRO, DRDO, BARC, BEL, HAL, NTPC, ONGC, BHEL, SAIL, GAIL, MTNL, ECL, ATC, DMRC, HLL, UPRVNL, CSPEB, OPTCL....etc. Therefore content of this book includes such questions similar to which questions are normally asked in the Public Sector Examinations.
    [Show full text]
  • Faculty of Degree Engineering - 083 Department of CE / IT – 07 / 16 Multiple Choice Questions Bank Theory of Computation 2160704
    Faculty of Degree Engineering - 083 Department of CE / IT – 07 / 16 Multiple Choice Questions Bank Theory Of Computation 2160704 1 Let R1 and R2 be regular sets defined over alphabet ∑ then A R1 UNION R2 is regular B R1 INTERSECTION R2 is regular C ∑ INTERSECTION R2 IS NOT REGULAR D R2* IS NOT REGULAR Ans. R1 UNION R2 is regular 2 Consider the production of the grammar S->AA A->aa A->bb Describe the language specified by the production grammar. A L = {aaaa,aabb,bbaa,bbbb} B L = {abab,abaa,aaab,baaa} C L = {aaab,baba,bbaa,bbbb} D L = {aaaa,abab,bbaa,aaab} Ans. L = {aaaa,aabb,bbaa,bbbb} 3 Give a production grammar that specified language L = {ai b2i >= 1} A {S->aSbb,S->abb} B {S->aSb, S->b} C {S->aA,S->b,A->b} D None of the above Ans. {S->aSbb,S->abb} 4 Which of the following String can be obtained by the language L = {ai b2i / i >=1} A aaabbbbbb B aabbb C abbabbba D aaaabbbabb. Ans. aaabbbbbb 5 Give a production grammar for the language L = {x/x ∈ (a,b)*, the number of a’s in x is multiple of 3}. A {S->bS,S->b,S->aA,S->bA,A->aB,B->bB,B->aS,S->a} B {S->aS,S->bA,A->bB,B->bBa,B->bB} C {S->aaS,S->bbA,A->bB,B->ba} 1 Prepared By: Prof. Janvi P. Patel Prof. Bhoomi M. Bangoria Computer/IT Engineering Faculty of Degree Engineering - 083 Department of CE / IT – 07 / 16 Multiple Choice Questions Bank Theory Of Computation 2160704 D None of the above Ans.
    [Show full text]
  • Csci 311, Models of Computation Chapter 11 a Hierarchy of Formal Languages and Automata
    CSci 311, Models of Computation Chapter 11 A Hierarchy of Formal Languages and Automata H. Conrad Cunningham 29 December 2015 Contents Introduction . 1 11.1 Recursive and Recursively Enumerable Languages . 2 11.1.1 Aside: Countability . 2 11.1.2 Definition of Recursively Enumerable Language . 2 11.1.3 Definition of Recursive Language . 2 11.1.4 Enumeration Procedure for Recursive Languages . 3 11.1.5 Enumeration Procedure for Recursively Enumerable Lan- guages . 3 11.1.6 Languages That are Not Recursively Enumerable . 4 11.1.7 A Language That is Not Recursively Enumerable . 5 11.1.8 A Language That is Recursively Enumerable but Not Recursive . 6 11.2 Unrestricted Grammars . 6 11.3 Context-Sensitive Grammars and Languages . 6 11.3.1 Linz Example 11.2 . 7 11.3.2 Linear Bounded Automata (lba) . 8 11.3.3 Relation Between Recursive and Context-Sensitive Lan- guages . 8 11.4 The Chomsky Hierarchy . 9 1 Copyright (C) 2015, H. Conrad Cunningham Acknowledgements: MS student Eli Allen assisted in preparation of these notes. These lecture notes are for use with Chapter 11 of the textbook: Peter Linz. Introduction to Formal Languages and Automata, Fifth Edition, Jones and Bartlett Learning, 2012.The terminology and notation used in these notes are similar to those used in the Linz textbook.This document uses several figures from the Linz textbook. Advisory: The HTML version of this document requires use of a browser that supports the display of MathML. A good choice as of December 2015 seems to be a recent version of Firefox from Mozilla.
    [Show full text]
  • Computability
    Computability COMP2600 — Formal Methods for Software Engineering Katya Lebedeva Australian National University Semester 2, 2016 Slides created by Katya Lebedeva COMP 2600 — Turing Machines 1 Definition of “Computability” Church-Turing Thesis The “Church-Turing thesis” is the general belief that the notion of “computable in principle” can be expressed in terms of • Turing’s Machines • Church’s Lambda Calculus • Godel’s¨ Recursive Functions • Kleene’s Formal Systems • Markov’s Algorithms • ::: COMP 2600 — Turing Machines 2 Definition of computability in terms of TMs: A computable function is a function that can be implemented by a TM. Definition of computability in terms of l-calculus: A computable function is a function that can be implemented as a l-term. These definitions are equivalent because • for every TM, we can write a l-term that simulates it • for every l-term, we can build a TM that simulates it We could also give definitions of computable function in terms of other models of computation. Thus, the “Church-Turing thesis” is the belief that any of these definitions is an adequate characterisation of “computability in principle”. COMP 2600 — Turing Machines 3 Why TMs? TMs are a terrible model for thinking about fast computation. But when talking about computability, we are not interested in finding fast algorithms, or even finding algorithms at all! We are interested to prove that some problems cannot be solved by any com- putational device, i.e. that they are undecidable. TM is an extremely simple model, but powerful enough to describe arbitrary algorithms. Importantly, TMs are powerful enough to simulate other TMs and simple enough to build up this simulation from scratch.
    [Show full text]