Chapter 16: Spectral Graph Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Boundary Value Problems on Weighted Paths
Introduction and basic concepts BVP on weighted paths Bibliography Boundary value problems on a weighted path Angeles Carmona, Andr´esM. Encinas and Silvia Gago Depart. Matem`aticaAplicada 3, UPC, Barcelona, SPAIN Midsummer Combinatorial Workshop XIX Prague, July 29th - August 3rd, 2013 MCW 2013, A. Carmona, A.M. Encinas and S.Gago Boundary value problems on a weighted path Introduction and basic concepts BVP on weighted paths Bibliography Outline of the talk Notations and definitions Weighted graphs and matrices Schr¨odingerequations Boundary value problems on weighted graphs Green matrix of the BVP Boundary Value Problems on paths Paths with constant potential Orthogonal polynomials Schr¨odingermatrix of the weighted path associated to orthogonal polynomials Two-side Boundary Value Problems in weighted paths MCW 2013, A. Carmona, A.M. Encinas and S.Gago Boundary value problems on a weighted path Introduction and basic concepts Schr¨odingerequations BVP on weighted paths Definition of BVP Bibliography Weighted graphs A weighted graphΓ=( V ; E; c) is composed by: V is a set of elements called vertices. E is a set of elements called edges. c : V × V −! [0; 1) is an application named conductance associated to the edges. u, v are adjacent, u ∼ v iff c(u; v) = cuv 6= 0. X The degree of a vertex u is du = cuv . v2V c34 u4 u1 c12 u2 c23 u3 c45 c35 c27 u5 c56 u7 c67 u6 MCW 2013, A. Carmona, A.M. Encinas and S.Gago Boundary value problems on a weighted path Introduction and basic concepts Schr¨odingerequations BVP on weighted paths Definition of BVP Bibliography Matrices associated with graphs Definition The weighted Laplacian matrix of a weighted graph Γ is defined as di if i = j; (L)ij = −cij if i 6= j: c34 u4 u c u c u 1 12 2 23 3 0 d1 −c12 0 0 0 0 0 1 c B −c12 d2 −c23 0 0 0 −c27 C 45 B C c B 0 −c23 d3 −c34 −c35 0 0 C 35 B C c27 L = B 0 0 −c34 d4 −c45 0 0 C B C u5 B 0 0 −c35 −c45 d5 −c56 0 C c56 @ 0 0 0 0 −c56 d6 −c67 A 0 −c27 0 0 0 −c67 d7 u7 c67 u6 MCW 2013, A. -
Three Conjectures in Extremal Spectral Graph Theory
Three conjectures in extremal spectral graph theory Michael Tait and Josh Tobin June 6, 2016 Abstract We prove three conjectures regarding the maximization of spectral invariants over certain families of graphs. Our most difficult result is that the join of P2 and Pn−2 is the unique graph of maximum spectral radius over all planar graphs. This was conjectured by Boots and Royle in 1991 and independently by Cao and Vince in 1993. Similarly, we prove a conjecture of Cvetkovi´cand Rowlinson from 1990 stating that the unique outerplanar graph of maximum spectral radius is the join of a vertex and Pn−1. Finally, we prove a conjecture of Aouchiche et al from 2008 stating that a pineapple graph is the unique connected graph maximizing the spectral radius minus the average degree. To prove our theorems, we use the leading eigenvector of a purported extremal graph to deduce structural properties about that graph. Using this setup, we give short proofs of several old results: Mantel's Theorem, Stanley's edge bound and extensions, the K}ovari-S´os-Tur´anTheorem applied to ex (n; K2;t), and a partial solution to an old problem of Erd}oson making a triangle-free graph bipartite. 1 Introduction Questions in extremal graph theory ask to maximize or minimize a graph invariant over a fixed family of graphs. Perhaps the most well-studied problems in this area are Tur´an-type problems, which ask to maximize the number of edges in a graph which does not contain fixed forbidden subgraphs. Over a century old, a quintessential example of this kind of result is Mantel's theorem, which states that Kdn=2e;bn=2c is the unique graph maximizing the number of edges over all triangle-free graphs. -
Manifold Learning
MANIFOLD LEARNING Kavé Salamatian- LISTIC Learning Machine Learning: develop algorithms to automatically extract ”patterns” or ”regularities” from data (generalization) Typical tasks Clustering: Find groups of similar points Dimensionality reduction: Project points in a lower dimensional space while preserving structure Semi-supervised: Given labelled and unlabelled points, build a labelling function Supervised: Given labelled points, build a labelling function All these tasks are not well-defined Clustering Identify the two groups Dimensionality Reduction 4096 Objects in R ? But only 3 parameters: 2 angles and 1 for illumination. They span a 3- dimensional sub-manifold of R4096! Semi-Supervised Learning Assign labels to black points Supervised learning Build a function that predicts the label of all points in the space Formal definitions Clustering: Given build a function Dimensionality reduction: Given build a function Semi-supervised: Given and with m << n, build a function Supervised: Given , build Geometric learning Consider and exploit the geometric structure of the data Clustering: two ”close” points should be in the same cluster Dimensionality reduction: ”closeness” should be preserved Semi-supervised/supervised: two ”close” points should have the same label Examples: k-means clustering, k-nearest neighbors. Manifold ? A manifold is a topological space that is locally Euclidian Around every point, there is a neighborhood that is topologically isomorph to unit ball Regularization Adopt a functional viewpoint -
Contemporary Spectral Graph Theory
CONTEMPORARY SPECTRAL GRAPH THEORY GUEST EDITORS Maurizio Brunetti, University of Naples Federico II, Italy, [email protected] Raffaella Mulas, The Alan Turing Institute, UK, [email protected] Lucas Rusnak, Texas State University, USA, [email protected] Zoran Stanić, University of Belgrade, Serbia, [email protected] DESCRIPTION Spectral graph theory is a striking theory that studies the properties of a graph in relationship to the characteristic polynomial, eigenvalues and eigenvectors of matrices associated with the graph, such as the adjacency matrix, the Laplacian matrix, the signless Laplacian matrix or the distance matrix. This theory emerged in the 1950s and 1960s. Over the decades it has considered not only simple undirected graphs but also their generalizations such as multigraphs, directed graphs, weighted graphs or hypergraphs. In the recent years, spectra of signed graphs and gain graphs have attracted a great deal of attention. Besides graph theoretic research, another major source is the research in a wide branch of applications in chemistry, physics, biology, electrical engineering, social sciences, computer sciences, information theory and other disciplines. This thematic special issue is devoted to the publication of original contributions focusing on the spectra of graphs or their generalizations, along with the most recent applications. Contributions to the Special Issue may address (but are not limited) to the following aspects: f relations between spectra of graphs (or their generalizations) and their structural properties in the most general shape, f bounds for particular eigenvalues, f spectra of particular types of graph, f relations with block designs, f particular eigenvalues of graphs, f cospectrality of graphs, f graph products and their eigenvalues, f graphs with a comparatively small number of eigenvalues, f graphs with particular spectral properties, f applications, f characteristic polynomials. -
Variants of the Graph Laplacian with Applications in Machine Learning
Variants of the Graph Laplacian with Applications in Machine Learning Sven Kurras Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) im Fachbereich Informatik der Fakult¨at f¨urMathematik, Informatik und Naturwissenschaften der Universit¨atHamburg Hamburg, Oktober 2016 Diese Promotion wurde gef¨ordertdurch die Deutsche Forschungsgemeinschaft, Forschergruppe 1735 \Structural Inference in Statistics: Adaptation and Efficiency”. Betreuung der Promotion durch: Prof. Dr. Ulrike von Luxburg Tag der Disputation: 22. M¨arz2017 Vorsitzender des Pr¨ufungsausschusses: Prof. Dr. Matthias Rarey 1. Gutachterin: Prof. Dr. Ulrike von Luxburg 2. Gutachter: Prof. Dr. Wolfgang Menzel Zusammenfassung In s¨amtlichen Lebensbereichen finden sich Graphen. Zum Beispiel verbringen Menschen viel Zeit mit der Kantentraversierung des Internet-Graphen. Weitere Beispiele f¨urGraphen sind soziale Netzwerke, ¨offentlicher Nahverkehr, Molek¨ule, Finanztransaktionen, Fischernetze, Familienstammb¨aume,sowie der Graph, in dem alle Paare nat¨urlicher Zahlen gleicher Quersumme durch eine Kante verbunden sind. Graphen k¨onnendurch ihre Adjazenzmatrix W repr¨asentiert werden. Dar¨uber hinaus existiert eine Vielzahl alternativer Graphmatrizen. Viele strukturelle Eigenschaften von Graphen, beispielsweise ihre Kreisfreiheit, Anzahl Spannb¨aume,oder Random Walk Hitting Times, spiegeln sich auf die ein oder andere Weise in algebraischen Eigenschaften ihrer Graphmatrizen wider. Diese grundlegende Verflechtung erlaubt das Studium von Graphen unter Verwendung s¨amtlicher Resultate der Linearen Algebra, angewandt auf Graphmatrizen. Spektrale Graphentheorie studiert Graphen insbesondere anhand der Eigenwerte und Eigenvektoren ihrer Graphmatrizen. Dabei ist vor allem die Laplace-Matrix L = D − W von Bedeutung, aber es gibt derer viele Varianten, zum Beispiel die normalisierte Laplacian, die vorzeichenlose Laplacian und die Diplacian. Die meisten Varianten basieren auf einer \syntaktisch kleinen" Anderung¨ von L, etwa D +W anstelle von D −W . -
Learning on Hypergraphs: Spectral Theory and Clustering
Learning on Hypergraphs: Spectral Theory and Clustering Pan Li, Olgica Milenkovic Coordinated Science Laboratory University of Illinois at Urbana-Champaign March 12, 2019 Learning on Graphs Graphs are indispensable mathematical data models capturing pairwise interactions: k-nn network social network publication network Important learning on graphs problems: clustering (community detection), semi-supervised/active learning, representation learning (graph embedding) etc. Beyond Pairwise Relations A graph models pairwise relations. Recent work has shown that high-order relations can be significantly more informative: Examples include: Understanding the organization of networks (Benson, Gleich and Leskovec'16) Determining the topological connectivity between data points (Zhou, Huang, Sch}olkopf'07). Graphs with high-order relations can be modeled as hypergraphs (formally defined later). Meta-graphs, meta-paths in heterogeneous information networks. Algorithmic methods for analyzing high-order relations and learning problems are still under development. Beyond Pairwise Relations Functional units in social and biological networks. High-order network motifs: Motif (Benson’16) Microfauna Pelagic fishes Crabs & Benthic fishes Macroinvertebrates Algorithmic methods for analyzing high-order relations and learning problems are still under development. Beyond Pairwise Relations Functional units in social and biological networks. Meta-graphs, meta-paths in heterogeneous information networks. (Zhou, Yu, Han'11) Beyond Pairwise Relations Functional units in social and biological networks. Meta-graphs, meta-paths in heterogeneous information networks. Algorithmic methods for analyzing high-order relations and learning problems are still under development. Review of Graph Clustering: Notation and Terminology Graph Clustering Task: Cluster the vertices that are \densely" connected by edges. Graph Partitioning and Conductance A (weighted) graph G = (V ; E; w): for e 2 E, we is the weight. -
Arxiv:1711.06300V1
EXPLICIT BLOCK-STRUCTURES FOR BLOCK-SYMMETRIC FIEDLER-LIKE PENCILS∗ M. I. BUENO†, M. MARTIN ‡, J. PEREZ´ §, A. SONG ¶, AND I. VIVIANO k Abstract. In the last decade, there has been a continued effort to produce families of strong linearizations of a matrix polynomial P (λ), regular and singular, with good properties, such as, being companion forms, allowing the recovery of eigen- vectors of a regular P (λ) in an easy way, allowing the computation of the minimal indices of a singular P (λ) in an easy way, etc. As a consequence of this research, families such as the family of Fiedler pencils, the family of generalized Fiedler pencils (GFP), the family of Fiedler pencils with repetition, and the family of generalized Fiedler pencils with repetition (GFPR) were con- structed. In particular, one of the goals was to find in these families structured linearizations of structured matrix polynomials. For example, if a matrix polynomial P (λ) is symmetric (Hermitian), it is convenient to use linearizations of P (λ) that are also symmetric (Hermitian). Both the family of GFP and the family of GFPR contain block-symmetric linearizations of P (λ), which are symmetric (Hermitian) when P (λ) is. Now the objective is to determine which of those structured linearizations have the best numerical properties. The main obstacle for this study is the fact that these pencils are defined implicitly as products of so-called elementary matrices. Recent papers in the literature had as a goal to provide an explicit block-structure for the pencils belonging to the family of Fiedler pencils and any of its further generalizations to solve this problem. -
Spectral Geometry for Structural Pattern Recognition
Spectral Geometry for Structural Pattern Recognition HEWAYDA EL GHAWALBY Ph.D. Thesis This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy. Department of Computer Science United Kingdom May 2011 Abstract Graphs are used pervasively in computer science as representations of data with a network or relational structure, where the graph structure provides a flexible representation such that there is no fixed dimensionality for objects. However, the analysis of data in this form has proved an elusive problem; for instance, it suffers from the robustness to structural noise. One way to circumvent this problem is to embed the nodes of a graph in a vector space and to study the properties of the point distribution that results from the embedding. This is a problem that arises in a number of areas including manifold learning theory and graph-drawing. In this thesis, our first contribution is to investigate the heat kernel embed- ding as a route to computing geometric characterisations of graphs. The reason for turning to the heat kernel is that it encapsulates information concerning the distribution of path lengths and hence node affinities on the graph. The heat ker- nel of the graph is found by exponentiating the Laplacian eigensystem over time. The matrix of embedding co-ordinates for the nodes of the graph is obtained by performing a Young-Householder decomposition on the heat kernel. Once the embedding of its nodes is to hand we proceed to characterise a graph in a geometric manner. With the embeddings to hand, we establish a graph character- ization based on differential geometry by computing sets of curvatures associated ii Abstract iii with the graph nodes, edges and triangular faces. -
CS 598: Spectral Graph Theory. Lecture 10
CS 598: Spectral Graph Theory. Lecture 13 Expander Codes Alexandra Kolla Today Graph approximations, part 2. Bipartite expanders as approximations of the bipartite complete graph Quasi-random properties of bipartite expanders, expander mixing lemma Building expander codes Encoding, minimum distance, decoding Expander Graph Refresher We defined expander graphs to be d- regular graphs whose adjacency matrix eigenvalues satisfy |훼푖| ≤ 휖푑 for i>1, and some small 휖. We saw that such graphs are very good approximations of the complete graph. Expanders as Approximations of the Complete Graph Refresher Let G be a d-regular graph whose adjacency eigenvalues satisfy |훼푖| ≤ 휖푑. As its Laplacian eigenvalues satisfy 휆푖 = 푑 − 훼푖, all non-zero eigenvalues are between (1 − ϵ)d and 1 + ϵ 푑. 푇 푇 Let H=(d/n)Kn, 푠표 푥 퐿퐻푥 = 푑푥 푥 We showed that G is an ϵ − approximation of H 푇 푇 푇 1 − ϵ 푥 퐿퐻푥 ≼ 푥 퐿퐺푥 ≼ 1 + ϵ 푥 퐿퐻푥 Bipartite Expander Graphs Define them as d-regular good approximations of (some multiple of) the complete bipartite 푑 graph H= 퐾 : 푛 푛,푛 푇 푇 푇 1 − ϵ 푥 퐿퐻푥 ≼ 푥 퐿퐺푥 ≼ 1 + ϵ 푥 퐿퐻푥 ⇒ 1 − ϵ 퐻 ≼ 퐺 ≼ 1 + ϵ 퐻 G 퐾푛,푛 U V U V The Spectrum of Bipartite Expanders 푑 Eigenvalues of Laplacian of H= 퐾 are 푛 푛,푛 휆1 = 0, 휆2푛 = 2푑, 휆푖 = 푑, 0 < 푖 < 2푛 푇 푇 푇 1 − ϵ 푥 퐿퐻푥 ≼ 푥 퐿퐺푥 ≼ 1 + ϵ 푥 퐿퐻푥 Says we want d-regular graph G that has evals 휆1 = 0, 휆2푛 = 2푑, 휆푖 ∈ ( 1 − 휖 푑, 1 + 휖 푑), 0 < 푖 < 2푛 Construction of Bipartite Expanders Definition (Double Cover). -
Notes on Elementary Spectral Graph Theory Applications to Graph Clustering Using Normalized Cuts
University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science 1-1-2013 Notes on Elementary Spectral Graph Theory Applications to Graph Clustering Using Normalized Cuts Jean H. Gallier University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/cis_reports Part of the Computer Engineering Commons, and the Computer Sciences Commons Recommended Citation Jean H. Gallier, "Notes on Elementary Spectral Graph Theory Applications to Graph Clustering Using Normalized Cuts", . January 2013. University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-13-09. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/986 For more information, please contact [email protected]. Notes on Elementary Spectral Graph Theory Applications to Graph Clustering Using Normalized Cuts Abstract These are notes on the method of normalized graph cuts and its applications to graph clustering. I provide a fairly thorough treatment of this deeply original method due to Shi and Malik, including complete proofs. I include the necessary background on graphs and graph Laplacians. I then explain in detail how the eigenvectors of the graph Laplacian can be used to draw a graph. This is an attractive application of graph Laplacians. The main thrust of this paper is the method of normalized cuts. I give a detailed account for K = 2 clusters, and also for K > 2 clusters, based on the work of Yu and Shi. Three points that do not appear to have been clearly articulated before are elaborated: 1. The solutions of the main optimization problem should be viewed as tuples in the K-fold cartesian product of projective space RP^{N-1}. -
"Distance Measures for Graph Theory"
Distance measures for graph theory : Comparisons and analyzes of different methods Dissertation presented by Maxime DUYCK for obtaining the Master’s degree in Mathematical Engineering Supervisor(s) Marco SAERENS Reader(s) Guillaume GUEX, Bertrand LEBICHOT Academic year 2016-2017 Acknowledgments First, I would like to thank my supervisor Pr. Marco Saerens for his presence, his advice and his precious help throughout the realization of this thesis. Second, I would also like to thank Bertrand Lebichot and Guillaume Guex for agreeing to read this work. Next, I would like to thank my parents, all my family and my friends to have accompanied and encouraged me during all my studies. Finally, I would thank Malian De Ron for creating this template [65] and making it available to me. This helped me a lot during “le jour et la nuit”. Contents 1. Introduction 1 1.1. Context presentation .................................. 1 1.2. Contents .......................................... 2 2. Theoretical part 3 2.1. Preliminaries ....................................... 4 2.1.1. Networks and graphs .............................. 4 2.1.2. Useful matrices and tools ........................... 4 2.2. Distances and kernels on a graph ........................... 7 2.2.1. Notion of (dis)similarity measures ...................... 7 2.2.2. Kernel on a graph ................................ 8 2.2.3. The shortest-path distance .......................... 9 2.3. Kernels from distances ................................. 9 2.3.1. Multidimensional scaling ............................ 9 2.3.2. Gaussian mapping ............................... 9 2.4. Similarity measures between nodes .......................... 9 2.4.1. Katz index and its Leicht’s extension .................... 10 2.4.2. Commute-time distance and Euclidean commute-time distance .... 10 2.4.3. SimRank similarity measure ......................... -
Chapter 4 Introduction to Spectral Graph Theory
Chapter 4 Introduction to Spectral Graph Theory Spectral graph theory is the study of a graph through the properties of the eigenvalues and eigenvectors of its associated Laplacian matrix. In the following, we use G = (V; E) to represent an undirected n-vertex graph with no self-loops, and write V = f1; : : : ; ng, with the degree of vertex i denoted di. For undirected graphs our convention will be that if there P is an edge then both (i; j) 2 E and (j; i) 2 E. Thus (i;j)2E 1 = 2jEj. If we wish to sum P over edges only once, we will write fi; jg 2 E for the unordered pair. Thus fi;jg2E 1 = jEj. 4.1 Matrices associated to a graph Given an undirected graph G, the most natural matrix associated to it is its adjacency matrix: Definition 4.1 (Adjacency matrix). The adjacency matrix A 2 f0; 1gn×n is defined as ( 1 if fi; jg 2 E; Aij = 0 otherwise. Note that A is always a symmetric matrix with exactly di ones in the i-th row and the i-th column. While A is a natural representation of G when we think of a matrix as a table of numbers used to store information, it is less natural if we think of a matrix as an operator, a linear transformation which acts on vectors. The most natural operator associated with a graph is the diffusion operator, which spreads a quantity supported on any vertex equally onto its neighbors. To introduce the diffusion operator, first consider the degree matrix: Definition 4.2 (Degree matrix).