Nuclear Fusion Fusion Nucleaire Nnephum Cnhte3 Fusion Nuclear

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Fusion Fusion Nucleaire Nnephum Cnhte3 Fusion Nuclear nuclear fusion fusion nucleaire nnepHUM cnHTe3 fusion nuclear ATOMIC AND PLASMA-MATERIAL INTERACTION DATA FOR FUSION (Supplement to the journal Nuclear Fusion). -VOLUME 1. *|v INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1991 % AGENCE INTERNATIONALE DELENERGIE ATOMIQUE, VIENNE.1991 MEWflYHAPOflHOE ATEHTCTBO nO ATOMHOM SHEPrMM, BEHA, 1991 ORGANISMO INTERNACIONAL DE ENERGIA ATOMICA, VIENA,1991 The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HOLY SEE PERU ALBANIA HUNGARY PHILIPPINES ALGERIA ICELAND POLAND ARGENTINA INDIA PORTUGAL AUSTRALIA INDONESIA QATAR AUSTRIA IRAN, ISLAMIC REPUBLIC OF ROMANIA BANGLADESH IRAQ SAUDI ARABIA BELGIUM IRELAND SENEGAL BOLIVIA ISRAEL SIERRA LEONE BRAZIL ITALY SINGAPORE BULGARIA JAMAICA SOUTH AFRICA BYELORUSSIAN SOVIET JAPAN SPAIN SOCIALIST REPUBLIC JORDAN SRI LANKA CAMEROON KENYA SUDAN CANADA KOREA, REPUBLIC OF SWEDEN CHILE KUWAIT SWITZERLAND CHINA LEBANON SYRIAN ARAB REPUBLIC COLOMBIA LIBERIA THAILAND COSTA RICA LIBYAN ARAB JAMAHIRIYA TUNISIA COTE DTVOIRE LIECHTENSTEIN TURKEY CUBA LUXEMBOURG UGANDA CYPRUS MADAGASCAR UKRAINIAN SOVIET SOCIALIST CZECHOSLOVAKIA MALAYSIA REPUBLIC DEMOCRATIC KAMPUCHEA MALI UNION OF SOVIET SOCIALIST DEMOCRATIC PEOPLE'S MAURITIUS REPUBLICS REPUBLIC OF KOREA MEXICO UNITED ARAB EMIRATES DENMARK MONACO UNITED KINGDOM OF GREAT DOMINICAN REPUBLIC MONGOLIA BRITAIN AND NORTHERN ECUADOR MOROCCO IRELAND EGYPT MYANMAR UNITED REPUBLIC OF EL SALVADOR NAMIBIA TANZANIA ETHIOPIA NETHERLANDS UNITED STATES OF AMERICA FINLAND NEW ZEALAND URUGUAY FRANCE NICARAGUA VENEZUELA GABON NIGER VIET NAM GERMANY NIGERIA YUGOSLAVIA GHANA NORWAY ZAIRE GREECE PAKISTAN ZAMBIA GUATEMALA PANAMA ZIMBABWE HAITI PARAGUAY The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world". © IAEA, 1991 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the Division of Publications, International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria. Printed by the IAEA in Austria September 1991 ATOMIC AND PLASMA-MATERIAL INTERACTION DATA FOR FUSION (Supplement to the journal Nuclear Fusion) VOLUME 1 INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1991 The volumes of ATOMIC AND PLASMA-MATERIAL INTERACTION DATA FOR FUSION are published by the International Atomic Energy Agency as supplements of the journal NUCLEAR FUSION. For these supplements, papers, letters and reviews are accepted which deal with the following topics: — Elementary collision processes in fusion plasmas involving photons, electrons, ions, atoms and molecules; — Collision processes of plasma particles with surfaces of fusion relevant materials; — Plasma-material interaction phenomena, including the thermophysical response of materials. Each submitted contribution should contain fusion relevant data and information in either of the above areas. Original contributions should provide new data, using well established methods. Review articles should give a critical analysis or evaluation of a wider range of data. They are normally prepared on the invitation of the Scientific Editor or on prior mutual consent. Each submitted contribution is assessed by two independent referees. Every manuscript submitted must be accompanied by a disclaimer stating that the paper has not been published and is not being considered for publication elsewhere. If no copyright is claimed by the authors, the IAEA automatically owns the copyright of the paper. Guidelines for the preparation of manuscripts are given on the inside back cover. Manuscripts and correspondence should be addressed to: The Editor, NUCLEAR FUSION, International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria. Publisher: International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria Scientific Editor: R.K. Janev, Atomic and Molecular Data Unit, Division of Physical and Chemical Sciences Editor: C. Bobeldijk, Division of Scientific and Technical Information Manuscript Editors: J.W. Weil, Division of Publications Maria Demir, Division of Publications Editorial Board: V.A. Abramov (USSR) A. Miyahara (Japan) R. Behrisch (Germany) R.A. Phaneuf (USA) H.-W. Drawin (France) H.P. Summers (JET) W.B. Gauster (USA) H. Tawara (Japan) Yu.V. Martynenko (USSR) W.L. Wiese (USA) A. Kingston (UK) Annual subscription price (one issue): Austrian Schillings 300,— Airmail delivery (optional): Austrian Schillings 40,— to any destination ATOMIC AND PLASMA-MATERIAL INTERACTION DATA FOR FUSION, VOLUME 1 IAEA, VIENNA, 1991 STI/PUB/23/APID/l FOREWORD Atomic and plasma-wall interaction processes have an important impact on the energy balance, confinement and stability of a thermonuclear plasma. Fusion research areas in which these processes play a prominent part are: plasma radiation losses, impurity control, particle transport, thermal power and helium exhaust, neutral beam plasma heating and fuelling, edge plasma physics and plasma diagnostics. With the progress of fusion research towards the engineering reactor stage, plasma-material interaction processes related to the gross thermophysical response and the thermo- mechanical behaviour of plasma facing components to plasma particle and heat fluxes are also becoming increasingly important. Information on all of these processes is essential for both fusion plasma research and fusion reactor design. The International Atomic Energy Agency, through its Atomic and Molecular Data Unit, co-ordinates a wide spec­ trum of programmes for the compilation, evaluation and generation of atomic, molecular and plasma-material interaction data for fusion. The purpose of these programmes, which were initiated more than fifteen years ago, is to provide the fusion community with consistent and expert assessed information on atomic and plasma-material interaction processes as required in fusion research. Recognizing the need for a more direct exchange of information on these processes between the atomic/material physics community and the fusion community, the Subcommittee on Atomic and Molecular Data for Fusion of the International Fusion Research Council has suggested that the Agency establish an annual publica­ tion on the subject of atomic and plasma-material interaction data for fusion as a supplement to the journal Nuclear Fusion. The content of scientific contributions in this journal-level publication should be strongly data oriented and highly fusion relevant. The contributions should be original in character and should either provide new (or improved) data or evaluate a broader class (or classes) of data or processes (review). While submission of individual contributions corresponding to the scope of the journal is strongly encouraged, it is expected that some contributions will result also from presentations at scientific meetings organized by the Agency in the framework of its co-ordinated data generation and evaluation programmes. The present, first volume of Atomic and Plasma-Material Interaction Data for Fusion contains extended versions of the reviews presented at the IAEA Advisory Group Meeting on Particle-Surface Interaction Data for Fusion, held on 19-21 April 1989 at the IAEA Headquarters in Vienna. The review articles incorporate the original contributions presented at the meeting, as well as the most recent information on the specific subjects covered. The plasma-wall interaction processes considered are the ones which are most important in a reactor level magnetic fusion device and have a strong impact on its operational performance. Apart from the processes induced by particle impact, plasma-material interaction effects related to off-normal plasma events (disruptions, runaway electron bombard­ ment) are covered. A summary of the status of data information for all of these processes from the point of view of fusion reactor design needs is also provided. To a certain extent, this volume can be considered as an updated and complementary source of information to the Data Compendium for Plasma-Surface Interactions published in 1984 as a Special Issue of Nuclear Fusion. Vienna, September 1991 R.K. Janev Scientific Editor CONTENTS R. Behrisch: Particle bombardment and energy fluxes to the vessel walls in controlled thermonuclear fusion devices 7 W. Eckstein: Reflection 17 K.L. Wilson, R. Bastasz, R.A. Causey, D.K. Brice, B.L. Doyle, W.R. Wampler, W. Moller, B.M.U. Scherzer, T. Tanabe: Trapping, detrapping and release of implanted hydrogen isotopes 31 W. Eckstein, J. Bohdansky, J. Roth: Physical sputtering 51 J. Roth, E. Vietzke, A.A. Haasz: Erosion of graphite due to particle impact 63 E.W. Thomas: Particle induced electron emission 79 H. Wolff: Arcing in magnetic fusion devices 93 J.B. Whitley, W.B. Gauster, R.D. Watson, J.A. Koski, A.J. Russo: Pulse heating and effects of disruptions and runaway electrons on first walls and divertors 109 R.K. Janev, A. Miyahara: Plasma-material interaction issues in fusion reactor design and status of the database 123 PARTICLE BOMBARDMENT AND ENERGY FLUXES TO THE VESSEL WALLS IN CONTROLLED THERMONUCLEAR FUSION DEVICES R. BEHRISCH Max-Planck-Institut fur Plasmaphysik, Euratom-IPP Association, Garching bei Munchen, Germany ABSTRACT. For an ignited, continuously
Recommended publications
  • Graphite Materials for the U.S
    ANRIC your success is our goal SUBSECTION HH, Subpart A Timothy Burchell CNSC Contract No: 87055-17-0380 R688.1 Technical Seminar on Application of ASME Section III to New Materials for High Temperature Reactors Delivered March 27-28, 2018, Ottawa, Canada TIM BURCHELL BIOGRAPHICAL INFORMATION Dr. Tim Burchell is Distinguished R&D staff member and Team Lead for Nuclear Graphite in the Nuclear Material Science and Technology Group within the Materials Science and Technology Division of the Oak Ridge National Laboratory (ORNL). He is engaged in the development and characterization of carbon and graphite materials for the U.S. Department of Energy. He was the Carbon Materials Technology (CMT) Group Leader and was manager of the Modular High Temperature Gas-Cooled Reactor Graphite Program responsible for the research project to acquire reactor graphite property design data. Currently, Dr. Burchell is the leader of the Next Generation Nuclear Plant graphite development tasks at ORNL. His current research interests include: fracture behavior and modeling of nuclear-grade graphite; the effects of neutron damage on the structure and properties of fission and fusion reactor relevant carbon materials, including isotropic and near isotropic graphite and carbon-carbon composites; radiation creep of graphites, the thermal physical properties of carbon materials. As a Research Officer at Berkeley Nuclear Laboratories in the U.K. he monitored the condition of graphite moderators in gas-cooled power reactors. He is a Battelle Distinguished Inventor; received the Hsun Lee Lecture Award from the Chinese Academy of Science’s Institute of Metals Research in 2006 and the ASTM D02 Committee Eagle your success is our goal Award in 2015.
    [Show full text]
  • Nuclear Energy: Fission and Fusion
    CHAPTER 5 NUCLEAR ENERGY: FISSION AND FUSION Many of the technologies that will help us to meet the new air quality standards in America can also help to address climate change. President Bill Clinton 1 Two distinct processes involving the nuclei of atoms can be harnessed, in principle, for energy production: fission—the splitting of a nucleus—and fusion—the joining together of two nuclei. For any given mass or volume of fuel, nuclear processes generate more energy than can be produced through any other fuel-based approach. Another attractive feature of these energy-producing reactions is that they do not produce greenhouse gases (GHG) or other forms of air pollution directly. In the case of nuclear fission—a mature though controversial energy technology—electricity is generated from the energy released when heavy nuclei break apart. In the case of nuclear fusion, much work remains in the quest to sustain the fusion reactions and then to design and build practical fusion power plants. Fusion’s fuel is abundant, namely, light atoms such as the isotopes of hydrogen, and essentially limitless. The most optimistic timetable for fusion development is half a century, because of the extraordinary scientific and engineering challenges involved, but fusion’s benefits are so globally attractive that fusion R&D is an important component of today’s energy R&D portfolio internationally. Fission power currently provides about 17 percent of the world’s electric power. As of December 1996, 442 nuclear power reactors were operating in 30 countries, and 36 more plants were under construction. If fossil plants were used to produce the amount of electricity generated by these nuclear plants, more than an additional 300 million metric tons of carbon would be emitted each year.
    [Show full text]
  • NETS 2020 Template
    بÀƵƧǘȁǞƧƊǶ §ȲȌǐȲƊǿ ƊƧDzɈȌɈǘƵwȌȌȁƊȁƮȌȁ ɈȌwƊȲȺɈǘȲȌɐǐǘƊƮɨƊȁƧǞȁǐ خȁɐƧǶƵƊȲɈƵƧǘȁȌǶȌǐǞƵȺƊȁƮ ǞȁȁȌɨƊɈǞȌȁ ǞȺ ȺȯȌȁȺȌȲƵƮ Ʀɯ ɈǘƵ ƊDz ªǞƮǐƵ yƊɈǞȌȁƊǶ ׁׂ׀ׂ y0À² ÀǘǞȺ ƧȌȁǏƵȲƵȁƧƵ خׁׂ׀ׂ ةɈǘ׀׃ƊȁƮ ɩǞǶǶƦƵ ǘƵǶƮ ǏȲȌǿȯȲǞǶ ׂ׆ɈǘٌةmƊƦȌȲƊɈȌȲɯ ɩǞǶǶ ƦƵ ǘƵǶƮ ɨǞȲɈɐƊǶǶɯ ȺȌ ɈǘƊɈ ɈǘƵ ƵȁɈǞȲƵ y0À² خƧȌǿǿɐȁǞɈɯǿƊɯȯƊȲɈǞƧǞȯƊɈƵǞȁɈǘǞȺƵɮƧǞɈǞȁǐǿƵƵɈǞȁǐ ǐȌɨخȌȲȁǶخخׁׂ׀ȁƵɈȺׂششبǘɈɈȯȺ Nuclear and Emerging Technologies for Space Sponsored by Oak Ridge National Laboratory, April 26th-30th, 2021. Available online at https://nets2021.ornl.gov Table of Contents Table of Contents .................................................................................................................................................... 1 Thanks to the NETS2021 Sponsors! ...................................................................................................................... 2 Nuclear and Emerging Technologies for Space 2021 – Schedule at a Glance ................................................. 3 Nuclear and Emerging Technologies for Space 2021 – Technical Sessions and Panels By Track ............... 6 Nuclear and Emerging Technologies for Space 2021 – Lightning Talk Final Program ................................... 8 Nuclear and Emerging Technologies for Space 2021 – Track 1 Final Program ............................................. 11 Nuclear and Emerging Technologies for Space 2021 – Track 2 Final Program ............................................. 14 Nuclear and Emerging Technologies for Space 2021 – Track 3 Final Program ............................................. 18
    [Show full text]
  • Uranium (Nuclear)
    Uranium (Nuclear) Uranium at a Glance, 2016 Classification: Major Uses: What Is Uranium? nonrenewable electricity Uranium is a naturally occurring radioactive element, that is very hard U.S. Energy Consumption: U.S. Energy Production: and heavy and is classified as a metal. It is also one of the few elements 8.427 Q 8.427 Q that is easily fissioned. It is the fuel used by nuclear power plants. 8.65% 10.01% Uranium was formed when the Earth was created and is found in rocks all over the world. Rocks that contain a lot of uranium are called uranium Lighter Atom Splits Element ore, or pitch-blende. Uranium, although abundant, is a nonrenewable energy source. Neutron Uranium Three isotopes of uranium are found in nature, uranium-234, 235 + Energy FISSION Neutron uranium-235, and uranium-238. These numbers refer to the number of Neutron neutrons and protons in each atom. Uranium-235 is the form commonly Lighter used for energy production because, unlike the other isotopes, the Element nucleus splits easily when bombarded by a neutron. During fission, the uranium-235 atom absorbs a bombarding neutron, causing its nucleus to split apart into two atoms of lighter mass. The first nuclear power plant came online in Shippingport, PA in 1957. At the same time, the fission reaction releases thermal and radiant Since then, the industry has experienced dramatic shifts in fortune. energy, as well as releasing more neutrons. The newly released neutrons Through the mid 1960s, government and industry experimented with go on to bombard other uranium atoms, and the process repeats itself demonstration and small commercial plants.
    [Show full text]
  • 1 Phys:1200 Lecture 36 — Atomic and Nuclear Physics
    1 PHYS:1200 LECTURE 36 — ATOMIC AND NUCLEAR PHYSICS (4) This last lecture of the course will focus on nuclear energy. There is an enormous reservoir of energy in the nucleus and it can be released either in a controlled manner in a nuclear reactor, or in an uncontrolled manner in a nuclear bomb. The energy released in a nuclear reactor can be used to produce electricity. The two processes in which nuclear energy is released – nuclear fission and nuclear fusion, will be discussed in this lecture. The biological effects of nuclear radiation will also be discussed. 36‐1. Biological Effects of Nuclear Radiation.—Radioactive nuclei emit alpha, beta, and gamma radiation. These radiations are harmful to humans because they are ionizing radiation that have the ability to remove electrons from atoms and molecules in human cells. This can lead to the death or alterations of cells. Alteration of the cell can transform a healthy cell into a cancer cell. The hazards of radiation can be minimized by limiting ones overall exposure to radiation. However, there is still some uncertainty in the medical community about the possibility the effect of a single radioactive particle on the bottom. In other words, are the effects cumulative, or can a single exposure lead to cancer in the body. Exposure to radiation can produce either short term effects appearing within minutes of exposure, or long term effects that may appear in years or decades or even in future generations due to changes in DNA. The effects of absorbing ionizing radiation is measured in a unit called the rem.
    [Show full text]
  • The Stellarator Program J. L, Johnson, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey
    The Stellarator Program J. L, Johnson, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey, U.S.A. (On loan from Westlnghouse Research and Development Center) G. Grieger, Max Planck Institut fur Plasmaphyslk, Garching bel Mun<:hen, West Germany D. J. Lees, U.K.A.E.A. Culham Laboratory, Abingdon, Oxfordshire, England M. S. Rablnovich, P. N. Lebedev Physics Institute, U.S.3.R. Academy of Sciences, Moscow, U.S.S.R. J. L. Shohet, Torsatron-Stellarator Laboratory, University of Wisconsin, Madison, Wisconsin, U.S.A. and X. Uo, Plasma Physics Laboratory Kyoto University, Gokasho, Uj', Japan Abstract The woHlwide development of stellnrator research is reviewed briefly and informally. I OISCLAIWCH _— . vi'Tli^liW r.'r -?- A stellarator is a closed steady-state toroidal device for cer.flning a hot plasma In a magnetic field where the rotational transform Is produced externally, from torsion or colls outside the plasma. This concept was one of the first approaches proposed for obtaining a controlled thsrtnonuclear device. It was suggested and developed at Princeton in the 1950*s. Worldwide efforts were undertaken in the 1960's. The United States stellarator commitment became very small In the 19/0's, but recent progress, especially at Carchlng ;ind Kyoto, loeethar with «ome new insights for attacking hotii theoretics] Issues and engineering concerns have led to a renewed optimism and interest a:; we enter the lQRO's. The stellarator concept was borr In 1951. Legend has it that Lyman Spiczer, Professor of Astronomy at Princeton, read reports of a successful demonstration of controlled thermonuclear fusion by R.
    [Show full text]
  • Molten Salt Chemistry Workshop
    The cover depicts the chemical and physical complexity of the various species and interfaces within a molten salt reactor. To advance new approaches to molten salt technology development, it is necessary to understand and predict the chemical and physical properties of molten salts under extreme environments; understand their ability to coordinate fissile materials, fertile materials, and fission products; and understand their interfacial reactions with the reactor materials. Modern x-ray and neutron scattering tools and spectroscopy and electrochemical methods can be coupled with advanced computational modeling tools using high performance computing to provide new insights and predictive understanding of the structure, dynamics, and properties of molten salts over a broad range of length and time scales needed for phenomenological understanding. The actual image is a snapshot from an ab initio molecular dynamics simulation of graphene- organic electrolyte interactions. Image courtesy of Bobby G. Sumpter of ORNL. Molten Salt Chemistry Workshop Report for the US Department of Energy, Office of Nuclear Energy Workshop Molten Salt Chemistry Workshop Technology and Applied R&D Needs for Molten Salt Chemistry April 10–12, 2017 Oak Ridge National Laboratory Co-chairs: David F. Williams, Oak Ridge National Laboratory Phillip F. Britt, Oak Ridge National Laboratory Working Group Co-chairs Working Group 1: Physical Chemistry and Salt Properties Alexa Navrotsky, University of California–Davis Mark Williamson, Argonne National Laboratory Working
    [Show full text]
  • Fission and Fusion Can Yield Energy
    Nuclear Energy Nuclear energy can also be separated into 2 separate forms: nuclear fission and nuclear fusion. Nuclear fusion is the splitting of large atomic nuclei into smaller elements releasing energy, and nuclear fusion is the joining of two small atomic nuclei into a larger element and in the process releasing energy. The mass of a nucleus is always less than the sum of the individual masses of the protons and neutrons which constitute it. The difference is a measure of the nuclear binding energy which holds the nucleus together (Figure 1). As figures 1 and 2 below show, the energy yield from nuclear fusion is much greater than nuclear fission. Figure 1 2 Nuclear binding energy = ∆mc For the alpha particle ∆m= 0.0304 u which gives a binding energy of 28.3 MeV. (Figure from: http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html ) Fission and fusion can yield energy Figure 2 (Figure from: http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html) Nuclear fission When a neutron is fired at a uranium-235 nucleus, the nucleus captures the neutron. It then splits into two lighter elements and throws off two or three new neutrons (the number of ejected neutrons depends on how the U-235 atom happens to split). The two new atoms then emit gamma radiation as they settle into their new states. (John R. Huizenga, "Nuclear fission", in AccessScience@McGraw-Hill, http://proxy.library.upenn.edu:3725) There are three things about this induced fission process that make it especially interesting: 1) The probability of a U-235 atom capturing a neutron as it passes by is fairly high.
    [Show full text]
  • An Overview of the HIT-SI Research Program and Its Implications for Magnetic Fusion Energy
    An overview of the HIT-SI research program and its implications for magnetic fusion energy Derek Sutherland, Tom Jarboe, and The HIT-SI Research Group University of Washington 36th Annual Fusion Power Associates Meeting – Strategies to Fusion Power December 16-17, 2015, Washington, D.C. Motivation • Spheromaks configurations are attractive for fusion power applications. • Previous spheromak experiments relied on coaxial helicity injection, which precluded good confinement during sustainment. • Fully inductive, non-axisymmetric helicity injection may allow us to overcome the limitations of past spheromak experiments. • Promising experimental results and an attractive reactor vision motivate continued exploration of this possible path to fusion power. Outline • Coaxial helicity injection NSTX and SSPX • Overview of the HIT-SI experiment • Motivating experimental results • Leading theoretical explanation • Reactor vision and comparisons • Conclusions and next steps Coaxial helicity injection (CHI) has been used successfully on NSTX to aid in non-inductive startup Figures: Raman, R., et al., Nucl. Fusion 53 (2013) 073017 • Reducing the need for inductive flux swing in an ST is important due to central solenoid flux-swing limitations. • Biasing the lower divertor plates with ambient magnetic field from coil sets in NSTX allows for the injection of magnetic helicity. • A ST plasma configuration is formed via CHI that is then augmented with other current drive methods to reach desired operating point, reducing or eliminating the need for a central solenoid. • Demonstrated on HIT-II at the University of Washington and successfully scaled to NSTX. Though CHI is useful on startup in NSTX, Cowling’s theorem removes the possibility of a steady-state, axisymmetric dynamo of interest for reactor applications • Cowling* argued that it is impossible to have a steady-state axisymmetric MHD dynamo (sustain current on magnetic axis against resistive dissipation).
    [Show full text]
  • Grant Meadows November 2015 Modern Physics Fall 2015
    Radioisotope Power Sources Grant Meadows 2015 Fall Physics Modern November 2015 Grant Meadows, November 2015, November Meadows, Grant Modern Physics Fall 2015 Outline • Describe the fundamentals of nuclear energy sources, including the radioisotope power source (RPS) • Review radioactivity, the fundamental phenomena of radioisotope power sources • Explain interactions of radiation with matter • Finally, conclude with the energy transfer mechanisms of RPS’s Modern Physics Fall 2015 Fall Physics Modern Grant Meadows, November 2015, November Meadows, Grant Fundamentals of Nuclear Energy Sources • RPS uses heat from decay of radioactive elements to generate electricity • Difference between nuclear fusion, nuclear fission, and RPS’s: • Nuclear fusion uses the energy released from fusing (combining) light elements, like hydrogen, into heavier elements, like helium • Although the sun is powered by nuclear fusion, no device on earth has ever released more energy than consumed. Hence, they cannot be used to generate electricity yet 2015 Fall Physics Modern • Nuclear fission uses energy released by fissioning (breaking apart) uranium or plutonium to create heat for generating electricity 2015, November Meadows, Grant • All commercial nuclear reactors use fission • Fission reactors produce radioactive elements, but only part of their reaction process Nuclear Fusion, Fission Modern Physics Fall 2015 Fall Physics Modern Fig 1: Nuclear fusion reactor. Fig 2: Nuclear fission reactor. Reactor Pulse The Tokamak Reactor. at Texas A&M Nuclear Science Center.
    [Show full text]
  • Nuclear Graphite for High Temperature Reactors
    Nuclear Graphite for High temperature Reactors B J Marsden AEA Technology Risley, Warrington Cheshire, WA3 6AT, UK Abstract The cores and reflectors in modem High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design, see Table 1. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable. The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modem HTRs. HTR Graphite Component Design and Irradiation Environment The details of the HTRs, which have, or are being, been built and operated, are listed in Table 1.
    [Show full text]
  • Uranium and Other Actinids As Source for Star Cores, Powered by a Dual Fission-Fusion Reactor
    Uranium and other actinids as source for star cores, powered by a dual fission-fusion reactor. Ternary fission processes as source for fusion fuel in stars. A suggestion on the origins of the Big Bang Florent Pirot To cite this version: Florent Pirot. Uranium and other actinids as source for star cores, powered by a dual fission-fusion reactor. Ternary fission processes as source for fusion fuel in stars. A suggestion on the origins ofthe Big Bang. 2018. hal-01673630v1 HAL Id: hal-01673630 https://hal.archives-ouvertes.fr/hal-01673630v1 Preprint submitted on 11 Jan 2018 (v1), last revised 18 Mar 2019 (v5) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Uranium and other actinids as source for star cores, powered by a dual fission-fusion reactor. Ternary fission processes as source for fusion fuel in stars. A suggestion on the origins of the Big Bang Florent PIROT – [email protected] Abstract : Recent astrophysical discoveries, including actinid-rich stars and protostars close to a black hole, as well as geophysical research (for instance the proximity of zirconium and barytine mines, stable decay products of major fission products, to volcanic areas), allow to confirm, rearrange and expand the hypothesis first developed by J M Herndon in the 1990s by adaptating it fully to star cores and linking it to volcanism.
    [Show full text]