Open Problems in Combinatorial Group Theory. Second Edition

Total Page:16

File Type:pdf, Size:1020Kb

Open Problems in Combinatorial Group Theory. Second Edition Open problems in combinatorial group theory. Second edition Gilbert Baumslag Alexei G. Myasnikov Vladimir Shpilrain Contents 1 Outstanding Problems 2 2 Free Groups 7 3 One-relator Groups 15 4 Finitely Presented Groups 17 5 Hyperbolic and Automatic Groups 20 6 Braid Groups 22 7 Nilpotent Groups 24 8 Metabelian Groups 25 9 Solvable Groups 26 10 Groups of Matrices 27 11 Growth 28 Introduction This is a collection of open problems in combinatorial group theory, which is based on a similar list available online at our web site http://www.grouptheory.org 2000 Mathematics Subject Classi¯cation: Primary 20-02, 20Exx, 20Fxx, 20Jxx, Sec- ondary 57Mxx. 1 In three years since the ¯rst edition of this collection was published in [18], over 40 new problems have been added, and, more importantly, 20 problems have been solved. We hope that this is an indication of our work being useful. In the present edition we have added two new sections: on Groups of Matrices and on Growth. In selecting the problems, our choices have been, in part, determined by our own tastes. In view of this, we have welcomed suggestions from other members of the community. We want to emphasize that many people have contributed to the present collection, especially to the Background part. In particular, we are grateful to G. Bergman, G. Conner, W. Dicks, R. Gilman, I. Kapovich, V. Remeslennikov, V. Roman'kov, E. Ventura and D.Wise for useful comments and discussions. Still, we admit that the background we currently have is far from complete, and it is our ongoing e®ort to make it as complete and comprehensive as possible. We invite an interested reader to check on our online list for a latest update. One more thing concerning our policy that we would like to point out here, is that we have decided to keep on our list those problems that have been solved after the ¯rst draft of the list was put online in June 1997, since we believe those problems are an important part of the list anyway, because of their connections to other, yet unsolved, problems. Solved problems are marked by a ¤, and a reference to the solution is provided in the background. We have arranged the problems under the following headings: Outstanding Problems, Free Groups, One-relator Groups, Finitely Presented Groups, Hyperbolic and Automatic Groups, Braid Groups, Nilpotent Groups, Metabelian Groups, Solvable Groups, Groups of Matrices, Growth. Disclaimer. We want to emphasize that all references we give and attribut- ions we make reflect our personal opinion based on the information we have. In particular, if we are aware that a problem was raised by a speci¯c per- son, we make mention of that here. We welcome any additional information and/or corrections on these issues. 1 Outstanding Problems (O1) The Andrews-Curtis conjecture. Let F = Fn be the free group of a ¯nite rank n ¸ 2 with a ¯xed set X = fx1; :::; xng of free generators. A set Y = fy1; :::; yng of elements of F generates the group F as a normal subgroup if and only if Y is Andrews-Curtis equivalent to X, which means one can get from X to Y by a sequence of Nielsen transformations together with conjugations by elements of F . This problem is of interest in topology as well as in group theory. A topo- logical interpretation of this conjecture was given in the original paper by 2 J. Andrews and M. Curtis [3]. A more interesting topological interpretation arises when one allows one more transformation, \stabilization", when Y is extended to fy1; :::; ym; xºg, where xº is a new free generator (i.e., y1; :::; ym do not depend on xº), and the converse of this transformation. Then the Andrews-Curtis conjecture is equivalent to the following (see [184]): two contractible 2-dimensional polyhedra P and Q can both be embedded in a 3-dimensional polyhedron S so that S geometrically contracts to P and Q. Note that this is true if 3 is replaced by 4 { this follows from a result of Whitehead. The problem is amazingly resistant; very few partial results are known. A good group-theoretical survey is [32]. For a topological survey, we refer to [80]. The prevalent opinion is that the conjecture is false; however, not many potential counterexamples are known. Two of them are given in the survey [32] by R. Burns and O. Macedonska; a one-parameter family of potential counterexamples appears in [1]. Recently, a rather general series of potential counterexamples in rank 2 was reported in [142]. Further potential coun- terexamples are given in [146]. It might be of interest that, by using genetic algorithms, A. D. Myas- nikov and A. G. Myasnikov [145] showed that all presentations of the trivial group with the total length of relators up to 12 satisfy the Andrews-Curtis conjecture. Finally, we mention a positive solution of a similar problem for free solv- able groups by A. G. Myasnikov [144]. (O2) The Burnside problem. For what values of n are all groups of exponent n locally ¯nite? Of particular interest are n = 5; n = 8; n = 9 and n = 12 { values for which, by the experts' opinion, groups of exponent n have a remote chance of being locally ¯nite. In contrast with the previous problem (O1), the bibliography on the Burnside problem consists of several hundred papers. We only mention here that E. Golod [64] constructed the ¯rst example of a periodic group which is not locally ¯nite; his group however does not have bounded exponent. The ¯rst example of an in¯nite ¯nitely generated group of bounded exponent is due to P. S. Novikov and S. I. Adian [154]. We refer to the book [156] for a survey on results up to 1988, and to the papers [87], [126] for treatment of the most di±cult case where the exponent is a power of 2. We also note that recent work of J. McCammond [133] o®ers a new ap- proach to the Burnside problem via (generalized) small cancellation theory. (O3) Whitehead's asphericity problem. Is every subcomplex of an as- pherical 2-complex aspherical? Or, equivalently: if G = F=R =< x1; :::; xnj r1; :::; rm; ::: > is an aspherical presentation of a group G (i.e., the corre- sponding relation module R=[R; R] is a free ZG-module), is every presenta- tion of the form hx1; :::; xnj ri1 ; :::; rik ; :::i, aspherical as well ? 3 This problem has received considerable attention in the '80s. We mention here a paper by J. Huebschmann [84] that contains a wealth of examples of 2- complexes for which Whitehead's asphericity problem has a positive solution. J. Howie [81] points out a connection between Whitehead's problem and some other problems in low-dimensional topology (e.g. the Andrews-Curtis conjecture). We refer to [123] for more bibliography on this problem. Among more recent papers, we mention a paper by E. Luft [121], where he gives a rather elementary self-contained proof of the main result of Howie's paper (see above) and strengthens the result at the same time. Recently, S. V. Ivanov [90] discovered a connection between Whitehead's asphericity problem and the problem (O12)(a) below. A somewhat more general result was later obtained by I. Leary [112]. (O4) The isomorphism problem for one-relator groups. Z. Sela [168] has solved the isomorphism problem for torsion-free hy- perbolic groups that do not split (as an amalgamated product or an HNN extension) over the trivial or the in¯nite cyclic group. It is not known how- ever which one-relator groups are hyperbolic (cf. problem (O6)). Earlier partial results are [160] and [161]. We also note that two one-relator groups with relators r1 and r2 being isomorphic does not imply that r1 and r2 are conjugate by an automorphism of a free group, which deprives one from the most straightforward way of attacking this problem; see [138]. (O5) The conjugacy problem for one-relator groups. The conjugacy problem for one-relator groups with torsion was solved by B. B. Newman [152]. Some other partial results are known; see e.g. [124] for a survey. (O6) Is every one-relator group without Baumslag-Solitar subgroups hyper- bolic? Note that every one-relator group with torsion is hyperbolic since the word problem for such a group can be solved by Dehn's algorithm { see the paper by B. B. Newman cited in the background to (O5). Therefore, it su±ces to consider torsion-free one-relator groups. We also note that the following weak form of this problem was answered in the a±rmative. A group G is called a CSA group if every maximal abelian subgroup M of G is malnormal, i.e., for any element g in G, but not in M, one has M g \M = f1g. It is known that every torsion-free hyperbolic group is CSA. Now the following weak form of (O6) holds: A torsion-free one-relator group is CSA if and only if it does not contain metabelian Baumslag-Solitar groups BS(1; p) and subgroups isomorp¯c to F2 £ Z [61]. There are also several partial (positive) results on this problem in [91]. 4 (O7) Let G be the direct product of two copies of the free group Fn; n ¸ 2, generated by fx1; :::; xng and fy1; :::; yng, respectively. Is it true that every generating system of cardinality 2n of the group G is Nielsen equivalent to fx1; :::; xn; y1; :::; yng? The importance of this problem is in its relation to two outstanding problems in low-dimensional topology, to the Poincar¶eand Andrews-Curtis conjectures { see e.g.
Recommended publications
  • Arxiv:2006.00374V4 [Math.GT] 28 May 2021
    CONTROLLED MATHER-THURSTON THEOREMS MICHAEL FREEDMAN ABSTRACT. Classical results of Milnor, Wood, Mather, and Thurston produce flat connections in surprising places. The Milnor-Wood inequality is for circle bundles over surfaces, whereas the Mather-Thurston Theorem is about cobording general manifold bundles to ones admitting a flat connection. The surprise comes from the close encounter with obstructions from Chern-Weil theory and other smooth obstructions such as the Bott classes and the Godbillion-Vey invariant. Contradic- tion is avoided because the structure groups for the positive results are larger than required for the obstructions, e.g. PSL(2,R) versus U(1) in the former case and C1 versus C2 in the latter. This paper adds two types of control strengthening the positive results: In many cases we are able to (1) refine the Mather-Thurston cobordism to a semi-s-cobordism (ssc) and (2) provide detail about how, and to what extent, transition functions must wander from an initial, small, structure group into a larger one. The motivation is to lay mathematical foundations for a physical program. The philosophy is that living in the IR we cannot expect to know, for a given bundle, if it has curvature or is flat, because we can’t resolve the fine scale topology which may be present in the base, introduced by a ssc, nor minute symmetry violating distortions of the fiber. Small scale, UV, “distortions” of the base topology and structure group allow flat connections to simulate curvature at larger scales. The goal is to find a duality under which curvature terms, such as Maxwell’s F F and Hilbert’s R dvol ∧ ∗ are replaced by an action which measures such “distortions.” In this view, curvature resultsR from renormalizing a discrete, group theoretic, structure.
    [Show full text]
  • Notes and Solutions to Exercises for Mac Lane's Categories for The
    Stefan Dawydiak Version 0.3 July 2, 2020 Notes and Exercises from Categories for the Working Mathematician Contents 0 Preface 2 1 Categories, Functors, and Natural Transformations 2 1.1 Functors . .2 1.2 Natural Transformations . .4 1.3 Monics, Epis, and Zeros . .5 2 Constructions on Categories 6 2.1 Products of Categories . .6 2.2 Functor categories . .6 2.2.1 The Interchange Law . .8 2.3 The Category of All Categories . .8 2.4 Comma Categories . 11 2.5 Graphs and Free Categories . 12 2.6 Quotient Categories . 13 3 Universals and Limits 13 3.1 Universal Arrows . 13 3.2 The Yoneda Lemma . 14 3.2.1 Proof of the Yoneda Lemma . 14 3.3 Coproducts and Colimits . 16 3.4 Products and Limits . 18 3.4.1 The p-adic integers . 20 3.5 Categories with Finite Products . 21 3.6 Groups in Categories . 22 4 Adjoints 23 4.1 Adjunctions . 23 4.2 Examples of Adjoints . 24 4.3 Reflective Subcategories . 28 4.4 Equivalence of Categories . 30 4.5 Adjoints for Preorders . 32 4.5.1 Examples of Galois Connections . 32 4.6 Cartesian Closed Categories . 33 5 Limits 33 5.1 Creation of Limits . 33 5.2 Limits by Products and Equalizers . 34 5.3 Preservation of Limits . 35 5.4 Adjoints on Limits . 35 5.5 Freyd's adjoint functor theorem . 36 1 6 Chapter 6 38 7 Chapter 7 38 8 Abelian Categories 38 8.1 Additive Categories . 38 8.2 Abelian Categories . 38 8.3 Diagram Lemmas . 39 9 Special Limits 41 9.1 Interchange of Limits .
    [Show full text]
  • Discrete and Profinite Groups Acting on Regular Rooted Trees
    Discrete and Profinite Groups Acting on Regular Rooted Trees Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universit¨at G¨ottingen vorgelegt von Olivier Siegenthaler aus Lausanne G¨ottingen, den 31. August 2009 Referent: Prof. Dr. Laurent Bartholdi Korreferent: Prof. Dr. Thomas Schick Tag der m¨undlichen Pr¨ufung: den 28. September 2009 Contents Introduction 1 1 Foundations 5 1.1 Definition of Aut X∗ and ...................... 5 A∗ 1.2 ZariskiTopology ............................ 7 1.3 Actions of X∗ .............................. 8 1.4 Self-SimilarityandBranching . 9 1.5 Decompositions and Generators of Aut X∗ and ......... 11 A∗ 1.6 The Permutation Modules k X and k X ............ 13 { } {{ }} 1.7 Subgroups of Aut X∗ .......................... 14 1.8 RegularBranchGroups . 16 1.9 Self-Similarity and Branching Simultaneously . 18 1.10Questions ................................ 19 ∗ 2 The Special Case Autp X 23 2.1 Definition ................................ 23 ∗ 2.2 Subgroups of Autp X ......................... 24 2.3 NiceGeneratingSets. 26 2.4 Uniseriality ............................... 28 2.5 Signature and Maximal Subgroups . 30 2.6 Torsion-FreeGroups . 31 2.7 Some Specific Classes of Automorphisms . 32 2.8 TorsionGroups ............................. 34 3 Wreath Product of Affine Group Schemes 37 3.1 AffineSchemes ............................. 38 3.2 ExponentialObjects . 40 3.3 Some Hopf Algebra Constructions . 43 3.4 Group Schemes Corresponding to Aut X∗ .............. 45 3.5 Iterated Wreath Product of the Frobenius Kernel . 46 i Contents 4 Central Series and Automorphism Towers 49 4.1 Notation................................. 49 4.2 CentralSeries.............................. 51 4.3 Automorphism and Normalizer Towers . 54 5 Hausdorff Dimension 57 5.1 Definition ................................ 57 5.2 Layers .................................. 58 5.3 ComputingDimensions .
    [Show full text]
  • Torsion Homology and Cellular Approximation 11
    TORSION HOMOLOGY AND CELLULAR APPROXIMATION RAMON´ FLORES AND FERNANDO MURO Abstract. In this note we describe the role of the Schur multiplier in the structure of the p-torsion of discrete groups. More concretely, we show how the knowledge of H2G allows to approximate many groups by colimits of copies of p-groups. Our examples include interesting families of non-commutative infinite groups, including Burnside groups, certain solvable groups and branch groups. We also provide a counterexample for a conjecture of E. Farjoun. 1. Introduction Since its introduction by Issai Schur in 1904 in the study of projective representations, the Schur multiplier H2(G, Z) has become one of the main invariants in the context of Group Theory. Its importance is apparent from the fact that its elements classify all the central extensions of the group, but also from his relation with other operations in the group (tensor product, exterior square, derived subgroup) or its role as the Baer invariant of the group with respect to the variety of abelian groups. This last property, in particular, gives rise to the well- known Hopf formula, which computes the multiplier using as input a presentation of the group, and hence has allowed to use it in an effective way in the field of computational group theory. A brief and concise account to the general concept can be found in [38], while a thorough treatment is the monograph by Karpilovsky [33]. In the last years, the close relationship between the Schur multiplier and the theory of co-localizations of groups, and more precisely with the cellular covers of a group, has been remarked.
    [Show full text]
  • Abstract Quotients of Profinite Groups, After Nikolov and Segal
    ABSTRACT QUOTIENTS OF PROFINITE GROUPS, AFTER NIKOLOV AND SEGAL BENJAMIN KLOPSCH Abstract. In this expanded account of a talk given at the Oberwolfach Ar- beitsgemeinschaft “Totally Disconnected Groups”, October 2014, we discuss results of Nikolay Nikolov and Dan Segal on abstract quotients of compact Hausdorff topological groups, paying special attention to the class of finitely generated profinite groups. Our primary source is [17]. Sidestepping all difficult and technical proofs, we present a selection of accessible arguments to illuminate key ideas in the subject. 1. Introduction §1.1. Many concepts and techniques in the theory of finite groups depend in- trinsically on the assumption that the groups considered are a priori finite. The theoretical framework based on such methods has led to marvellous achievements, including – as a particular highlight – the classification of all finite simple groups. Notwithstanding, the same methods are only of limited use in the study of infinite groups: it remains mysterious how one could possibly pin down the structure of a general infinite group in a systematic way. Significantly more can be said if such a group comes equipped with additional information, such as a structure-preserving action on a notable geometric object. A coherent approach to studying restricted classes of infinite groups is found by imposing suitable ‘finiteness conditions’, i.e., conditions that generalise the notion of being finite but are significantly more flexible, such as the group being finitely generated or compact with respect to a natural topology. One rather fruitful theme, fusing methods from finite and infinite group theory, consists in studying the interplay between an infinite group Γ and the collection of all its finite quotients.
    [Show full text]
  • Undecidability of the Word Problem for Groups: the Point of View of Rewriting Theory
    Universita` degli Studi Roma Tre Facolta` di Scienze M.F.N. Corso di Laurea in Matematica Tesi di Laurea in Matematica Undecidability of the word problem for groups: the point of view of rewriting theory Candidato Relatori Matteo Acclavio Prof. Y. Lafont ..................................... Prof. L. Tortora de falco ...................................... questa tesi ´estata redatta nell'ambito del Curriculum Binazionale di Laurea Magistrale in Logica, con il sostegno dell'Universit´aItalo-Francese (programma Vinci 2009) Anno Accademico 2011-2012 Ottobre 2012 Classificazione AMS: Parole chiave: \There once was a king, Sitting on the sofa, He said to his maid, Tell me a story, And the maid began: There once was a king, Sitting on the sofa, He said to his maid, Tell me a story, And the maid began: There once was a king, Sitting on the sofa, He said to his maid, Tell me a story, And the maid began: There once was a king, Sitting on the sofa, . " Italian nursery rhyme Even if you don't know this tale, it's easy to understand that this could continue indefinitely, but it doesn't have to. If now we want to know if the nar- ration will finish, this question is what is called an undecidable problem: we'll need to listen the tale until it will finish, but even if it will not, one can never say it won't stop since it could finish later. those things make some people loose sleep, but usually children, bored, fall asleep. More precisely a decision problem is given by a question regarding some data that admit a negative or positive answer, for example: \is the integer number n odd?" or \ does the story of the king on the sofa admit an happy ending?".
    [Show full text]
  • Burnside, March 2016
    A Straightforward Solution to Burnside’s Problem S. Bachmuth 1. Introduction The Burnside Problem for groups asks whether a finitely generated group, all of whose elements have bounded order, is finite. We present a straightforward proof showing that the 2-generator Burnside groups of prime power exponent are solvable and therefore finite. This proof is straightforward in that it does not rely on induced maps as in [2], but it is strongly dependent on Theorem B in the joint paper with H. A. Heilbronn and H. Y. Mochizuki [9]. Theorem B is reformulated here as Lemma 3(i) in Section 2. Our use of Lemma 3(i) is indispensable. Throughout this paper we fix a prime power q = pe and unless specifically mentioned otherwise, all groups are 2-generator. At appropriate places, we may require e = 1 so that q = p is prime; otherwise q may be any fixed prime power. The only (published) positive results of finiteness of Burnside groups of prime power exponents are for exponents q = 2, 3 and 4 ([10],[12]). Some authors, beginning with P. S. Novikoff and S. I. Adian {15], (see also [1}), have claimed that groups of exponent k are infinite for k sufficiently large. Our result here, as in [2], is at odds with this claim. Since this proof avoids the use of induced maps, Section 4 of [2] has been rewritten. Sections 2, 3 and 6 have been left unaltered apart from minor, mostly expository, changes and renumbering of items. The introduction and Section 5 have been rewritten. Sections 5 & 6 are not involved in the proof although Section 5 is strongly recommended.
    [Show full text]
  • CLASS DESCRIPTIONS—WEEK 2, MATHCAMP 2016 Contents 9:10
    CLASS DESCRIPTIONS|WEEK 2, MATHCAMP 2016 Contents 9:10 Classes 2 Dynamical Systems 2 Field Extensions and Galois Theory (Week 1 of 2) 2 Model Theory 2 Neural Networks 3 Problem Solving: Induction 3 10:10 Classes 4 Almost Planar 4 Extending Inclusion-Exclusion 4 Multilinear Algebra 5 The Word Problem for Groups 5 Why Are We Learning This? A seminar on the history of math education in the U.S. 6 11:10 Classes 6 Building Mathematical Structures 6 Graph Minors 7 History of Math 7 K-Theory 7 Linear Algebra (Week 2 of 2) 7 The Banach{Tarski Paradox 8 1:10 Classes 8 Divergent Series 8 Geometric Group Theory 8 Group Actions 8 The Chip-Firing Game 9 Colloquia 9 There Are Eight Flavors of Three-Dimensional Geometry 9 Tropical Geometry 9 Oops! I Ran Out of Axioms 10 Visitor Bios 10 Moon Duchin 10 Sam Payne 10 Steve Schweber 10 1 MC2016 ◦ W2 ◦ Classes 2 9:10 Classes Dynamical Systems. ( , Jane, Tuesday{Saturday) Dynamical systems are spaces that evolve over time. Some examples are the movement of the planets, the bouncing of a ball around a billiard table, or the change in the population of rabbits from year to year. The study of dynamical systems is the study of how these spaces evolve, their long-term behavior, and how to predict the future of these systems. It is a subject that has many applications in the real world and also in other branches of mathematics. In this class, we'll survey a variety of topics in dynamical systems, exploring both what is known and what is still open.
    [Show full text]
  • Projective Representations of Groups
    PROJECTIVE REPRESENTATIONS OF GROUPS EDUARDO MONTEIRO MENDONCA Abstract. We present an introduction to the basic concepts of projective representations of groups and representation groups, and discuss their relations with group cohomology. We conclude the text by discussing the projective representation theory of symmetric groups and its relation to Sergeev and Hecke-Clifford Superalgebras. Contents Introduction1 Acknowledgements2 1. Group cohomology2 1.1. Cohomology groups3 1.2. 2nd-Cohomology group4 2. Projective Representations6 2.1. Projective representation7 2.2. Schur multiplier and cohomology class9 2.3. Equivalent projective representations 10 3. Central Extensions 11 3.1. Central extension of a group 12 3.2. Central extensions and 2nd-cohomology group 13 4. Representation groups 18 4.1. Representation group 18 4.2. Representation groups and projective representations 21 4.3. Perfect groups 27 5. Symmetric group 30 5.1. Representation groups of symmetric groups 30 5.2. Digression on superalgebras 33 5.3. Sergeev and Hecke-Clifford superalgebras 36 References 37 Introduction The theory of group representations emerged as a tool for investigating the structure of a finite group and became one of the central areas of algebra, with important connections to several areas of study such as topology, Lie theory, and mathematical physics. Schur was Date: September 7, 2017. Key words and phrases. projective representation, group, symmetric group, central extension, group cohomology. 2 EDUARDO MONTEIRO MENDONCA the first to realize that, for many of these applications, a new kind of representation had to be introduced, namely, projective representations. The theory of projective representations involves homomorphisms into projective linear groups. Not only do such representations appear naturally in the study of representations of groups, their study showed to be of great importance in the study of quantum mechanics.
    [Show full text]
  • BRANCHING PROGRAM UNIFORMIZATION, REWRITING LOWER BOUNDS, and GEOMETRIC GROUP THEORY IZAAK MECKLER Mathematics Department U.C. B
    BRANCHING PROGRAM UNIFORMIZATION, REWRITING LOWER BOUNDS, AND GEOMETRIC GROUP THEORY IZAAK MECKLER Mathematics Department U.C. Berkeley Berkeley, CA Abstract. Geometric group theory is the study of the relationship between the algebraic, geo- metric, and combinatorial properties of finitely generated groups. Here, we add to the dictionary of correspondences between geometric group theory and computational complexity. We then use these correspondences to establish limitations on certain models of computation. In particular, we establish a connection between read-once oblivious branching programs and growth of groups. We then use Gromov’s theorem on groups of polynomial growth to give a simple argument that if the word problem of a group G is computed by a non-uniform family of read-once, oblivious, polynomial-width branching programs, then it is computed by an O(n)-time uniform algorithm. That is, efficient non-uniform read-once, oblivious branching programs confer essentially no advantage over uniform algorithms for word problems of groups. We also construct a group EffCirc which faithfully encodes reversible circuits and note the cor- respondence between certain proof systems for proving equations of circuits and presentations of groups containing EffCirc. We use this correspondence to establish a quadratic lower bound on the proof complexity of such systems, using geometric techniques which to our knowledge are new to complexity theory. The technical heart of this argument is a strengthening of the now classical the- orem of geometric group theory that groups with linear Dehn function are hyperbolic. The proof also illuminates a relationship between the notion of quasi-isometry and models of computation that efficiently simulate each other.
    [Show full text]
  • On Iterated Semidirect Products of Finite Semilattices
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 142, 2399254 (1991) On Iterated Semidirect Products of Finite Semilattices JORGE ALMEIDA INIC-Centro de Mawmdtica, Faculdade de Ci&cias, Universidade do Porro, 4000 Porte, Portugal Communicated by T. E. Hull Received December 15, 1988 Let SI denote the class of all finite semilattices and let SI” be the pseudovariety of semigroups generated by all semidirect products of n finite semilattices. The main result of this paper shows that, for every n 2 3, Sl” is not finitely based. Nevertheless, a simple basis of identities is described for each SI”. We also show that SI" is generated by a semigroup with 2n generators but, except for n < 2, we do not know whether the bound 2n is optimal. ‘(” 1991 Academic PKSS, IW 1. INTRODUCTION Among the various operations which allow us to construct semigroups from simpler ones, the semidirect product has thus far received the most attention in the theory of finite semigroups. It plays a special role in the connections with language theory (Eilenberg [S], Pin [9]) and in the Krohn-Rodes decomposition theorem [S]. Questions dealing with semidirect products of finite semigroups are often properly dealt with in the context of pseudovarieties. For pseudovarieties V and W, their semidirect product V * W is defined to be the pseudovariety generated by all semidirect products S * T with SE V and T E W. It is well known that this operation on pseudovarieties is associative and that V * W consists of all homomorphic images of subsemigroups of S * T with SE V and TEW [S].
    [Show full text]
  • Lie-Butcher Series, Geometry, Algebra and Computation
    Lie–Butcher series, Geometry, Algebra and Computation Hans Z. Munthe-Kaas and Kristoffer K. Føllesdal Abstract Lie–Butcher (LB) series are formal power series expressed in terms of trees and forests. On the geometric side LB-series generalizes classical B-series from Euclidean spaces to Lie groups and homogeneous manifolds. On the algebraic side, B-series are based on pre-Lie algebras and the Butcher-Connes-Kreimer Hopf algebra. The LB-series are instead based on post-Lie algebras and their enveloping algebras. Over the last decade the algebraic theory of LB-series has matured. The purpose of this paper is twofold. First, we aim at presenting the algebraic structures underlying LB series in a concise and self contained manner. Secondly, we review a number of algebraic operations on LB-series found in the literature, and reformulate these as recursive formulae. This is part of an ongoing effort to create an extensive software library for computations in LB-series and B-series in the programming language Haskell. 1 Introduction Classical B-series are formal power series expressed in terms of rooted trees (con- nected graphs without any cycle and a designated node called the root). The theory has its origins back to the work of Arthur Cayley [5] in the 1850s, where he realized that trees could be used to encode information about differential operators. Being forgotten for a century, the theory was revived through the efforts of understanding numerical integration algorithms by John Butcher in the 1960s and ’70s [2, 3]. Ernst Hairer and Gerhard Wanner [15] coined the term B-series for an infinite formal se- arXiv:1701.03654v2 [math.NA] 27 Oct 2017 ries of the form H.
    [Show full text]