K-Theory 8: 19-63, 1994, t9 © 1994 Kluwer Academic Publishers. Printed in the Netherlands. The Center of the 3-Dimensional and 4-Dimensional Sklyanin Algebras S. P. SMITH Department of Mathematics, University of Washington, Seattle, WA 98195, U.S.A. e-mail:
[email protected] and J. TATE Department of Mathematics, University of Texas, Austin, TX 78712, U.S.A. e-mail:
[email protected] (Received: April, 1993) Abstract. Let A = A(E, z) denote either the 3-dimensional or 4-dimensional Sklyanin algebra associated to an elliptic curve E and a point z 6 E. Assume that the base field is algebraically closed, and that its characteristic does not divide the dimension of A. It is known that A is a finite module over its center if and only if z is of finite order. Generators and defining relations for the center Z(A) are given. If S = Proj(Z(A)) and d is the sheaf of d~s-algebras defined by d(Scr)) = A[f- 1]o then the center .~e of d is described. For example, for the 3-dimensional Sklyanin algebra we obtain a new proof of M. Artin's result that Sloe Y' ~ p2. However, for the 4-dimensional Sklyanin algebra there is not such a simple result: although Slm: ~e is rational and normal, it is singular. We describe its singular locus, which is also the non-Azumaya locus of d. Key words. Sklyanin algebras, center. 1. Introduction Let k be an algebraically closed field, E an elliptic curve over k, and z e E.