Finding an Upper Bound to the Order of Permutation Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Class of Frobenius Groups
A CLASS OF FROBENIUS GROUPS DANIEL GORKNSTEIN 1. Introduction. If a group contains two subgroups A and B such that every element of the group is either in A or can be represented uniquely in the form aba', a, a' in A, b 5* 1 in B, we shall call the group an independent ABA-group. In this paper we shall investigate the structure of independent ABA -groups of finite order. A simple example of such a group is the group G of one-dimensional affine transformations over a finite field K. In fact, if we denote by a the transforma tion x' = cox, where co is a primitive element of K, and by b the transformation x' = —x + 1, it is easy to see that G is an independent ABA -group with respect to the cyclic subgroups A, B generated by a and b respectively. Since G admits a faithful representation on m letters {m = number of elements in K) as a transitive permutation group in which no permutation other than the identity leaves two letters fixed, and in which there is at least one permutation leaving exactly one letter fixed, G is an example of a Frobenius group. In Theorem I we shall show that this property is characteristic of independent ABA-groups. In a Frobenius group on m letters, the set of elements whose order divides m forms a normal subgroup, called the regular subgroup. In our example, the regular subgroup M of G consists of the set of translations, and hence is an Abelian group of order m = pn and of type (p, p, . -
An Alternative Existence Proof of the Geometry of Ivanov–Shpectorov for O'nan's Sporadic Group
Innovations in Incidence Geometry Volume 15 (2017), Pages 73–121 ISSN 1781-6475 An alternative existence proof of the geometry of Ivanov–Shpectorov for O’Nan’s sporadic group Francis Buekenhout Thomas Connor In honor of J. A. Thas’s 70th birthday Abstract We provide an existence proof of the Ivanov–Shpectorov rank 5 diagram geometry together with its boolean lattice of parabolic subgroups and es- tablish the structure of hyperlines. Keywords: incidence geometry, diagram geometry, Buekenhout diagrams, O’Nan’s spo- radic group MSC 2010: 51E24, 20D08, 20B99 1 Introduction We start essentially but not exclusively from: • Leemans [26] giving the complete partially ordered set ΛO′N of conjugacy classes of subgroups of the O’Nan group O′N. This includes 581 classes and provides a structure name common for all subgroups in a given class; • the Ivanov–Shpectorov [24] rank 5 diagram geometry for the group O′N, especially its diagram ∆ as in Figure 1; ′ • the rank 3 diagram geometry ΓCo for O N due to Connor [15]; • detailed data on the diagram geometries for the groups M11 and J1 [13, 6, 27]. 74 F. Buekenhout • T. Connor 4 1 5 0 1 3 P h 1 1 1 2 Figure 1: The diagram ∆IvSh of the geometry ΓIvSh Our results are the following: • we get the Connor geometry ΓCo as a truncation of the Ivanov–Shpectorov geometry ΓIvSh (see Theorem 7.1); • using the paper of Ivanov and Shpectorov [24], we establish the full struc- ture of the boolean lattice LIvSh of their geometry as in Figure 17 (See Section 8); • conversely, within ΛO′N we prove the existence and uniqueness up to fu- ′ sion in Aut(O N) of a boolean lattice isomorphic to LIvSh. -
The Book of Abstracts
1st Joint Meeting of the American Mathematical Society and the New Zealand Mathematical Society Victoria University of Wellington Wellington, New Zealand December 12{15, 2007 American Mathematical Society New Zealand Mathematical Society Contents Timetables viii Plenary Addresses . viii Special Sessions ............................. ix Computability Theory . ix Dynamical Systems and Ergodic Theory . x Dynamics and Control of Systems: Theory and Applications to Biomedicine . xi Geometric Numerical Integration . xiii Group Theory, Actions, and Computation . xiv History and Philosophy of Mathematics . xv Hopf Algebras and Quantum Groups . xvi Infinite Dimensional Groups and Their Actions . xvii Integrability of Continuous and Discrete Evolution Systems . xvii Matroids, Graphs, and Complexity . xviii New Trends in Spectral Analysis and PDE . xix Quantum Topology . xx Special Functions and Orthogonal Polynomials . xx University Mathematics Education . xxii Water-Wave Scattering, Focusing on Wave-Ice Interactions . xxiii General Contributions . xxiv Plenary Addresses 1 Marston Conder . 1 Rod Downey . 1 Michael Freedman . 1 Bruce Kleiner . 2 Gaven Martin . 2 Assaf Naor . 3 Theodore A Slaman . 3 Matt Visser . 4 Computability Theory 5 George Barmpalias . 5 Paul Brodhead . 5 Cristian S Calude . 5 Douglas Cenzer . 6 Chi Tat Chong . 6 Barbara F Csima . 6 QiFeng ................................... 6 Johanna Franklin . 7 Noam Greenberg . 7 Denis R Hirschfeldt . 7 Carl G Jockusch Jr . 8 Bakhadyr Khoussainov . 8 Bj¨ornKjos-Hanssen . 8 Antonio Montalban . 9 Ng, Keng Meng . 9 Andre Nies . 9 i Jan Reimann . 10 Ludwig Staiger . 10 Frank Stephan . 10 Hugh Woodin . 11 Guohua Wu . 11 Dynamical Systems and Ergodic Theory 12 Boris Baeumer . 12 Mathias Beiglb¨ock . 12 Arno Berger . 12 Keith Burns . 13 Dmitry Dolgopyat . 13 Anthony Dooley . -
A Note on Frobenius Groups
Journal of Algebra 228, 367᎐376Ž. 2000 doi:10.1006rjabr.2000.8269, available online at http:rrwww.idealibrary.com on A Note on Frobenius Groups Paul Flavell The School of Mathematics and Statistics, The Uni¨ersity of Birmingham, CORE Birmingham B15 2TT, United Kingdom Metadata, citation and similar papers at core.ac.uk E-mail: [email protected] Provided by Elsevier - Publisher Connector Communicated by George Glauberman Received January 25, 1999 1. INTRODUCTION Two celebrated applications of the character theory of finite groups are Burnside's p␣q -Theorem and the theorem of Frobenius on the groups that bear his name. The elegant proofs of these theorems were obtained at the beginning of this century. It was then a challenge to find character-free proofs of these results. This was achieved for the p␣q -Theorem by Benderwx 1 , Goldschmidt wx 3 , and Matsuyama wx 8 in the early 1970s. Their proofs used ideas developed by Feit and Thompson in their proof of the Odd Order Theorem. There is no known character-free proof of Frobe- nius' Theorem. Recently, CorradiÂÂ and Horvathwx 2 have obtained some partial results in this direction. The purpose of this note is to prove some stronger results. We hope that this will stimulate more interest in this problem. Throughout the remainder of this note, we let G be a finite Frobenius group. That is, G contains a subgroup H such that 1 / H / G and H l H g s 1 for all g g G y H. A subgroup with these properties is called a Frobenius complement of G. -
Lecture 14. Frobenius Groups (II)
Quick Review Proof of Frobenius’ Theorem Heisenberg groups Lecture 14. Frobenius Groups (II) Daniel Bump May 28, 2020 Quick Review Proof of Frobenius’ Theorem Heisenberg groups Review: Frobenius Groups Definition A Frobenius Group is a group G with a faithful transitive action on a set X such that no element fixes more than one point. An action of G on a set X gives a homomorphism from G to the group of bijections X (the symmetric group SjXj). In this definition faithful means this homomorphism is injective. Let H be the stabilizer of a point x0 2 X. The group H is called the Frobenius complement. Today we will prove: Theorem (Frobenius (1901)) A Frobenius group G is a semidirect product. That is, there exists a normal subgroup K such that G = HK and H \ K = f1g. Quick Review Proof of Frobenius’ Theorem Heisenberg groups Review: The mystery of Frobenius’ Theorem Since Frobenius’ theorem doesn’t require group representation theory in its formulation, it is remarkable that no proof has ever been found that doesn’t use representation theory! Web links: Frobenius groups (Wikipedia) Fourier Analytic Proof of Frobenius’ Theorem (Terence Tao) Math Overflow page on Frobenius’ theorem Frobenius Groups (I) (Lecture 14) Quick Review Proof of Frobenius’ Theorem Heisenberg groups The precise statement Last week we introduced the notion of a Frobenius group. This is a group G that acts transitively on a set X in which no element except the identity fixes more than one point. Let H be the isotropy subgroup of an element, and let be K∗ [ f1g where K∗ is the set of elements with no fixed points. -
12.6 Further Topics on Simple Groups 387 12.6 Further Topics on Simple Groups
12.6 Further Topics on Simple groups 387 12.6 Further Topics on Simple Groups This Web Section has three parts (a), (b) and (c). Part (a) gives a brief descriptions of the 56 (isomorphism classes of) simple groups of order less than 106, part (b) provides a second proof of the simplicity of the linear groups Ln(q), and part (c) discusses an ingenious method for constructing a version of the Steiner system S(5, 6, 12) from which several versions of S(4, 5, 11), the system for M11, can be computed. 12.6(a) Simple Groups of Order less than 106 The table below and the notes on the following five pages lists the basic facts concerning the non-Abelian simple groups of order less than 106. Further details are given in the Atlas (1985), note that some of the most interesting and important groups, for example the Mathieu group M24, have orders in excess of 108 and in many cases considerably more. Simple Order Prime Schur Outer Min Simple Order Prime Schur Outer Min group factor multi. auto. simple or group factor multi. auto. simple or count group group N-group count group group N-group ? A5 60 4 C2 C2 m-s L2(73) 194472 7 C2 C2 m-s ? 2 A6 360 6 C6 C2 N-g L2(79) 246480 8 C2 C2 N-g A7 2520 7 C6 C2 N-g L2(64) 262080 11 hei C6 N-g ? A8 20160 10 C2 C2 - L2(81) 265680 10 C2 C2 × C4 N-g A9 181440 12 C2 C2 - L2(83) 285852 6 C2 C2 m-s ? L2(4) 60 4 C2 C2 m-s L2(89) 352440 8 C2 C2 N-g ? L2(5) 60 4 C2 C2 m-s L2(97) 456288 9 C2 C2 m-s ? L2(7) 168 5 C2 C2 m-s L2(101) 515100 7 C2 C2 N-g ? 2 L2(9) 360 6 C6 C2 N-g L2(103) 546312 7 C2 C2 m-s L2(8) 504 6 C2 C3 m-s -
Bogomolov F., Tschinkel Yu. (Eds.) Geometric Methods in Algebra And
Progress in Mathematics Volume 235 Series Editors Hyman Bass Joseph Oesterle´ Alan Weinstein Geometric Methods in Algebra and Number Theory Fedor Bogomolov Yuri Tschinkel Editors Birkhauser¨ Boston • Basel • Berlin Fedor Bogomolov Yuri Tschinkel New York University Princeton University Department of Mathematics Department of Mathematics Courant Institute of Mathematical Sciences Princeton, NJ 08544 New York, NY 10012 U.S.A. U.S.A. AMS Subject Classifications: 11G18, 11G35, 11G50, 11F85, 14G05, 14G20, 14G35, 14G40, 14L30, 14M15, 14M17, 20G05, 20G35 Library of Congress Cataloging-in-Publication Data Geometric methods in algebra and number theory / Fedor Bogomolov, Yuri Tschinkel, editors. p. cm. – (Progress in mathematics ; v. 235) Includes bibliographical references. ISBN 0-8176-4349-4 (acid-free paper) 1. Algebra. 2. Geometry, Algebraic. 3. Number theory. I. Bogomolov, Fedor, 1946- II. Tschinkel, Yuri. III. Progress in mathematics (Boston, Mass.); v. 235. QA155.G47 2004 512–dc22 2004059470 ISBN 0-8176-4349-4 Printed on acid-free paper. c 2005 Birkhauser¨ Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Springer Science+Business Media Inc., Rights and Permissions, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de- veloped is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. -
Quasi P Or Not Quasi P? That Is the Question
Rose-Hulman Undergraduate Mathematics Journal Volume 3 Issue 2 Article 2 Quasi p or not Quasi p? That is the Question Ben Harwood Northern Kentucky University, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Harwood, Ben (2002) "Quasi p or not Quasi p? That is the Question," Rose-Hulman Undergraduate Mathematics Journal: Vol. 3 : Iss. 2 , Article 2. Available at: https://scholar.rose-hulman.edu/rhumj/vol3/iss2/2 Quasi p- or not quasi p-? That is the Question.* By Ben Harwood Department of Mathematics and Computer Science Northern Kentucky University Highland Heights, KY 41099 e-mail: [email protected] Section Zero: Introduction The question might not be as profound as Shakespeare’s, but nevertheless, it is interesting. Because few people seem to be aware of quasi p-groups, we will begin with a bit of history and a definition; and then we will determine for each group of order less than 24 (and a few others) whether the group is a quasi p-group for some prime p or not. This paper is a prequel to [Hwd]. In [Hwd] we prove that (Z3 £Z3)oZ2 and Z5 o Z4 are quasi 2-groups. Those proofs now form a portion of Proposition (12.1) It should also be noted that [Hwd] may also be found in this journal. Section One: Why should we be interested in quasi p-groups? In a 1957 paper titled Coverings of algebraic curves [Abh2], Abhyankar conjectured that the algebraic fundamental group of the affine line over an algebraically closed field k of prime characteristic p is the set of quasi p-groups, where by the algebraic fundamental group of the affine line he meant the family of all Galois groups Gal(L=k(X)) as L varies over all finite normal extensions of k(X) the function field of the affine line such that no point of the line is ramified in L, and where by a quasi p-group he meant a finite group that is generated by all of its p-Sylow subgroups. -
On Non-Solvable Camina Pairs ∗ Zvi Arad A, Avinoam Mann B, Mikhail Muzychuk A, , Cristian Pech C
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Journal of Algebra 322 (2009) 2286–2296 Contents lists available at ScienceDirect Journal of Algebra www.elsevier.com/locate/jalgebra On non-solvable Camina pairs ∗ Zvi Arad a, Avinoam Mann b, Mikhail Muzychuk a, , Cristian Pech c a Department of Computer Sciences and Mathematics, Netanya Academic College, University St. 1, 42365, Netanya, Israel b Einstein Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel c Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel article info abstract Article history: In this paper we study non-solvable and non-Frobenius Camina Received 27 September 2008 pairs (G, N). It is known [D. Chillag, A. Mann, C. Scoppola, Availableonline29July2009 Generalized Frobenius groups II, Israel J. Math. 62 (1988) 269–282] Communicated by Martin Liebeck that in this case N is a p-group. Our first result (Theorem 1.3) shows that the solvable residual of G/O (G) is isomorphic either Keywords: p e = Camina pair to SL(2, p ), p is a prime or to SL(2, 5), SL(2, 13) with p 3, or to SL(2, 5) with p 7. Our second result provides an example of a non-solvable and non- 5 ∼ Frobenius Camina pair (G, N) with |Op (G)|=5 and G/Op (G) = SL(2, 5).NotethatG has a character which is zero everywhere except on two conjugacy classes. Groups of this type were studies by S.M. Gagola [S.M. Gagola, Characters vanishing on all but two conjugacy classes, Pacific J. -
Title: Algebraic Group Representations, and Related Topics a Lecture by Len Scott, Mcconnell/Bernard Professor of Mathemtics, the University of Virginia
Title: Algebraic group representations, and related topics a lecture by Len Scott, McConnell/Bernard Professor of Mathemtics, The University of Virginia. Abstract: This lecture will survey the theory of algebraic group representations in positive characteristic, with some attention to its historical development, and its relationship to the theory of finite group representations. Other topics of a Lie-theoretic nature will also be discussed in this context, including at least brief mention of characteristic 0 infinite dimensional Lie algebra representations in both the classical and affine cases, quantum groups, perverse sheaves, and rings of differential operators. Much of the focus will be on irreducible representations, but some attention will be given to other classes of indecomposable representations, and there will be some discussion of homological issues, as time permits. CHAPTER VI Linear Algebraic Groups in the 20th Century The interest in linear algebraic groups was revived in the 1940s by C. Chevalley and E. Kolchin. The most salient features of their contributions are outlined in Chapter VII and VIII. Even though they are put there to suit the broader context, I shall as a rule refer to those chapters, rather than repeat their contents. Some of it will be recalled, however, mainly to round out a narrative which will also take into account, more than there, the work of other authors. §1. Linear algebraic groups in characteristic zero. Replicas 1.1. As we saw in Chapter V, §4, Ludwig Maurer thoroughly analyzed the properties of the Lie algebra of a complex linear algebraic group. This was Cheval ey's starting point. -
The Mathieu Groups (Simple Sporadic Symmetries)
The Mathieu Groups (Simple Sporadic Symmetries) Scott Harper (University of St Andrews) Tomorrow's Mathematicians Today 21st February 2015 Scott Harper The Mathieu Groups 21st February 2015 1 / 15 The Mathieu Groups (Simple Sporadic Symmetries) Scott Harper (University of St Andrews) Tomorrow's Mathematicians Today 21st February 2015 Scott Harper The Mathieu Groups 21st February 2015 2 / 15 1 2 A symmetry is a structure preserving permutation of the underlying set. A group acts faithfully on an object if it is isomorphic to a subgroup of the 4 3 symmetry group of the object. Symmetry group: D4 The stabiliser of a point in a group G is Group of rotations: the subgroup of G which fixes x. ∼ h(1 2 3 4)i = C4 Subgroup fixing 1: h(2 4)i Symmetry Scott Harper The Mathieu Groups 21st February 2015 3 / 15 A symmetry is a structure preserving permutation of the underlying set. A group acts faithfully on an object if it is isomorphic to a subgroup of the symmetry group of the object. The stabiliser of a point in a group G is Group of rotations: the subgroup of G which fixes x. ∼ h(1 2 3 4)i = C4 Subgroup fixing 1: h(2 4)i Symmetry 1 2 4 3 Symmetry group: D4 Scott Harper The Mathieu Groups 21st February 2015 3 / 15 A group acts faithfully on an object if it is isomorphic to a subgroup of the symmetry group of the object. The stabiliser of a point in a group G is Group of rotations: the subgroup of G which fixes x. -
Lifting a 5-Dimensional Representation of $ M {11} $ to a Complex Unitary Representation of a Certain Amalgam
Lifting a 5-dimensional representation of M11 to a complex unitary representation of a certain amalgam Geoffrey R. Robinson July 16, 2018 Abstract We lift the 5-dimensional representation of M11 in characteristic 3 to a unitary complex representation of the amalgam GL(2, 3) ∗D8 S4. 1 The representation It is well known that the Mathieu group M11, the smallest sporadic simple group, has a 5-dimensional (absolutely) irreducible representation over GF(3) (in fact, there are two mutually dual such representations). It is clear that this does not lift to a complex representation, as M11 has no faithful complex character of degree less than 10. However, M11 is a homomorphic image of the amalgam G = GL(2, 3) D8 S4, ∗ and it turns out that if we consider the 5-dimension representation of M11 as a representation of G, then we may lift that representation of G to a complex representation. We aim to do that in such a way that the lifted representation Z 1 is unitary, and we realise it over [ √ 2 ], so that the complex representation admits reduction (mod p) for each odd− prime. These requirements are stringent enough to allow us explicitly exhibit representing matrices. It turns out that reduction (mod p) for any odd prime p other than 3 yields either a 5-dimensional arXiv:1502.00520v3 [math.RT] 8 Feb 2015 special linear group or a 5-dimensional special unitary group, so it is only the behaviour at the prime 3 which is exceptional. We are unsure at present whether the 5-dimensional complex representation of G is faithful (though it does have free kernel), so we will denote the image of Z 1 G in SU(5, [ √ 2 ]) by L, and denote the image of L under reduction (mod p) − by Lp.