Harmonic Maass Forms and Mock Modular Forms: Theory and Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Five Fundamental Operations of Mathematics: Addition, Subtraction
The five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms Kenneth A. Ribet UC Berkeley Trinity University March 31, 2008 Kenneth A. Ribet Five fundamental operations This talk is about counting, and it’s about solving equations. Counting is a very familiar activity in mathematics. Many universities teach sophomore-level courses on discrete mathematics that turn out to be mostly about counting. For example, we ask our students to find the number of different ways of constituting a bag of a dozen lollipops if there are 5 different flavors. (The answer is 1820, I think.) Kenneth A. Ribet Five fundamental operations Solving equations is even more of a flagship activity for mathematicians. At a mathematics conference at Sundance, Robert Redford told a group of my colleagues “I hope you solve all your equations”! The kind of equations that I like to solve are Diophantine equations. Diophantus of Alexandria (third century AD) was Robert Redford’s kind of mathematician. This “father of algebra” focused on the solution to algebraic equations, especially in contexts where the solutions are constrained to be whole numbers or fractions. Kenneth A. Ribet Five fundamental operations Here’s a typical example. Consider the equation y 2 = x3 + 1. In an algebra or high school class, we might graph this equation in the plane; there’s little challenge. But what if we ask for solutions in integers (i.e., whole numbers)? It is relatively easy to discover the solutions (0; ±1), (−1; 0) and (2; ±3), and Diophantus might have asked if there are any more. -
Arxiv:2003.01675V1 [Math.NT] 3 Mar 2020 of Their Locations
DIVISORS OF MODULAR PARAMETRIZATIONS OF ELLIPTIC CURVES MICHAEL GRIFFIN AND JONATHAN HALES Abstract. The modularity theorem implies that for every elliptic curve E=Q there exist rational maps from the modular curve X0(N) to E, where N is the conductor of E. These maps may be expressed in terms of pairs of modular functions X(z) and Y (z) where X(z) and Y (z) satisfy the Weierstrass equation for E as well as a certain differential equation. Using these two relations, a recursive algorithm can be used to calculate the q - expansions of these parametrizations at any cusp. Using these functions, we determine the divisor of the parametrization and the preimage of rational points on E. We give a sufficient condition for when these preimages correspond to CM points on X0(N). We also examine a connection between the al- gebras generated by these functions for related elliptic curves, and describe sufficient conditions to determine congruences in the q-expansions of these objects. 1. Introduction and statement of results The modularity theorem [2, 12] guarantees that for every elliptic curve E of con- ductor N there exists a weight 2 newform fE of level N with Fourier coefficients in Z. The Eichler integral of fE (see (3)) and the Weierstrass }-function together give a rational map from the modular curve X0(N) to the coordinates of some model of E: This parametrization has singularities wherever the value of the Eichler integral is in the period lattice. Kodgis [6] showed computationally that many of the zeros of the Eichler integral occur at CM points. -
Traces of Reciprocal Singular Moduli, We Require the Theta Functions
TRACES OF RECIPROCAL SINGULAR MODULI CLAUDIA ALFES-NEUMANN AND MARKUS SCHWAGENSCHEIDT Abstract. We show that the generating series of traces of reciprocal singular moduli is a mixed mock modular form of weight 3/2 whose shadow is given by a linear combination of products of unary and binary theta functions. To prove these results, we extend the Kudla-Millson theta lift of Bruinier and Funke to meromorphic modular functions. 1. Introduction and statement of results The special values of the modular j-invariant 1 2 3 j(z)= q− + 744 + 196884q + 21493760q + 864299970q + ... at imaginary quadratic points in the upper half-plane are called singular moduli. By the theory of complex multiplication they are algebraic integers in the ray class fields of certain orders in imaginary quadratic fields. In particular, their traces j(zQ) trj(D)= ΓQ Q + /Γ ∈QXD | | are known to be rational integers. Here + denotes the set of positive definite quadratic QD forms of discriminant D < 0, on which Γ = SL2(Z) acts with finitely many orbits. Further, ΓQ is the stabilizer of Q in Γ = PSL2(Z) and zQ H is the CM point associated to Q. In his seminal paper “Traces of singular moduli”∈ (see [Zag02]) Zagier showed that the generating series 1 D 1 3 4 7 8 q− 2 tr (D)q− = q− 2+248q 492q + 4119q 7256q + ... − − J − − − D<X0 arXiv:1905.07944v2 [math.NT] 2 Apr 2020 of traces of CM values of J = j 744 is a weakly holomorphic modular form of weight − 3/2 for Γ0(4). It follows from this result, by adding a multiple of Zagier’s mock modular Eisenstein series of weight 3/2 (see [Zag75]), that the generating series 1 D 1 4 7 8 q− + 60 tr (D)q− = q− + 60 864q + 3375q 8000q + .. -
Manjul Bhargava
The Work of Manjul Bhargava Manjul Bhargava's work in number theory has had a profound influence on the field. A mathematician of extraordinary creativity, he has a taste for simple problems of timeless beauty, which he has solved by developing elegant and powerful new methods that offer deep insights. When he was a graduate student, Bhargava read the monumental Disqui- sitiones Arithmeticae, a book about number theory by Carl Friedrich Gauss (1777-1855). All mathematicians know of the Disquisitiones, but few have actually read it, as its notation and computational nature make it difficult for modern readers to follow. Bhargava nevertheless found the book to be a wellspring of inspiration. Gauss was interested in binary quadratic forms, which are polynomials ax2 +bxy +cy2, where a, b, and c are integers. In the Disquisitiones, Gauss developed his ingenious composition law, which gives a method for composing two binary quadratic forms to obtain a third one. This law became, and remains, a central tool in algebraic number theory. After wading through the 20 pages of Gauss's calculations culminating in the composition law, Bhargava knew there had to be a better way. Then one day, while playing with a Rubik's cube, he found it. Bhargava thought about labeling each corner of a cube with a number and then slic- ing the cube to obtain 2 sets of 4 numbers. Each 4-number set naturally forms a matrix. A simple calculation with these matrices resulted in a bi- nary quadratic form. From the three ways of slicing the cube, three binary quadratic forms emerged. -
Sir Andrew J. Wiles
ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society March 2017 Volume 64, Number 3 Women's History Month Ad Honorem Sir Andrew J. Wiles page 197 2018 Leroy P. Steele Prize: Call for Nominations page 195 Interview with New AMS President Kenneth A. Ribet page 229 New York Meeting page 291 Sir Andrew J. Wiles, 2016 Abel Laureate. “The definition of a good mathematical problem is the mathematics it generates rather Notices than the problem itself.” of the American Mathematical Society March 2017 FEATURES 197 239229 26239 Ad Honorem Sir Andrew J. Interview with New The Graduate Student Wiles AMS President Kenneth Section Interview with Abel Laureate Sir A. Ribet Interview with Ryan Haskett Andrew J. Wiles by Martin Raussen and by Alexander Diaz-Lopez Allyn Jackson Christian Skau WHAT IS...an Elliptic Curve? Andrew Wiles's Marvelous Proof by by Harris B. Daniels and Álvaro Henri Darmon Lozano-Robledo The Mathematical Works of Andrew Wiles by Christopher Skinner In this issue we honor Sir Andrew J. Wiles, prover of Fermat's Last Theorem, recipient of the 2016 Abel Prize, and star of the NOVA video The Proof. We've got the official interview, reprinted from the newsletter of our friends in the European Mathematical Society; "Andrew Wiles's Marvelous Proof" by Henri Darmon; and a collection of articles on "The Mathematical Works of Andrew Wiles" assembled by guest editor Christopher Skinner. We welcome the new AMS president, Ken Ribet (another star of The Proof). Marcelo Viana, Director of IMPA in Rio, describes "Math in Brazil" on the eve of the upcoming IMO and ICM. -
Arxiv:1407.1093V1 [Math.NT]
MULTIPLICATIVE REDUCTION AND THE CYCLOTOMIC MAIN CONJECTURE FOR GL2 CHRISTOPHER SKINNER Abstract. We show that the cyclotomic Iwasawa–Greenberg Main Conjecture holds for a large class of modular forms with multiplicative reduction at p, extending previous results for the good ordinary case. In fact, the multiplicative case is deduced from the good case through the use of Hida families and a simple Fitting ideal argument. 1. Introduction The cyclotomic Iwasawa–Greenberg Main Conjecture was established in [18], in com- bination with work of Kato [13], for a large class of newforms f ∈ Sk(Γ0(N)) that are ordinary at an odd prime p ∤ N, subject to k ≡ 2 (mod p − 1) and certain conditions on the mod p Galois representation associated with f. The purpose of this note is to extend this result to the case where p | N (in which case k is necessarily equal to 2). ∞ n Recall that the coefficients an of the q-expansion f = n=1 anq of f at the cusp at infinity (equivalently, the Hecke eigenvalues of f) are algebraic integers that generate a finite extension Q(f) ⊂ C of Q. Let p be an odd primeP and let L be a finite extension of the completion of Q(f) at a chosen prime above p (equivalently, let L be a finite extension of Qp in a fixed algebraic closure Qp of Qp that contains the image of a chosen embedding Q(f) ֒→ Qp). Suppose that f is ordinary at p with respect to L in the sense that ap is a unit in the ring of integers O of L. -
Fermat, Taniyama–Shimura–Weil and Andrew Wiles, Part I
Fermat, Taniyama–Shimura–Weil and Andrew Wiles, Part I John Rognes University of Oslo, Norway May 13th 2016 The Norwegian Academy of Science and Letters has decided to award the Abel Prize for 2016 to Sir Andrew J. Wiles, University of Oxford for his stunning proof of Fermat’s Last Theorem by way of the modularity conjecture for semistable elliptic curves, opening a new era in number theory. Sir Andrew J. Wiles Sketch proof of Fermat’s Last Theorem: I Frey (1984): A solution ap + bp = cp to Fermat’s equation gives an elliptic curve y 2 = x(x − ap)(x + bp) : I Ribet (1986): The Frey curve does not come from a modular form. I Wiles (1994): Every elliptic curve comes from a modular form. I Hence no solution to Fermat’s equation exists. Point counts and Fourier expansions: Elliptic curve Hasse–Witt ( L6 -function Mellin Modular form Modularity: Elliptic curve ◦ ( ? L6 -function Modular form Wiles’ Modularity Theorem: Semistable elliptic curve defined over Q Wiles ◦ ) 5 L-function Weight 2 modular form Wiles’ Modularity Theorem: Semistable elliptic curve over Q of conductor N ) Wiles ◦ 5L-function Weight 2 modular form of level N Frey Curve (and a special case of Wiles’ theorem): Solution to Fermat’s equation Frey Semistable elliptic curve over Q with peculiar properties ) Wiles ◦ 5 L-function Weight 2 modular form with peculiar properties (A special case of) Ribet’s theorem: Solution to Fermat’s equation Frey Semistable elliptic curve over Q with peculiar properties * Wiles ◦ 4 L-function Weight 2 modular form with peculiar properties O Ribet Weight 2 modular form of level 2 Contradiction: Solution to Fermat’s equation Frey Semistable elliptic curve over Q with peculiar properties * Wiles ◦ 4 L-function Weight 2 modular form with peculiar properties O Ribet Weight 2 modular form of level 2 o Does not exist Blaise Pascal (1623–1662) Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le loisir de la faire plus courte. -
Arxiv:1906.07410V4 [Math.NT] 29 Sep 2020 Ainlpwrof Power Rational Ftetidodrmc Ht Function Theta Mock Applications
MOCK MODULAR EISENSTEIN SERIES WITH NEBENTYPUS MICHAEL H. MERTENS, KEN ONO, AND LARRY ROLEN In celebration of Bruce Berndt’s 80th birthday Abstract. By the theory of Eisenstein series, generating functions of various divisor functions arise as modular forms. It is natural to ask whether further divisor functions arise systematically in the theory of mock modular forms. We establish, using the method of Zagier and Zwegers on holomorphic projection, that this is indeed the case for certain (twisted) “small divisors” summatory functions sm σψ (n). More precisely, in terms of the weight 2 quasimodular Eisenstein series E2(τ) and a generic Shimura theta function θψ(τ), we show that there is a constant αψ for which ∞ E + · E2(τ) 1 sm n ψ (τ) := αψ + X σψ (n)q θψ(τ) θψ(τ) n=1 is a half integral weight (polar) mock modular form. These include generating functions for combinato- rial objects such as the Andrews spt-function and the “consecutive parts” partition function. Finally, in analogy with Serre’s result that the weight 2 Eisenstein series is a p-adic modular form, we show that these forms possess canonical congruences with modular forms. 1. Introduction and statement of results In the theory of mock theta functions and its applications to combinatorics as developed by Andrews, Hickerson, Watson, and many others, various formulas for q-series representations have played an important role. For instance, the generating function R(ζ; q) for partitions organized by their ranks is given by: n n n2 n (3 +1) m n q 1 ζ ( 1) q 2 R(ζ; q) := N(m,n)ζ q = −1 = − − n , (ζq; q)n(ζ q; q)n (q; q)∞ 1 ζq n≥0 n≥0 n∈Z − mX∈Z X X where N(m,n) is the number of partitions of n of rank m and (a; q) := n−1(1 aqj) is the usual n j=0 − q-Pochhammer symbol. -
An Introduction to the Birch and Swinnerton-Dyer Conjecture
Rose-Hulman Undergraduate Mathematics Journal Volume 16 Issue 1 Article 15 An Introduction to the Birch and Swinnerton-Dyer Conjecture Brent Johnson Villanova University Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Johnson, Brent (2015) "An Introduction to the Birch and Swinnerton-Dyer Conjecture," Rose-Hulman Undergraduate Mathematics Journal: Vol. 16 : Iss. 1 , Article 15. Available at: https://scholar.rose-hulman.edu/rhumj/vol16/iss1/15 Rose- Hulman Undergraduate Mathematics Journal An Introduction to the Birch and Swinnerton-Dyer Conjecture Brent A. Johnson a Volume 16, No. 1, Spring 2015 Sponsored by Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN 47803 Email: [email protected] a http://www.rose-hulman.edu/mathjournal Villanova University Rose-Hulman Undergraduate Mathematics Journal Volume 16, No. 1, Spring 2015 An Introduction to the Birch and Swinnerton-Dyer Conjecture Brent A. Johnson Abstract. This article explores the Birch and Swinnerton-Dyer Conjecture, one of the famous Millennium Prize Problems. In addition to providing the basic theoretic understanding necessary to understand the simplest form of the conjecture, some of the original numerical evidence used to formulate the conjecture is recreated. Recent results and current problems related to the conjecture are given at the end. Acknowledgements: I would like to thank Professor Robert Styer and Professor Alice Deanin for their incredible mentorship, patience, and friendship. RHIT Undergrad. Math. J., Vol. 16, No. 1 Page 271 1 Introduction An elliptic curve is a projective, nonsingular curve given by the general Weierstrass equation 2 3 2 E : y + a1xy + a3y = x + a2x + a4x + a6: There is no doubt that elliptic curves are amongst the most closely and widely studied objects in mathematics today. -
P-Adic Analysis and Mock Modular Forms
P -ADIC ANALYSIS AND MOCK MODULAR FORMS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MATHEMATICS AUGUST 2010 By Zachary A. Kent Dissertation Committee: Pavel Guerzhoy, Chairperson Christopher Allday Ron Brown Karl Heinz Dovermann Theresa Greaney Abstract A mock modular form f + is the holomorphic part of a harmonic Maass form f. The non-holomorphic part of f is a period integral of a cusp form g, which we call the shadow of f +. The study of mock modular forms and mock theta functions is one of the most active areas in number theory with important works by Bringmann, Ono, Zagier, Zwegers, among many others. The theory has many wide-ranging applica- tions: additive number theory, elliptic curves, mathematical physics, representation theory, and many others. We consider arithmetic properties of mock modular forms in three different set- tings: zeros of a certain family of modular forms, coupling the Fourier coefficients of mock modular forms and their shadows, and critical values of modular L-functions. For a prime p > 3, we consider j-zeros of a certain family of modular forms called Eisenstein series. When the weight of the Eisenstein series is p − 1, the j-zeros are j-invariants of elliptic curves with supersingular reduction modulo p. We lift these j-zeros to a p-adic field, and show that when the weights of two Eisenstein series are p-adically close, then there are j-zeros of both series that are p-adically close. -
18.785 Notes
Contents 1 Introduction 4 1.1 What is an automorphic form? . 4 1.2 A rough definition of automorphic forms on Lie groups . 5 1.3 Specializing to G = SL(2; R)....................... 5 1.4 Goals for the course . 7 1.5 Recommended Reading . 7 2 Automorphic forms from elliptic functions 8 2.1 Elliptic Functions . 8 2.2 Constructing elliptic functions . 9 2.3 Examples of Automorphic Forms: Eisenstein Series . 14 2.4 The Fourier expansion of G2k ...................... 17 2.5 The j-function and elliptic curves . 19 3 The geometry of the upper half plane 19 3.1 The topological space ΓnH ........................ 20 3.2 Discrete subgroups of SL(2; R) ..................... 22 3.3 Arithmetic subgroups of SL(2; Q).................... 23 3.4 Linear fractional transformations . 24 3.5 Example: the structure of SL(2; Z)................... 27 3.6 Fundamental domains . 28 3.7 ΓnH∗ as a topological space . 31 3.8 ΓnH∗ as a Riemann surface . 34 3.9 A few basics about compact Riemann surfaces . 35 3.10 The genus of X(Γ) . 37 4 Automorphic Forms for Fuchsian Groups 40 4.1 A general definition of classical automorphic forms . 40 4.2 Dimensions of spaces of modular forms . 42 4.3 The Riemann-Roch theorem . 43 4.4 Proof of dimension formulas . 44 4.5 Modular forms as sections of line bundles . 46 4.6 Poincar´eSeries . 48 4.7 Fourier coefficients of Poincar´eseries . 50 4.8 The Hilbert space of cusp forms . 54 4.9 Basic estimates for Kloosterman sums . 56 4.10 The size of Fourier coefficients for general cusp forms . -
CM Values and Fourier Coefficients of Harmonic Maass Forms
CM values and Fourier coefficients of harmonic Maass forms Vom Fachbereich Mathematik der Technischen Universit¨at Darmstadt zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Dipl.-Math. Claudia Alfes aus Dorsten Referent: Prof. Dr. J. H. Bruinier 1. Korreferent: Prof. Ken Ono, PhD 2. Korreferent: Prof. Dr. Nils Scheithauer Tag der Einreichung: 11. Dezember 2014 Tag der mundlichen¨ Prufung:¨ 5. Februar 2015 Darmstadt 2015 D 17 ii Danksagung Hiermit m¨ochte ich allen danken, die mich w¨ahrend meines Studiums und meiner Promotion, in- und außerhalb der Universit¨at, unterstutzt¨ und begleitet haben. Ein besonders großer Dank geht an meinen Doktorvater Professor Dr. Jan Hendrik Bruinier, der mir die Anregung fur¨ das Thema der Arbeit gegeben und mich stets gefordert, gef¨ordert und motiviert hat. Außerdem danke ich Professor Ken Ono, der mich ebenfalls auf viele interessante Fragestellungen aufmerksam gemacht hat und mir stets mit Rat und Tat zur Seite stand. Vielen Dank auch an Professor Nils Scheithauer fur¨ interessante Hinweise und fur¨ die Bereitschaft, die Arbeit zu begutachten. Ein weiteres großes Dankesch¨on geht an Dr. Stephan Ehlen, von ihm habe ich viel gelernt und insbesondere große Hilfe bei den in Sage angefertigten Rechnungen erhalten. Vielen Dank auch an Anna von Pippich fur¨ viele hilfreiche Hinweise. Weiterer Dank geht an die fleißigen Korrekturleser Yingkun Li, Sebastian Opitz, Stefan Schmid und Markus Schwagenscheidt die viel Zeit investiert haben, viele nutzliche¨ Anmerkungen hatten und zahlreiche Tippfehler gefunden haben. Daruber¨ hinaus danke ich der Deutschen Forschungsgemeinschaft, aus deren Mitteln meine Stelle an der Technischen Universit¨at Darmstadt zu Teilen im Rahmen des Projektes Schwache Maaß-Formen" und der Forschergruppe Symmetrie, Geometrie und " " Arithmetik" finanziert wurde.