Quantum Gravity Emergence from Entanglement in a Multi-Fold Universe”, Vixra:2006.0088V1, (June 9, 2020)

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Gravity Emergence from Entanglement in a Multi-Fold Universe”, Vixra:2006.0088V1, (June 9, 2020) Stephane H. Maes, (2020) “Quantum Gravity Emergence from Entanglement in a Multi-Fold Universe”, viXra:2006.0088v1, (June 9, 2020). URL: https://vixra.org/pdf/2006.0088v1.pdf Quantum Gravity Emergence from Entanglement in a Multi-Fold Universe Stephane´ H. Maes∗ Abstract 1 Introduction Abstract: We start from a hypothetical multi-fold universe This paper presents a radically new analysis of the UMF , where the propagation of everything is slower or equal to the speed of light and where entanglement extends foundations of quantum physics and quantum grav- the set of paths available to Path Integrals. This multi- ity. It is not just following a constructive path of fold mechanism enables EPR (Einstein-Podolsky-Rosen) spacetime or quantum geometry. It is not just ”not “spooky actions at distance” to result from local interac- thinking and instead computing” Path Integrals with tions in the resulting folds. It produces gravity-like attrac- variational approaches, Feynman diagrams or lattice tive effective potentials in the spacetime, between entan- gled entities, that are caused by the curvature of the folds. models of Actions, Lagrangians or Hamiltonians, de- When quantized, multi-folds correspond to gravitons and rived or guessed from Hilbert-Einstein actions and they are enablers of EPR entanglement. Gravity emerges geometric considerations or analogies. It is not start- non-perturbative and covariant from EPR entanglement be- ing from linearizing or quantizing General Relativity tween virtual particles surrounding an entity. (GR) equations at small scales. It is not attempting In UMF , we encounter mechanisms that predict grav- to deal with divergences and renormalization by fur- ity fluctuations when entanglement is present, including in ther tweaking the Action, Hamiltonian or Lagrangian macroscopic entanglements. Besides providing a new per- spective on quantum gravity, when added to the Standard and then claiming victory when recovering GR and Model and Standard Cosmology, UMF can contribute ex- gravitons (as spin 2 bosons), or vice versa, or space- planations of several open questions and challenges. It also time thermodynamics baked in all along because of clarifies some relationships and challenges met by other the commonalities between an Action and the Hilbert quantum gravity models and Theories of Everything. It Einstein Action. leads to suggestions for these works. We also reconstruct the spacetime of UMF , starting from This paper may not immediately appear to follow a the random walks of particles in an early spacetime. UMF reasoning or formalism familiar to today’s physicists. now appears as a noncommutative, discrete, yet Lorentz It is not because the more well beaten paths are not symmetric, spacetime that behaves roughly 2-Dimensional the right ways to go; to the contrary. It is rather that, at Planck scales, when it is a graph of microscopic Planck lately, many have called out “physics in crisis” and size black holes on a random walk fractal structure left by “the need for a new physics” [236, 237]. Today, it particles that can also appear as also microscopic black holes. Of course, at larger scales, spacetime appears 4- is something it is no more just the topic of only sci- D, where we are able to explain curvature and recover Ein- entific articles, discussions at physics conferences or stein’s General Relativity. We also discover an entanglement deep within physics departments. Discussions of the gravity-like contributions and massive gravity at very small challenges have reached much wider audience arti- scales. This is remarkable considering that no Hilbert Ein- cles and publications (e.g. [1, 248, 236]). The list stein action, or variations expressing area invariance, were of the issues warranting new approaches include, introduced. Our model also explains why semi classical ap- proaches can work till way smaller scale than usually ex- non-exhaustively: the un-intuitiveness of quantum pected and present a new view on an Ultimate Unification physics with interpretations that are often esoteric of all forces, at very small scales. and hard to follow; the problems with mathematics We also explore opportunities for falsifiability and vali- as sole driver for theoretical physics progress along dation of our model, as well as ideas for futuristic applica- with the loss of falsifiability [238] and absence of U tions that may be worth considering, if MF was a suitable validated new physics in last few decades [236]; the model for our universe U . real frustrating long marches to merge, or maybe just po- ∗Fremont CA, USA. [email protected] sition, General Relativity and Quantum Physics in- Preprint.v1 - June 9, 2020. 1 cluding as a result the absence of an unambiguous sistent with the established Physics as well as some quantum theory of gravity [2] or all-encompassing of the latest trends in Physics. The intent is to revisit grand unification1−2 or related ”Theories of Every- and model all aspects more rigorously in upcoming thing”; the lack of explanation for dark matter and works. dark energy [3] or particle/anti-particle imbalance; Our work has not benefited from living and breath- the conflicting observations in terms of cosmology ing Physics, tracking and discussing trends and new and the universe expansion that is accelerating (too papers or attending conferences over the years. It fast), as well as in terms of its early inflation [1]. relies extensively on occasional updates about some To this, we should add the religious wars between of the latest fads and publications. For the rest it schools of thoughts on how to target quantum gravity is the result from an old intuition, that Feynman’s [237]. We thought that something a bit more radical Path Integrals and Actions are the most fundamen- may be worth attempting. tal formalisms of Physics (like an ”equation of God”, Instead of spending time trying to map our theory and we are not talking of Euler’s formula) and that onto EPR (Einstein-Podolsky-Rosen) entanglement [4, 5] well-established frameworks, we decided to pursue and related works, and implications around the Bell a thought process, inspired by a few first principles inequalities [265], are fundamental and at the center and considerations intersecting General Relativity of something still only partially understood. and Quantum Physics and introduce a universe UMF In hindsight, (EPR) entanglement is today at the where Physics applies as usual3 but where some ad- core of the most non-classical quantum phenomena ditional quantitative, qualitative, phenomenological and defines Quantum Physics. Quantum entangle- and mathematical features are added, combined and ment is also the foundation of quantum computing pursued. This way, we hope to address some of the and Qubits [6, 7]. The essence of the incompati- challenges discussed above; hoping that emerging bilities of GR and Quantum Physics relate to local mechanisms can explain aspects of these challenges. realism vs. quantum nonlocality [5, 265] and su- The approach that we follow seems justified, because, perposition4. Also, Feynman’s integral or more gen- today, Physics seems to lack something to leap over erally functional integrals involving Actions and La- its current stumbling blocks. And yes, doing so, we grangians or Hamiltonians formulations are behind maybe escape the sirens of theoretical physics based most5 modern physics theories [322]. The reason for only on progressing always the same way with an the existence of Actions (locally extremized or equiva- aesthetically pleasant enough program and all its lently locally invariant) in Physics (classical or quan- rigour. The price to pay is that we do not have yet tum) remains a wonder: why is it possible to capture the complete formalism to express or derive every- complex dynamical models (histories or trajectories) thing. We try to be revolutionary, provocative and to simply in a concise extremization of an Action equa- address heads on what we think are some the main tion [322]6? Physical Actions give rise to most of mod- irreconcilable differences between GR and Quantum ern physics models (Dynamics and Kinematics). Physics. Yet, we also try to stay connected and con- Our hypotheses slowly developed over the years, linking the Path Integrals and EPR together as a rea- 1Think a` la SUSY / Super symmetry / Super gravity / son why spacetime would curve and gravity would Super strings. Today they are threatened by, for example, the absence of observations of SUSY particles (aka super 4Besides also the issues of background independence of partners) at LHC and other accelerators, the absence of ob- GR vs. background dependence of QFT. servations of proton decay [239, 240, 248, 236], as well as 5 However, it is known that every physical theory and the possibly even bigger problem of unobserved magnetic model does not necessarily come with a known Lagrangian, monopoles [321, 256, 341] predicted by mechanisms like Action or Hamiltonian. Exceptions with no or multiple La- Kaluza Klein as encountered in GUT, supersymmetry the- grangians are encountered in high energy, high interaction ories, supergravity and superstrings. or emergent / induced / effective theories [62, 63, 322] as 2Indeed, magnetic monopoles probably don’t exist simply well as in phenomenological theories and phase transition because gravity seems to break electromagnetism duality models. Think of the Ising model for example. [342]. We will revisit later once we can safely argue validity 6We will show that our discrete model of spacetime and of a semi classical approach. particles could in fact give a hint of why Actions exist and 3Meaning that physics models remain as applicable in are extremized through the natural existence of a multi- UMF as in Ureal; unless when said explicitly otherwise. paths formalism like Path Integrals in UMF . 2 result from the need to support Einstein’s “spooky at the microscopic level (i.e. with quantum grav- action at distance” of EPR despite c limits.
Recommended publications
  • Relational Quantum Mechanics
    Relational Quantum Mechanics Matteo Smerlak† September 17, 2006 †Ecole normale sup´erieure de Lyon, F-69364 Lyon, EU E-mail: [email protected] Abstract In this internship report, we present Carlo Rovelli’s relational interpretation of quantum mechanics, focusing on its historical and conceptual roots. A critical analysis of the Einstein-Podolsky-Rosen argument is then put forward, which suggests that the phenomenon of ‘quantum non-locality’ is an artifact of the orthodox interpretation, and not a physical effect. A speculative discussion of the potential import of the relational view for quantum-logic is finally proposed. Figure 0.1: Composition X, W. Kandinski (1939) 1 Acknowledgements Beyond its strictly scientific value, this Master 1 internship has been rich of encounters. Let me express hereupon my gratitude to the great people I have met. First, and foremost, I want to thank Carlo Rovelli1 for his warm welcome in Marseille, and for the unexpected trust he showed me during these six months. Thanks to his rare openness, I have had the opportunity to humbly but truly take part in active research and, what is more, to glimpse the vivid landscape of scientific creativity. One more thing: I have an immense respect for Carlo’s plainness, unaltered in spite of his renown achievements in physics. I am very grateful to Antony Valentini2, who invited me, together with Frank Hellmann, to the Perimeter Institute for Theoretical Physics, in Canada. We spent there an incredible week, meeting world-class physicists such as Lee Smolin, Jeffrey Bub or John Baez, and enthusiastic postdocs such as Etera Livine or Simone Speziale.
    [Show full text]
  • The E.P.R. Paradox George Levesque
    Undergraduate Review Volume 3 Article 20 2007 The E.P.R. Paradox George Levesque Follow this and additional works at: http://vc.bridgew.edu/undergrad_rev Part of the Quantum Physics Commons Recommended Citation Levesque, George (2007). The E.P.R. Paradox. Undergraduate Review, 3, 123-130. Available at: http://vc.bridgew.edu/undergrad_rev/vol3/iss1/20 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Copyright © 2007 George Levesque The E.P.R. Paradox George Levesque George graduated from Bridgewater his paper intends to discuss the E.P.R. paradox and its implications State College with majors in Physics, for quantum mechanics. In order to do so, this paper will discuss the Mathematics, Criminal Justice, and features of intrinsic spin of a particle, the Stern-Gerlach experiment, Sociology. This piece is his Honors project the E.P.R. paradox itself and the views it portrays. In addition, we will for Electricity and Magnetism advised by consider where such a classical picture succeeds and, eventually, as we will see Dr. Edward Deveney. George ruminated Tin Bell’s inequality, fails in the strange world we live in – the world of quantum to help the reader formulate, and accept, mechanics. why quantum mechanics, though weird, is valid. Intrinsic Spin Intrinsic spin angular momentum is odd to describe by any normal terms. It is unlike, and often entirely unrelated to, the classical “orbital angular momentum.” But luckily we can describe the intrinsic spin by its relationship to the magnetic moment of the particle being considered.
    [Show full text]
  • Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects
    Advances in High Energy Physics Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects Guest Editors: Emil T. Akhmedov, Stephen Minter, Piero Nicolini, and Douglas Singleton Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects Advances in High Energy Physics Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects Guest Editors: Emil T. Akhmedov, Stephen Minter, Piero Nicolini, and Douglas Singleton Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Advances in High Energy Physics.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Botio Betev, Switzerland Ian Jack, UK Neil Spooner, UK Duncan L. Carlsmith, USA Filipe R. Joaquim, Portugal Luca Stanco, Italy Kingman Cheung, Taiwan Piero Nicolini, Germany EliasC.Vagenas,Kuwait Shi-Hai Dong, Mexico Seog H. Oh, USA Nikos Varelas, USA Edmond C. Dukes, USA Sandip Pakvasa, USA Kadayam S. Viswanathan, Canada Amir H. Fatollahi, Iran Anastasios Petkou, Greece Yau W. Wah, USA Frank Filthaut, The Netherlands Alexey A. Petrov, USA Moran Wang, China Joseph Formaggio, USA Frederik Scholtz, South Africa Gongnan Xie, China Chao-Qiang Geng, Taiwan George Siopsis, USA Hong-Jian He, China Terry Sloan, UK Contents Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects,EmilT.Akhmedov,
    [Show full text]
  • Variational Problem and Bigravity Nature of Modified Teleparallel Theories
    Variational Problem and Bigravity Nature of Modified Teleparallel Theories Martin Krˇsˇs´ak∗ Institute of Physics, University of Tartu, W. Ostwaldi 1, Tartu 50411, Estonia August 15, 2017 Abstract We consider the variational principle in the covariant formulation of modified telepar- allel theories with second order field equations. We vary the action with respect to the spin connection and obtain a consistency condition relating the spin connection with the tetrad. We argue that since the spin connection can be calculated using an additional reference tetrad, modified teleparallel theories can be interpreted as effectively bigravity theories. We conclude with discussion about the relation of our results and those obtained in the usual, non-covariant, formulation of teleparallel theories and present the solution to the problem of choosing the tetrad in f(T ) gravity theories. 1 Introduction Teleparallel gravity is an alternative formulation of general relativity that can be traced back to Einstein’s attempt to formulate the unified field theory [1–9]. Over the last decade, various modifications of teleparallel gravity became a popular tool to address the problem of the accelerated expansion of the Universe without invoking the dark sector [10–38]. The attractiveness of modifying teleparallel gravity–rather than the usual general relativity–lies in the fact that we obtain an entirely new class of modified gravity theories, which have second arXiv:1705.01072v3 [gr-qc] 13 Aug 2017 order field equations. See [39] for the extensive review. A well-known shortcoming of the original formulation of teleparallel theories is the prob- lem of local Lorentz symmetry violation [40, 41].
    [Show full text]
  • Engineering the Quantum Foam
    Engineering the Quantum Foam Reginald T. Cahill School of Chemistry, Physics and Earth Sciences, Flinders University, GPO Box 2100, Adelaide 5001, Australia [email protected] _____________________________________________________ ABSTRACT In 1990 Alcubierre, within the General Relativity model for space-time, proposed a scenario for ‘warp drive’ faster than light travel, in which objects would achieve such speeds by actually being stationary within a bubble of space which itself was moving through space, the idea being that the speed of the bubble was not itself limited by the speed of light. However that scenario required exotic matter to stabilise the boundary of the bubble. Here that proposal is re-examined within the context of the new modelling of space in which space is a quantum system, viz a quantum foam, with on-going classicalisation. This model has lead to the resolution of a number of longstanding problems, including a dynamical explanation for the so-called `dark matter’ effect. It has also given the first evidence of quantum gravity effects, as experimental data has shown that a new dimensionless constant characterising the self-interaction of space is the fine structure constant. The studies here begin the task of examining to what extent the new spatial self-interaction dynamics can play a role in stabilising the boundary without exotic matter, and whether the boundary stabilisation dynamics can be engineered; this would amount to quantum gravity engineering. 1 Introduction The modelling of space within physics has been an enormously challenging task dating back in the modern era to Galileo, mainly because it has proven very difficult, both conceptually and experimentally, to get a ‘handle’ on the phenomenon of space.
    [Show full text]
  • Arxiv:2002.00255V3 [Quant-Ph] 13 Feb 2021 Lem (BVP)
    A Path Integral approach to Quantum Fluid Dynamics Sagnik Ghosh Indian Institute of Science Education and Research, Pune-411008, India Swapan K Ghosh UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz, Mumbai-400098, India ∗ (Dated: February 16, 2021) In this work we develop an alternative approach for solution of Quantum Trajectories using the Path Integral method. The state-of-the-art technique in the field is to solve a set of non-linear, coupled partial differential equations (PDEs) simultaneously. We opt for a fundamentally different route. We first derive a general closed form expression for the Path Integral propagator valid for any general potential as a functional of the corresponding classical path. The method is exact and is applicable in many dimensions as well as multi-particle cases. This, then, is used to compute the Quantum Potential (QP), which, in turn, can generate the Quantum Trajectories. For cases, where closed form solution is not possible, the problem is formally boiled down to solving the classical path as a boundary value problem. The work formally bridges the Path Integral approach with Quantum Fluid Dynamics. As a model application to illustrate the method, we work out a toy model viz. the double-well potential, where the boundary value problem for the classical path has been computed perturbatively, but the Quantum part is left exact. Using this we delve into seeking insight in one of the long standing debates with regard to Quantum Tunneling. Keywords: Path Integral, Quantum Fluid Dynamics, Analytical Solution, Quantum Potential, Quantum Tunneling, Quantum Trajectories Submitted to: J.
    [Show full text]
  • Quantum Gravity from the QFT Perspective
    Quantum Gravity from the QFT perspective Ilya L. Shapiro Universidade Federal de Juiz de Fora, MG, Brazil Partial support: CNPq, FAPEMIG ICTP-SAIFR/IFT-UNESP – 1-5 April, 2019 Ilya Shapiro, Quantum Gravity from the QFT perspective April - 2019 Lecture 5. Advances topics in QG Induced gravity concept. • Effective QG: general idea. • Effective QG as effective QFT. • Where we are with QG?. • Bibliography S.L. Adler, Rev. Mod. Phys. 54 (1982) 729. S. Weinberg, Effective Field Theory, Past and Future. arXive:0908.1964[hep-th]; J.F. Donoghue, The effective field theory treatment of quantum gravity. arXive:1209.3511[gr-qc]; I.Sh., Polemic notes on IR perturbative quantum gravity. arXiv:0812.3521 [hep-th]. Ilya Shapiro, Quantum Gravity from the QFT perspective April - 2019 I. Induced gravity. The idea of induced gravity is simple, while its realization may be quite non-trivial, depending on the theory. In any case, the induced gravity concept is something absolutely necessary if we consider an interaction of gravity with matter and quantum theory concepts. I. Induced gravity from cut-off Original simplest version. Ya.B. Zeldovich, Sov. Phys. Dokl. 6 (1967) 883. A.D. Sakharov, Sov. Phys. Dokl. 12 (1968) 1040. Strong version of induced gravity is like that: Suppose that the metric has no pre-determined equations of motion. These equations result from the interaction to matter. Main advantage: Since gravity is not fundamental, but induced interaction, there is no need to quantize metric. Ilya Shapiro, Quantum Gravity from the QFT perspective April - 2019 And we already know that the semiclassical approach has no problems with renormalizability! Suppose we have a theory of quantum matter fields Φ = (ϕ, ψ, Aµ) interacting to the metric gµν .
    [Show full text]
  • The Quantum Epoché
    Accepted Manuscript The quantum epoché Paavo Pylkkänen PII: S0079-6107(15)00127-3 DOI: 10.1016/j.pbiomolbio.2015.08.014 Reference: JPBM 1064 To appear in: Progress in Biophysics and Molecular Biology Please cite this article as: Pylkkänen, P., The quantum epoché, Progress in Biophysics and Molecular Biology (2015), doi: 10.1016/j.pbiomolbio.2015.08.014. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT The quantum epoché Paavo Pylkkänen Department of Philosophy, History, Culture and Art Studies & the Academy of Finland Center of Excellence in the Philosophy of the Social Sciences (TINT), P.O. Box 24, FI-00014 University of Helsinki, Finland. and Department of Cognitive Neuroscience and Philosophy, School of Biosciences, University of Skövde, P.O. Box 408, SE-541 28 Skövde, Sweden [email protected] Abstract. The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusiveMANUSCRIPT phenomena.
    [Show full text]
  • The Emergence of Gravitational Wave Science: 100 Years of Development of Mathematical Theory, Detectors, Numerical Algorithms, and Data Analysis Tools
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 53, Number 4, October 2016, Pages 513–554 http://dx.doi.org/10.1090/bull/1544 Article electronically published on August 2, 2016 THE EMERGENCE OF GRAVITATIONAL WAVE SCIENCE: 100 YEARS OF DEVELOPMENT OF MATHEMATICAL THEORY, DETECTORS, NUMERICAL ALGORITHMS, AND DATA ANALYSIS TOOLS MICHAEL HOLST, OLIVIER SARBACH, MANUEL TIGLIO, AND MICHELE VALLISNERI In memory of Sergio Dain Abstract. On September 14, 2015, the newly upgraded Laser Interferometer Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave (GW) signal, emitted a billion light-years away by a coalescing binary of two stellar-mass black holes. The detection was announced in February 2016, in time for the hundredth anniversary of Einstein’s prediction of GWs within the theory of general relativity (GR). The signal represents the first direct detec- tion of GWs, the first observation of a black-hole binary, and the first test of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of its first observing run, LIGO observed two more signals from black-hole bina- ries, one moderately loud, another at the boundary of statistical significance. The detections mark the end of a decades-long quest and the beginning of GW astronomy: finally, we are able to probe the unseen, electromagnetically dark Universe by listening to it. In this article, we present a short historical overview of GW science: this young discipline combines GR, arguably the crowning achievement of classical physics, with record-setting, ultra-low-noise laser interferometry, and with some of the most powerful developments in the theory of differential geometry, partial differential equations, high-performance computation, numerical analysis, signal processing, statistical inference, and data science.
    [Show full text]
  • Conformally Coupled General Relativity
    universe Article Conformally Coupled General Relativity Andrej Arbuzov 1,* and Boris Latosh 2 ID 1 Bogoliubov Laboratory for Theoretical Physics, JINR, Dubna 141980, Russia 2 Dubna State University, Department of Fundamental Problems of Microworld Physics, Universitetskaya str. 19, Dubna 141982, Russia; [email protected] * Correspondence: [email protected] Received: 28 December 2017; Accepted: 7 February 2018; Published: 14 February 2018 Abstract: The gravity model developed in the series of papers (Arbuzov et al. 2009; 2010), (Pervushin et al. 2012) is revisited. The model is based on the Ogievetsky theorem, which specifies the structure of the general coordinate transformation group. The theorem is implemented in the context of the Noether theorem with the use of the nonlinear representation technique. The canonical quantization is performed with the use of reparametrization-invariant time and Arnowitt– Deser–Misner foliation techniques. Basic quantum features of the models are discussed. Mistakes appearing in the previous papers are corrected. Keywords: models of quantum gravity; spacetime symmetries; higher spin symmetry 1. Introduction General relativity forms our understanding of spacetime. It is verified by the Solar System and cosmological tests [1,2]. The recent discovery of gravitational waves provided further evidence supporting the theory’s viability in the classical regime [3–6]. Despite these successes, there are reasons to believe that general relativity is unable to provide an adequate description of gravitational phenomena in the high energy regime and should be either modified or replaced by a new theory of gravity [7–11]. One of the main issues is the phenomenon of inflation. It appears that an inflationary phase of expansion is necessary for a self-consistent cosmological model [12–14].
    [Show full text]
  • 18Th Annual Student Research and Creativity Celebration at Buffalo State College
    III IIII II I I I I I I I I III IIII II I I I I I I I I Editor Jill Singer, Ph.D. Director, Office of Undergraduate Research Cover Design and Layout: Carol Alex The following individuals and offices are acknowledged for their many contributions: Marc Bayer, Interim Library Director, E.H. Butler Library, Department and Program Coordinators (identified below) and the library staff Donald Schmitter, Hospitality and Tourism, and students and very special thanks to: in HTR 400: Catering Management Kaylene Waite, Graphic Design, Instructional Resources Bruce Fox, Photographer Carol Alex, Center for Development of Human Services Andrew Chambers, Information Management Officer Sean Fox, Ellofex, Inc. Bernadette Gilliam and Mary Beth Wojtaszek, Events Management Department and Program Coordinators for the Eighteenth Annual Student Research and Creativity Celebration Lisa Marie Anselmi, Anthropology Dan MacIsaac, Physics Sarbani Banerjee, Computer Information Systems Candace Masters, Art Education Saziye Bayram, Mathematics Carmen McCallum, Higher Education Administration Carol Beckley, Theater Michaelene Meger, Exceptional Education Lynn Boorady, Fashion and Textile Technology Andrew Nicholls, History and Social Studies Education Louis Colca, Social Work Jill Norvilitis, Psychology Sandra Washington-Copeland, McNair Scholars Program Kathleen O’Brien, Hospitality and Tourism Carol DeNysschen, Health, Nutrition, and Dietetics Lorna Perez, English Eric Dolph, Interior Design Rebecca Ploeger, Art Conservation Reva Fish, Social & Psychological Foundations
    [Show full text]
  • Ads₄/CFT₃ and Quantum Gravity
    AdS/CFT and quantum gravity Ioannis Lavdas To cite this version: Ioannis Lavdas. AdS/CFT and quantum gravity. Mathematical Physics [math-ph]. Université Paris sciences et lettres, 2019. English. NNT : 2019PSLEE041. tel-02966558 HAL Id: tel-02966558 https://tel.archives-ouvertes.fr/tel-02966558 Submitted on 14 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Prepar´ ee´ a` l’Ecole´ Normale Superieure´ AdS4/CF T3 and Quantum Gravity Soutenue par Composition du jury : Ioannis Lavdas Costas BACHAS Le 03 octobre 2019 Ecole´ Normale Superieure Directeur de These Guillaume BOSSARD Ecole´ Polytechnique Membre du Jury o Ecole´ doctorale n 564 Elias KIRITSIS Universite´ Paris-Diderot et Universite´ de Rapporteur Physique en ˆIle-de-France Crete´ Michela PETRINI Sorbonne Universite´ President´ du Jury Nicholas WARNER University of Southern California Membre du Jury Specialit´ e´ Alberto ZAFFARONI Physique Theorique´ Universita´ Milano-Bicocca Rapporteur Contents Introduction 1 I 3d N = 4 Superconformal Theories and type IIB Supergravity Duals6 1 3d N = 4 Superconformal Theories7 1.1 N = 4 supersymmetric gauge theories in three dimensions..............7 1.2 Linear quivers and their Brane Realizations...................... 10 1.3 Moduli Space and Symmetries............................
    [Show full text]