Borun Shi. Towards Minimality of Clifford+T ZX-Calculus. Msc Thesis, University of Oxford, 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reasoning About Meaning in Natural Language with Compact Closed Categories and Frobenius Algebras ∗
Reasoning about Meaning in Natural Language with Compact Closed Categories and Frobenius Algebras ∗ Authors: Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, Stephen Pulman, Bob Coecke y Affiliation: Department of Computer Science, University of Oxford Address: Wolfson Building, Parks Road, Oxford, OX1 3QD Emails: [email protected] Abstract Compact closed categories have found applications in modeling quantum information pro- tocols by Abramsky-Coecke. They also provide semantics for Lambek's pregroup algebras, applied to formalizing the grammatical structure of natural language, and are implicit in a distributional model of word meaning based on vector spaces. Specifically, in previous work Coecke-Clark-Sadrzadeh used the product category of pregroups with vector spaces and provided a distributional model of meaning for sentences. We recast this theory in terms of strongly monoidal functors and advance it via Frobenius algebras over vector spaces. The former are used to formalize topological quantum field theories by Atiyah and Baez-Dolan, and the latter are used to model classical data in quantum protocols by Coecke-Pavlovic- Vicary. The Frobenius algebras enable us to work in a single space in which meanings of words, phrases, and sentences of any structure live. Hence we can compare meanings of different language constructs and enhance the applicability of the theory. We report on experimental results on a number of language tasks and verify the theoretical predictions. 1 Introduction Compact closed categories were first introduced by Kelly [21] in early 1970's. Some thirty years later they found applications in quantum mechanics [1], whereby the vector space foundations of quantum mechanics were recasted in a higher order language and quantum protocols such as teleportation found succinct conceptual proofs. -
Categories of Quantum and Classical Channels (Extended Abstract)
Categories of Quantum and Classical Channels (extended abstract) Bob Coecke∗ Chris Heunen† Aleks Kissinger∗ University of Oxford, Department of Computer Science fcoecke,heunen,[email protected] We introduce the CP*–construction on a dagger compact closed category as a generalisation of Selinger’s CPM–construction. While the latter takes a dagger compact closed category and forms its category of “abstract matrix algebras” and completely positive maps, the CP*–construction forms its category of “abstract C*-algebras” and completely positive maps. This analogy is justified by the case of finite-dimensional Hilbert spaces, where the CP*–construction yields the category of finite-dimensional C*-algebras and completely positive maps. The CP*–construction fully embeds Selinger’s CPM–construction in such a way that the objects in the image of the embedding can be thought of as “purely quantum” state spaces. It also embeds the category of classical stochastic maps, whose image consists of “purely classical” state spaces. By allowing classical and quantum data to coexist, this provides elegant abstract notions of preparation, measurement, and more general quantum channels. 1 Introduction One of the motivations driving categorical treatments of quantum mechanics is to place classical and quantum systems on an equal footing in a single category, so that one can study their interactions. The main idea of categorical quantum mechanics [1] is to fix a category (usually dagger compact) whose ob- jects are thought of as state spaces and whose morphisms are evolutions. There are two main variations. • “Dirac style”: Objects form pure state spaces, and isometric morphisms form pure state evolutions. -
Samson Abramsky and Bob Coecke. an Integrated Diagrammatic Universe for Knowledge, Language and Artificial Reasoning. John
An integrated diagrammatic universe for knowledge, language and artificial reasoning Samson Abramsky and Bob Coecke October 5, 2015 Introduction In many different areas of scientific investigation, purely diagrammatic expressions have begun to be used as mathematical substitutes for the traditional symbolic expressions. These new languages reflect clear operational concepts such as ‘systems’ and ‘processes’, and ‘wires’ are used to represent information flow. Composition is built-in, as the act of connecting wires together. These diagrams are more intuitive, and easier to manipulate, than conventional symbolic models of reasoning. Examples of areas in which these techniques are being used include logic, for the study of propositions and deductions [43]; physics, for the study of space and spacetime [8, 32]; linguistics, to model the interaction of words within a sentence [21]; knowledge, to represent information and belief revision [22]; and computation, for the study of data and computer programs [1, 10]. These diagrams have been provided with a rigorous underpinning using category theory, a powerful branch of mathematics which relates these the diagrammatic theories to algebraic structures. More deeply, this approach can also be applied to the study of diagrammatic theories themselves [12, 33]. As such, it is its own ‘metatheory’. One major goal of the project will be to understand to what extent this can serve as a foundation for mathematics itself, as a replacement for set theory. To work towards this, one goal will be to understand how various mathematical structures can be defined from this perspective, a rich line of enquiry for which some answers are already known, but much more is left to still be discovered. -
ABSTRACT PHYSICAL TRACES 1. Introduction
Theory and Applications of Categories, Vol. 14, No. 6, 2005, pp. 111–124. ABSTRACT PHYSICAL TRACES SAMSON ABRAMSKY AND BOB COECKE Abstract. We revise our ‘Physical Traces’ paper [Abramsky and Coecke CTCS‘02] in the light of the results in [Abramsky and Coecke LiCS‘04]. The key fact is that the notion of a strongly compact closed category allows abstract notions of adjoint, bipartite projector and inner product to be defined, and their key properties to be proved. In this paper we improve on the definition of strong compact closure as compared to the one presented in [Abramsky and Coecke LiCS‘04]. This modification enables an elegant characterization of strong compact closure in terms of adjoints and a Yanking axiom, and a better treatment of bipartite projectors. 1. Introduction In [Abramsky and Coecke CTCS‘02] we showed that vector space projectors P:V ⊗ W → V ⊗ W which have a one-dimensional subspace of V ⊗ W as fixed-points, suffice to implement any linear map, and also the categorical trace [Joyal, Street and Verity 1996] of the category (FdVecK, ⊗) of finite-dimensional vector spaces and linear maps over a base field K. The interest of this is that projectors of this kind arise naturally in quantum mechanics (for K = C), and play a key role in information protocols such as quantum teleportation [Bennett et al. 1993] and entanglement swapping [Zukowski˙ et al. 1993], and also in measurement-based schemes for quantum computation. We showed how both the category (FdHilb, ⊗) of finite-dimensional complex Hilbert spaces and linear maps, and the category (Rel, ×) of relations with the cartesian product as tensor, can be physically realized in this sense. -
Dagger Symmetric Monoidal Category
Tutorial on dagger categories Peter Selinger Dalhousie University Halifax, Canada FMCS 2018 1 Part I: Quantum Computing 2 Quantum computing: States α state of one qubit: = 0. • β ! 6 α β state of two qubits: . • γ δ ac a c ad separable: = . • b ! ⊗ d ! bc bd otherwise entangled. • 3 Notation 1 0 |0 = , |1 = . • i 0 ! i 1 ! |ij = |i |j etc. • i i⊗ i 4 Quantum computing: Operations unitary transformation • measurement • 5 Some standard unitary gates 0 1 0 −i 1 0 X = , Y = , Z = , 1 0 ! i 0 ! 0 −1 ! 1 1 1 1 0 1 0 H = , S = , T = , √2 1 −1 ! 0 i ! 0 √i ! 1 0 0 0 I 0 0 1 0 0 CNOT = = 0 X ! 0 0 0 1 0 0 1 0 6 Measurement α|0 + β|1 i i 0 1 |α|2 |β|2 α|0 β|1 i i 7 Mixed states A mixed state is a (classical) probability distribution on quantum states. Ad hoc notation: 1 α 1 α + ′ 2 β ! 2 β′ ! Note: A mixed state is a description of our knowledge of a state. An actual closed quantum system is always in a (possibly unknown) “pure” (= non-mixed) state. 8 Density matrices (von Neumann) α Represent the pure state v = C2 by the matrix β ! ∈ αα¯ αβ¯ 2 2 vv† = C × . βα¯ ββ¯ ! ∈ Represent the mixed state λ1 {v1} + ... + λn {vn} by λ1v1v1† + ... + λnvnvn† . This representation is not one-to-one, e.g. 1 1 1 0 1 1 0 1 0 0 .5 0 + = + = 2 0 ! 2 1 ! 2 0 0 ! 2 0 1 ! 0 .5 ! 1 1 1 1 1 1 1 .5 .5 1 .5 −.5 .5 0 + = + = 2 √2 1 ! 2 √2 −1 ! 2 .5 .5 ! 2 −.5 .5 ! 0 .5 ! But these two mixed states are indistinguishable. -
Hypergraph Categories
Hypergraph Categories Brendan Fong and David I. Spivak Abstract Hypergraph categories have been rediscovered at least five times, under vari- ous names, including well-supported compact closed categories, dgs-monoidal cat- egories, and dungeon categories. Perhaps the reason they keep being reinvented is two-fold: there are many applications—including to automata, databases, circuits, linear relations, graph rewriting, and belief propagation—and yet the standard def- inition is so involved and ornate as to be difficult to find in the literature. Indeed, a hypergraph category is, roughly speaking, a “symmetric monoidal category in which each object is equipped with the structure of a special commutative Frobenius monoid, satisfying certain coherence conditions”. Fortunately, this description can be simplified a great deal: a hypergraph cate- gory is simply a “cospan-algebra,” roughly a lax monoidal functor from cospans to sets. The goal of this paper is to remove the scare-quotes and make the previous statement precise. We prove two main theorems. First is a coherence theorem for hypergraph categories, which says that every hypergraph category is equivalent to an objectwise-free hypergraph category. Second, we prove that the category of objectwise- free hypergraph categories is equivalent to the category of cospan-algebras. Keywords: Hypergraph categories, compact closed categories, Frobenius algebras, cospan, wiring diagram. 1 Introduction arXiv:1806.08304v3 [math.CT] 18 Jan 2019 Suppose you wish to specify the following picture: g (1) f h This picture might represent, for example, an electrical circuit, a tensor network, or a pattern of shared variables between logical formulas. 1 One way to specify the picture in Eq. -
Categories of Mackey Functors
Categories of Mackey Functors Elango Panchadcharam M ∗(p1s1) M (t2p2) M(U) / M(P) ∗ / M(W ) 8 C 8 C 88 ÖÖ 88 ÖÖ 88 ÖÖ 88 ÖÖ 8 M ∗(p1) Ö 8 M (p2) Ö 88 ÖÖ 88 ∗ ÖÖ M ∗(s1) 8 Ö 8 Ö M (t2) 8 Ö 8 Ö ∗ 88 ÖÖ 88 ÖÖ 8 ÖÖ 8 ÖÖ M(S) M(T ) 88 Mackey ÖC 88 ÖÖ 88 ÖÖ 88 ÖÖ M (s2) 8 Ö M ∗(t1) ∗ 8 Ö 88 ÖÖ 8 ÖÖ M(V ) This thesis is presented for the degree of Doctor of Philosophy. Department of Mathematics Division of Information and Communication Sciences Macquarie University New South Wales, Australia December 2006 (Revised March 2007) ii This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This work has not been submitted for a higher degree to any other university or institution. Elango Panchadcharam In memory of my Father, T. Panchadcharam 1939 - 1991. iii iv Summary The thesis studies the theory of Mackey functors as an application of enriched category theory and highlights the notions of lax braiding and lax centre for monoidal categories and more generally for promonoidal categories. The notion of Mackey functor was first defined by Dress [Dr1] and Green [Gr] in the early 1970’s as a tool for studying representations of finite groups. The first contribution of this thesis is the study of Mackey functors on a com- pact closed category T . We define the Mackey functors on a compact closed category T and investigate the properties of the category Mky of Mackey func- tors on T . -
Complexity of Grammar Induction for Quantum Types Antonin Delpeuch
Complexity of Grammar Induction for Quantum Types Antonin Delpeuch To cite this version: Antonin Delpeuch. Complexity of Grammar Induction for Quantum Types. Electronic Proceedings in Theoretical Computer Science, EPTCS, 2014, 172, pp.236-248. 10.4204/eptcs.172.16. hal-01481758 HAL Id: hal-01481758 https://hal.archives-ouvertes.fr/hal-01481758 Submitted on 2 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Complexity of Grammar Induction for Quantum Types Antonin Delpeuch École Normale Supérieure 45 rue d’Ulm 75005 Paris, France [email protected] Most categorical models of meaning use a functor from the syntactic category to the semantic cate- gory. When semantic information is available, the problem of grammar induction can therefore be defined as finding preimages of the semantic types under this forgetful functor, lifting the informa- tion flow from the semantic level to a valid reduction at the syntactic level. We study the complexity of grammar induction, and show that for a variety of type systems, including pivotal and compact closed categories, the grammar induction problem is NP-complete. Our approach could be extended to linguistic type systems such as autonomous or bi-closed categories. -
Scientific Curriculum Vitae of Bob Coecke
Scientific Curriculum Vitae of Bob Coecke ID: Belgian - Born 23|07|1968 in Willebroek 1 Speech: Dutch/Flemish (mother tongue) - French (fluent) - English (fluent) Dynamic info: http://se10.comlab.ox.ac.uk:8080/BobCoecke/Home en.html Contact details: [email protected] - +44|(0)1865|27.38.67 (office) - +44|(0)785|529.81.83 (mobile) Present appointment: Oxford University Computing Laboratory, Parks Road, OX1 3QD Oxford, UK. RESEARCH FIELD • Fundamentals of Physics, Logic and Computation • Quantum Information and Computation (structures and applications) • Ordered (algebraic/toplogical) Structures, Probability Theory and Category Theory RESEARCH EXPERIENCE SYLLABUS • Quantum Entanglement, Quantum Computing, Quantum Probability, Quantum Information Theory; • Proof and Type Theory, Sequent Calculus, Type Theory, Categorical logic, Linear Logic, Dynamic Logic, Modal Logic, Intuitionistic Logic, Epistemic Logic, Quantum Logic; • Information Content and Entropy, Information-flow, Information Update in Multi-Agent Systems; • Lattices, Domains, Measure Theory, (multi-)Linear Algebra, Quantales, Enriched Categories, Traced and Closed Monoidal Categories, Bicategories. STUDIES at the Free University of Brussels • 1st & 2nd Kan. Polytechnics (Architecture - Engineering) July 1987/88 - High Distinction. • 1st & 2nd Kan. Mathematics (Pure Mathematics) July 1990 - the Highest Distinction. • 1st & 2nd Kan. Physics (Theoretical Physics) July 1990 - the Highest Distinction. • 1st & 2nd Lic. Physics (Theoretical Physics) July 1991/92 - the Highest Distinction. -
Why the Quantum
Deep Beauty: Mathematical Innovation and the Search for an Underlying Intelligibility of the Quantum World A Symposium and Book Publication Program Sponsored by Princeton University’s Department of Philosophy Supported by a Grant from the John Templeton Foundation Celebrating the Life and Legacy of John von Neumann and the 75th Anniversary of the Publication of His Classic Text: The Mathematical Foundations of Quantum Mechanics* Symposium: October 3 – October 4, 2007 Princeton, New Jersey _______________________ Revised 09-11-07, PContractor ________________ * von Neumann, Johann. Mathematische grundlagen der quantenmechanik. Berlin: J. Springer, 1932. Deep Beauty:Mathematical Innovation and the Search for an Underlying Intelligibility of the Quantum World John von Neumann,1903-1957 Courtesy of the Archives of the Institute for Advanced Study (Princeton)* The following photos are copyrighted by the Institute for Advanced Study, and they were photographed by Alan Richards unless otherwise specified. For copyright information, visit http://admin.ias.edu/hslib/archives.htm. *[ED. NOTE: ELLIPSIS WILL WRITE FOR PERMISSION IF PHOTO IS USED; SEE http://www.physics.umd.edu/robot/neumann.html] Page 2 of 14 Deep Beauty:Mathematical Innovation and the Search for an Underlying Intelligibility of the Quantum World Project Overview and Background DEEP BEAUTY: Mathematical Innovation and the Search for an Underlying Intelligibility of the Quantum World celebrates the life and legacy of the scientific and mathematical polymath John Von Neumann 50 years after his death and 75 years following the publication of his renowned, path- breaking classic text, The Mathematical Foundations of Quantum Mechanics.* The program, supported by a grant from the John Templeton Foundation, consists of (1) a two-day symposium sponsored by the Department of Philosophy at Princeton University to be held in Princeton October 3–4, 2007 and (2) a subsequent research volume to be published by a major academic press. -
Sentence Entailment in Compositional Distributional Semantics
Ann Math Artif Intell https://doi.org/10.1007/s10472-017-9570-x Sentence entailment in compositional distributional semantics Mehrnoosh Sadrzadeh1 · Dimitri Kartsaklis1 · Esma Balkır1 © The Author(s) 2018. This article is an open access publication Abstract Distributional semantic models provide vector representations for words by gath- ering co-occurrence frequencies from corpora of text. Compositional distributional models extend these from words to phrases and sentences. In categorical compositional distribu- tional semantics, phrase and sentence representations are functions of their grammatical structure and representations of the words therein. In this setting, grammatical structures are formalised by morphisms of a compact closed category and meanings of words are for- malised by objects of the same category. These can be instantiated in the form of vectors or density matrices. This paper concerns the applications of this model to phrase and sentence level entailment. We argue that entropy-based distances of vectors and density matrices provide a good candidate to measure word-level entailment, show the advantage of den- sity matrices over vectors for word level entailments, and prove that these distances extend compositionally from words to phrases and sentences. We exemplify our theoretical con- structions on real data and a toy entailment dataset and provide preliminary experimental evidence. Keywords Distributional semantics · Compositional distributional semantics · Distributional inclusion hypothesis · Density matrices · Entailment · Entropy Mathematics Subject Classification (2010) 03B65 Mehrnoosh Sadrzadeh [email protected] Dimitri Kartsaklis [email protected] Esma Balkır [email protected] 1 School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK M. -
A Survey of Graphical Languages for Monoidal Categories
A survey of graphical languages for monoidal categories Peter Selinger Dalhousie University Abstract This article is intended as a reference guide to various notions of monoidal cat- egories and their associated string diagrams. It is hoped that this will be useful not just to mathematicians, but also to physicists, computer scientists, and others who use diagrammatic reasoning. We have opted for a somewhat informal treatment of topological notions, and have omitted most proofs. Nevertheless, the exposition is sufficiently detailed to make it clear what is presently known, and to serve as a starting place for more in-depth study. Where possible, we provide pointers to more rigorous treatments in the literature. Where we include results that have only been proved in special cases, we indicate this in the form of caveats. Contents 1 Introduction 2 2 Categories 5 3 Monoidal categories 8 3.1 (Planar)monoidalcategories . 9 3.2 Spacialmonoidalcategories . 14 3.3 Braidedmonoidalcategories . 14 3.4 Balancedmonoidalcategories . 16 arXiv:0908.3347v1 [math.CT] 23 Aug 2009 3.5 Symmetricmonoidalcategories . 17 4 Autonomous categories 18 4.1 (Planar)autonomouscategories. 18 4.2 (Planar)pivotalcategories . 22 4.3 Sphericalpivotalcategories. 25 4.4 Spacialpivotalcategories . 25 4.5 Braidedautonomouscategories. 26 4.6 Braidedpivotalcategories. 27 4.7 Tortilecategories ............................ 29 4.8 Compactclosedcategories . 30 1 5 Traced categories 32 5.1 Righttracedcategories . 33 5.2 Planartracedcategories. 34 5.3 Sphericaltracedcategories . 35 5.4 Spacialtracedcategories . 36 5.5 Braidedtracedcategories . 36 5.6 Balancedtracedcategories . 39 5.7 Symmetrictracedcategories . 40 6 Products, coproducts, and biproducts 41 6.1 Products................................. 41 6.2 Coproducts ............................... 43 6.3 Biproducts................................ 44 6.4 Traced product, coproduct, and biproduct categories .