Nano-Structures Enabling Sunlight and Candlelight-Style Oleds

Total Page:16

File Type:pdf, Size:1020Kb

Nano-Structures Enabling Sunlight and Candlelight-Style Oleds Jou et al., J Nanomater Mol Nanotechnol 2018, 7:1 DOI: 10.4172/2324-8777.1000234 Journal of Nanomaterials & Molecular Nanotechnology Research Article a SciTechnol journal high contrast, high response speed, low power consumption, simple Nano-Structures Enabling fabrication, ultra-thin structure, light-weight, flexibility, and low Sunlight and Candlelight-Style cost. [5]. Numerous architectural and fabrication approaches have been introduced to develop a high energy-efficiency and long lifetime OLEDs OLED devices [3,6]. Over the past few years, OLEDs started to replace the conventional and power consuming light sources, incandescent Jwo-Huei Jou*, Sujith Sudheendran Swayamprabha, Rohit bulbs and fluorescent lights which are non eco-friendly, contain Ashok Kumar Yadav and Deepak Kumar Dubey harmful mercury, and non-disposable. While, OLEDs are self- illuminating, power efficient, and disposable. Color and color temperature (CT) of light show a strong influence Abstract on human physiology and psychology [7]. Long time exposure to light Nano structures enable organic light-emitting diode (OLED) devic- with high color temperature and short wavelength leads to different es to be fabricated with relatively high efficiency and brightness, types of cancer [8]. A good lighting improves alertness, psychomotor opening up a new era for high quality displays and lighting, wherein vigilance, task performance, morning cortisol level, and sleep quantity devising a pseudo-natural light is always a must. The uses of in- [9]. Jou’s group contributed remarkable effort in the designing and candescent bulbs are the most friendly, electricity-driven lighting sources, lighting measure from the perspectives of human eye pro- development of human-friendly light [10-19]. The same group tection, melatonin generation, artifacts, ecosystems, the environ- reported both candlelight- and sunlight-style OLED with color- ment, and the night skies due to their intrinsically low blue emission. temperature and chromaticity similar to that of the natural lighting However, they are phasing out because of the energy wasting. To source [10-19]. OLED succeeds to make light free from hazardous overcome these difficulties, researchers are focusing on develop- violet and ultraviolet emission, scorching infrared, unpleasant glare, ing a new light with high efficiency, whose emission spectra would toxic mercury, and importantly blue hazard [16-19], also succeed to also match with those of the natural lights. In 2009, Jou’s group in- fabricate OLED devices with sunlight style chromaticity and color vented the world’s first electrically powered sunlight-style OLED that temperature [10-15]. Combined with high energy-efficiency and high yielded a sunlight-style illumination with various daylight chroma- ticities, whose color temperature ranges between 2,300 and 8,200 light-quality, all these justifies OLED to be a healthy and good light K, fully covering those of the entire daylight at different times and for lighting to safeguard human health and minimize light pollution. regions, and contributed a noteworthy incentive to OLED technol- Types of Natural Light ogy in general lighting. By putting more efforts on this technology, a blue hazard free, low color temperature candlelight-style OLED Natural light includes the light from the sun, stars, fires, bugs, was developed by employing candlelight complementary emitters, etc. Even though light from the moon is reflected light from the namely orange-red, yellow, green, and sky-blue. The resultant can- sun, which provides a significant luminance at the full moon. Some dlelight OLED that exhibits a 1,900 K color temperature is exactly glow worms, special kinds of fish, and mushrooms produce light like candles or oil lamps, which is friendly to human eyes, physi- ologies, ecosystems, artifacts, and night-skies. Specifically, it is at via bio-luminescence [20-27]. Sunlight, light from wood or fires least 10 times safer from the retina protection perspective or 5 times generate a smooth and continuous spectrum over the entire visible better for melatonin to naturally occur after dusk, as compared with range, perfectly matching that of the blackbody radiation at the same the blue light-enriched white OLED, LED and CFL counterparts. In corresponding color temperature. this article, we discuss the device structure, physics, and engineer- ing behind the serendipity of the pseudo-natural light-style OLEDs. Nature and importance of sunlight Keywords Color temperature of sunlight varies with the time, region, and Candlelight-style; OLED; Sunlight-style weather. It is 2,500 K at dawn, 3,250 K at dusk, 5,500 K at noon, or 8,000 K at noon in high-latitude country, and 6,500 K on a cloudy day as shown in Figure 1. High CT induce the production of cortisol, Introduction which can enhance the alertness and productive work. The low CT, The new era of an organic light-emitting diodes (OLEDs) begin dusk hue emission is physiologically friendly with the most attractive with the invention by Tang and Van Slyke in 1987 [1]. OLEDs are chromaticity. It influences the migration of birds, the bird’s singing at progressively attracting much attention because of their potential dusk and the mating of crabs and moths [28-34]. The peoples living in applications and superior performance in the high-quality flat- northern countries face melancholy or even suicide due to the lack of panel displays, lighting, and optoelectronics [1-4]. In comparison sunlight during the long winter [7]. to general lighting and display sources, OLEDs have prominent Nature and importance of candlelight features like high color purity, high luminance, wide viewing angle, Candles are physiologically friendly light source due to the low color temperature and less blue emission. Candlelight exhibits a CT *Corresponding author: Jwo-Huei Jou, Department of Materials Science around 1,900 K, which can create a romantic atmosphere during and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Tel: +886(3)574-2618; E-mail: [email protected] dinner time. This pleasant sensation may be due to the production of melatonin, which regulates the sleep, wakefulness and helps people Received: November 01, 2017 Accepted: January 06, 2018 Published: January relax. The main drawbacks of conventional candlelight are energy 11, 2018 All articles published in Journal of Nanomaterials & Molecular Nanotechnology are the property of SciTechnol, and is protected International Publisher of Science, by copyright laws. Copyright © 2018, SciTechnol, All Rights Reserved. Technology and Medicine Citation: Jou J, Swayamprabha SS, Yadav RAK, Dubey DK (2018) Nano-Structures Enabling Sunlight and Candlelight-Style OLEDs. J Nanomater Mol Nanotechnol 7:1. doi: 10.4172/2324-8777.1000234 Melatonin suppression sensitivity (MSS) One method of expression of melatonin suppression sensitivity is in photon quanta [39] (λλrC− )/ SPQ =10 (3) Where, SPQ suppression power per photon quanta of a given monochromatic light, λ relative to that of the reference light, λr, and C is a fitting constant. Another method of expression of melatonin suppression sensitivity in lux (lx), for general illumination purpose. Therefore the above formula becomes [39], λλS () PQ (4) Figure 1: Color temperature of sunlight at different regions, times, and SL ()λ = weathers [11]. V ()λ Where, SL(λ) is the action spectrum of MLT suppression per lux, V(λ) is the photopic luminosity function, which converts photo quanta into illuminance in terms of lx. For polychromatic light, the following expression is used. λSPQ() λλ Sd I () λ λ S ()λ = ∫ (5) LC λλ λ λ ∫V() SdI () Where, SLC (λ) is the correlated suppression power per lux and SI(λ) is the power spectrum of the studied light. Sunlight OLEDs Figure 2: Sunlight-style OLED with a) single carrier modulation layer and b) double carrier modulation layers [10,11]. The color temperature of light influences the human health and work performance. Drowsiness has been observed under low color waste (0.1-0.3 lm/W), flickering, glare, obtrusiveness, burning problems, temperature lighting. To have high-quality lighting, emission with a potential fire hazards, high heat due to intens infrared radiation, and daylight chromaticity and a color temperature span covering that of unpleasant smoke due to incomplete burning. Indoor applications of sunlight is essential, especially considering its strong effect on human candles may consume oxygen and generate greenhouse gases [35]. psychology. To have a high-quality sunlight-style illumination, Theoretical emission with daylight chromaticity and a wide color-temperature span from 2,000 to 6,000 K is necessary. A good lighting can improve Spectral resemblance index (SRI) alertness, psychomotor vigilance, task performance, morning cortisol level and sleep quantity. In 2009, Jou’s group reported the first single Jou’s group introduced that the spectral resemblance index for device with sunlight-style emission [10]. calculating the light quality of a given light [36]. The calculation is based on the direct comparison of a light source’s lumen spectrum Device architecture with the natural light counterpart having the same color temperature. The sunlight-style OLED has a relatively simple design, consisting L(,λλ Td ) of various color-emitting materials, electron transporting layer, carrier SRI = ∫ ×100% (1) λλ modulation layer, and electron injection layer with few nanometers of ∫ LBR (, Td ) thickness. Jou’s group examined the influence of both single and double where
Recommended publications
  • Candle Safety Candles Are a Source of Light and Delight When Used Properly
    Candle Safety Candles are a source of light and delight when used properly. However, People have safely enjoyed using candles for centuries. if certain precautions are Their colors and scents enhance everyday life and not taken, candles can evoke memories of special events. also become a factor in a chain of events that can result in unnecessary injury and fires. DURING POWER OUTAGES CANDLE SAFETY TIPS • Use a flashlight instead of a candle whenever possible. CANDLE USAGE TIPS • Always use a flashlight, not a candle, for emergency lighting. • Avoid carrying a lit candle. • Recommended burning time is Don’t use a lit candle when one hour per inch diameter of the • Consider using battery-operated • searching for items in a confined candle. flameless candles. space. • Keep candles at least 12-inches from flammable materials. • Never use a candle for a light when checking pilot lights or • Use sturdy, safe candle holders. fueling equipment. The flame may • Never leave a burning candle ignite the fumes. unattended. • Be careful not to splatter wax CANDLES AND when extinguishing a candle. CHILDREN • Avoid using candles Keep candles out of reach of • Hold your finger in front of the • in bedrooms and children, and never leave a child flame as you blow the candle out. sleeping areas. unattended with a lit candle. The air will flow around your finger and extinguish the candle from both • A child should not sleep in a room sides. This prevents any hot wax with a lit candle. from splattering. • Don’t allow children or teens to have candles in their bedrooms.
    [Show full text]
  • Cyclops 2011 Workbook
    HEADLAMPS RANGER CYC-RNG1 NOTES 1 Watt 4 Stage LED Headlamp UPC: 8-13628-08277-4 MP/24 IP/6 • CREE 1 Watt clear bulb for center light • 4 mode lighting; center white, 3 bottom green LED’s, 4 side red LED’s, plus red LED strobe • Adjustable nylon headband • Weather resistant • ABS rubberized housing for durability • Powered by 3 AAA batteries (included) CYC-903C Black UPC: 8-13628-01082-1 MP/48 IP/6 PHOENIX CYC-903NXTCMO Camo Krypton 3 LED Headlamp UPC: 8-13628-00564-3 MP/48 IP/6 • 2-way switch for dual light source • Shock resistant, rugged construction • Water resistant • Adjustable nylon headband • Burn Time: Krypton 2.5 Hrs., 3 LED’s 30 Hrs. • Includes 3 AAA batteries CYC-906C Black UPC: 8-13628-01080-7 MP/48 IP/6 HELIOS CYC-906NXTCMO Camo 6 LED Headlamp UPC: 8-13628-00566-7 MP/48 IP/6 • 2-way switch to vary light levels • Lightweight, weighs less than 3 oz. • Water resistant • Adjustable nylon headband • Burn Time: 6 LED’s 27 Hrs., 3 LED’s 33 Hrs. • Includes 3 AAA batteries ATOM LED Magnifier Headlamp • Ultra lightweight, weighs only 1oz. • Magnifier lens projects light up to 15 ft. • Reversible headband • Weatherproof • Water resistant • Includes 2 CR2016 lithium batteries CYC-ULH1-O Orange UPC: 8-13628-01294-8 MP/48 IP/6 CYC-ULH1-B Black 45 degree rotating projection UPC: 8-13628-01292-4 MP/48 IP/6 CYC-ULH1-S Silver UPC: 8-13628-01296-2 MP/48 IP/6 CYC-ULH1-CMO D-Max Green Detachable clip light UPC: 8-13628-01506-2 MP/48 IP/6 1 SPOTLIGHTS THOR Colossus C18MIL-FE NOTES 18 Million Candle Power Rechargeable Spotlight UPC: 8-13628-07248-5
    [Show full text]
  • Type 1501-A Light Meter
    OPERATING INSTRUCTIONS • For TYPE 1501-A LIGHT METER GENERAL RADIO COMPANY CAMBRIDGE 39 MASSACHUSETTS NEW YORK CHICAGO LOS ANGELES U. S. A. OPERATING INSTRUCTIONS For TYPE ·1501-A LIGHT METER Form 684-E November, 1952 GENERAL RADIO COMPANY CAMBRIDGE 39 MASSACHUSETTS NEW YORK CHICAGO LOS ANGELES U. S. A. The Light Meter in a Photographic studio. SPECIFICATIONS Light Range: A light range of 64:1 can be Spectral Characteristics: The phototube measured at mid-scale deflection, corre­ has maxinrum sensitivity in the blue-green spondi~ to 100 to 6400 lumen-seconds per portion of the visible spectrum. square foot (foot-candle-seconds). The Response Speed: For reliable results the extreme readable range is about 50 to flash shruld be V50,000 second (20 micro­ 12,800 lumen-seconds per square foot. seconds), or more, in duration. Attenuator Range: f/3.5 to f/22 corre­ Accessories Supplied: Tubes, batteries, sponding to a range of 1 to 64 on the pro­ diffusion disc, plug for flash synchronizing portional scale. circuit. Tubes: One RCA 1P39 and one RCA 1L4. Other Accessories Available: A probe for :Batteries: One Burgess 2F, three Burgess light measurements at the camera ground XX30E. glass is available at extra cost. Calibratioo.: Meter is standardized at the Mounting: Walnut cabinet with hinged factory in terms of a calibrated xenon cover. Base of cabinet carries a tripod flashtube operated from a known capaci­ socket. tor at a specified voltage. A diffusion Dimensions: (Width) 7 x (height) 6-1/2 disc and aperture is individually fitted x (length) 11 inches, over -all.
    [Show full text]
  • Health Impacts of Fuel-‐Based Lighting
    THE LUMINA PROJECT http://light.lbl.gov Technical Report #10 Health Impacts of Fuel-based Lighting Evan Mills, Ph.D. Lawrence Berkeley National Laboratory, University of California, 94720 USA October 16, 2012 Working Paper for presentation at the 3rd International Off-Grid Lighting Conference November 13-15, 2012, Dakar, Senegal Acknowledgment. This work was supported by the Assistant Secretary for Policy and International Affairs of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Useful data and comments were provided by Peter Alstone, Kate Bliss, Kevin Gauna, Arne Jacobson, Dustin Poppendieck, David Schwebel, Laura Stachel, Dehran Swart, and Shane Thatcher. The Lumina Project—an initiative of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory—provides industry, consumers, and policymakers with timely analysis and information on off- grid lighting solutions for the developing world. Lumina Project activities combine laboratory and field- based investigations to ensure the formation of policies and uptake of products that maximize consumer acceptance and energy savings. For more information, visit http://light.lbl.gov Executive Summary The challenges of sustainability often intertwine with those of public health, revealing opportunities in both arenas for disenfranchised populations. A fifth of the world’s population earns on the order of $1 per day and lacks access to grid electricity. They pay a far higher proportion of their income for illumination than those in wealthy countries, obtaining light with fuel-based sources, primarily kerosene lanterns. The same population experiences adverse health and safety risks from these lighting fuels. Beyond the well-known benefits of reducing lighting energy use, costs, and pollution (which has its own health consequences), off-grid electric light can yield substantial health and safety benefits and save lives.
    [Show full text]
  • INSTRUCTIONS FOR: RECHARGEABLE SPOTLIGHT 10,000,000 CANDLE POWER MODEL No: AK438.V2 Thank You for Purchasing a Sealey Product
    INSTRUCTIONS FOR: RECHARGEABLE SPOTLIGHT 10,000,000 CANDLE POWER MODEL No: AK438.V2 Thank you for purchasing a Sealey Product. Manufactured to a high standard this product will, if used according to these instructions and properly maintained, give you years of trouble free performance. IMPORTANT: PLEASE READ THESE INSTRUCTIONS CAREFULLY. NOTE THE SAFE OPERATIONAL REQUIREMENTS, WARNINGS AND CAUTIONS. USE THIS PRODUCT CORRECTLY AND WITH CARE FOR THE URPOSE FOR WHICH IT IS INTENDED. FAILURE TO DO SO MAY CAUSE DAMAGE AND/ OR PERSONAL INJURY AND WILL INVALIDATE THE WARRANTY. PLEASE KEEP INSTRUCTIONS SAFE FOR FUTURE USE. 1. safety INSTRUCTIONS 1.1. GENERAL Ensure the spotlight is correctly charged before initial use. When fully charged and on full beam, the spotlight must not be used for more than 15 minutes of continuous use. To do so may damage the lamp. WARNING! The lens becomes very hot during operation. DO NOT cover or block the lens during use. DO NOT turn the spotlight on when it is being re-charged. DO NOT shine directly into your, other person’s or animal’s eyes. DO NOT stand the spotlight near any surface or item that may be adversely effected by the heat emitted from the lens. DO NOT allow children to use the spotlight. DO NOT handle or move the spotlight whilst it is being charged. DO NOT use the spotlight if you suspect that the battery or the spotlight casing is damaged. DO NOT handle spotlight bulb with your fingers. Use a soft lint-free cloth. Ensure that genuine and correctly rated battery and bulb are used for replacements.
    [Show full text]
  • 8718696763278 Philips Candle
    Philips LED Candle 5.5W (50W) E14 Warm white 8718696763278 Warm white light, no compromise on light quality Create a warm and inviting atmosphere Philips LED light bulbs provide a beautiful, warm white light, an exceptionally long life, and immediate, significant energy savings. With a pure and elegant design, this bulb is the perfect replacement for your clear incandescent bulbs. Choose for high quality light • True incandescent-like warm white light Light beyond illumination • A simple LED for everyday use Choose a simple replacement for your old bulbs • Similar shape and size as incandescent candle • Instant light when switched on Choose for a sustainable solution • Long life bulbs - Lasts up to 10 years • Saves up to 80% energy Candle 8718696763278 5.5W (50W) E14, Warm white Highlights Specifications Incandescent-like warm white saving, standard LED candle. The perfect sustainable Bulb characteristics replacement for traditional incandescent candles. • Shape: Candle •Cap/fitting: E14 Instant On • Dimmable: No • Voltage: 220 - 240 V • Wattage: 5.5 • Wattage equivalent: 50 Power consumption • Energy efficiency label: A+ • Power consumption per 1000h: 6 kW·h Light characteristics • Light output: 470 lumen • Beam angle: 150 degree • Color: Warm White This bulb has a color temperature of 2700K, • Color temperature: 2700 K providing you with a warm, tranquil atmosphere, • Light effect/finish: Warm White perfect for relaxing. This 2700K light is ideal for • Color rendering index (CRI): 80 home lighting design No need to wait: Philips LED light bulbs provide their • Starting time: <0.5 s full level of brightness immediately they are switched • Warm-up time to 60% light: Instant full light A simple LED for everyday use on.
    [Show full text]
  • Energy Saving Decorative Candles Philips Energysaver Decorative Candle Compact Fluorescent Lamps Provide Energy Saving Light and Reduced Operating Costs
    Philips EnergySaver Decorative Candle Compact Fluorescent Lamps Ideal for use in chandeliers, sconces, ceiling fans, and other decorative fixtures Energy Saver Energy saving decorative candles Philips EnergySaver Decorative Candle Compact Fluorescent Lamps provide energy saving light and reduced operating costs. Energy savings • 9W saves up to $27 in energy costs as compared to a 40W incandescent lamp* Long life • Lasts 8,000 hours** Energy saving replacement for incandescent bulbs • Provides warm, white light • Fits into incandescent fixtures • Looks similar to a standard incandescent candles • Available in candelabra and medium base *, ** See back page for footnotes Philips EnergySaver Decorative Candle Compact Fluorescent Lamps Ordering, Electrical and Technical Data (Subject to change without notice) Lamps Rated Product Nom. per Lamp Lamp Avg. Life Approx. Color MOL Mercury Number Ordering Code Watts Volts SKU Type Base (Hrs.)1 Lumens2 CRI Temp (In.) Max 42229-5 EL/Can T2 5W 5 120 1 Candle Medium 8000 215 82 2700K 4 4⁄7 3.0 42230-3 EL/mCan T2 5W 5 120 1 Candle Cand. 8000 215 82 2700K 4 1⁄2 3.0 41744-4 EL/Can T2 9W 9 120 1 Candle Medium 8000 410 82 2700K 4 3⁄4 3.0 41741-0 EL/mCan T2 9W 9 120 1 Candle Cand. 8000 410 82 2700K 4 3⁄8 3.0 Shipping Data Outer Case Case SKUs Product SKU UPC Bar Code Case Weight Cube Pallet Per Layers SKU Dimensions Case Dimensions Pallet Dimensions Number (0-46677) (5-00-46677) Qty. (lbs.) (cu. ft.) Qty. Layer High (W x D x H) (In.) (W x D x H) (In.) (W x D x H) (In.) 42229-5 42229-5 42229-0 6 1.01 0.067 3,192 456 7 1.7 x 1.7 x 4.2 4.1 x 5.7 x 4.9 39.4 x 47.2 x 40.4 42230-3 42230-1 42230-6 6 1.01 0.067 3,192 456 7 1.7 x 1.7 x 4.2 4.1 x 5.7 x 4.9 39.4 x 47.2 x 40.4 41744-4 41744-4 41744-9 6 1.32 0.102 2,376 396 6 1.9 x 1.9 x 5.4 4.5 x 6.6 x 5.9 40.8 x 48.7 x 35.5 41741-0 41741-3 41741-8 6 1.32 0.102 2,376 396 6 1.9 x 1.9 x 5.4 4.5 x 6.6 x 5.9 40.8 x 48.7 x 35.5 1) Rated average life is the length of operation (in hours) at which point an average of 50% of the lamps will still be operational and 50% will not.
    [Show full text]
  • White Lightning™ (WL5000 / WL10000)
    The White Lightning WL 10,000 and WL 5,000 Flash Units Operating Instructions WARNINGS: To avoid potentially lethal conditions, this unit must be connected to a 3-wire grounded outlet. Do not operate with two-wire extension cords or use an adaptor to connect to ungrounded outlets. This unit contains high voltages and internal components that can store dangerous voltages even when the unit is unplugged. The unit contains no user serviceable parts and should not be disassembled, except by a qualified technician. The flashtube and modeling lamp can get extremely hot. To change lamps, turn the unit off, then unplug power cord from the outlet. Allow the unit to cool, and use insulating gloves to remove or replace lamps. Do not allow finger oils to contact the lamps as this can cause excess heating and premature lamp failure. Before attempting to operate the unit, ensure that it is securely mounted to a light stand or other suitable mechanism. Do not allow unattended children around studio flash equipment as potentially dangerous conditions may result. These dangers may include burns and electrical shock hazards as well as the possibility of falling equipment if cords are tripped over. Never operate the unit in wet locations such as near bathtubs, swimming pools or outdoors in wet weather. Common sense should accompany all usage. PRODUCT DESCRIPTION: The White Lightning WL 10,000 and WL 5,000 units are extremely precise, high power electronic photoflashes. They are designed for professional studio use, and are well-suited for demanding location usage due to their very compact, yet highly durable construction.
    [Show full text]
  • Lighting Without Power
    Lighting Without Power Kerosene and oil lamps are another option prone to accidents. The flame is contained within the lantern so it's a little safer than a candle's open flame, and the amount of light provided is better than a single candle. On the other hand, kerosene and lamp oil are highly poisonous, must be stored out of the reach of children, tend to get very hot, and need to be stored away from accidental ignition sources. [We store ours in an insulated and latched picnic cooler, which helps protect them from ignition sources and contains any mess if they are broken in an earthquake.] Propane lamps are another option, but like other liquid fuel lamps, are not recommended for indoor use because of the risk of carbon monoxide build-up. They also need a good reserve of fuel if they are your choice for an emergency. LED battery-operated lanterns or flashlights are the safest choices for emergencies. Flashlights are better for finding your way around in the dark, while battery-operated lanterns are best for ambient room light. The best models have both options built into one light. There are expensive models, but there are also very reasonable models if budget is an issue. Headlamps are a great way to be able to provide focused, hands-free task lighting. Most people don't have these, but this is probably the best bed-side emergency lighting you can have. That way, if a fire, earthquake or tornado happens, you have two free hands to crawl, move debris, administer first aid, or pick up your child as needed.
    [Show full text]
  • Gas Lighting Resources for Teachers
    Gas nationalgridgas.com/resources-teachers Gas Lighting Resources for teachers © National Gas Museum Using the resource National Grid owns, manages and operates the national gas transmission network in Great Britain, making gas available when and where it’s needed all over the country. This resource is part of our series for schools, highlighting and celebrating how gas has lit our homes and streets and kept us warm for over 200 years. This resource primarily supports History at Key Stages 1 and 2 and the development of children’s enquiry, creative and critical thinking skills. It includes: • Information for teachers • Fascinating Did you know..? facts • A series of historical images to help children explore the theme, with additional information and questions to help them look closer. It can be combined with other resources in the series to explore wider topics such as: • Energy • Homes • Victorians • Jobs and work • The industrial revolution • Technology And used to support cross-curricular work in English, Technology, Science and Art & Design. Project the images onto a whiteboard to look at them really closely, print them out, cut them up or add them to presentations, Word documents and other digital applications. Our Classroom activities resource provides hints, tips and ideas for looking more closely and using the images for curriculum-linked learning. Resources in the series • Gas lighting • Heating and cooking with gas Gas• Gas gadgets • Gas – how was it made? •How The changing role ofwas women It • Transport and vehicles • Classroom activities •made? Your local gas heritage A brief history of gas lighting – information for teachers Before the 1800s, most homes, workplaces and streets were lit by candles, oil lamps or rushlights (rush plants dried and dipped in grease or fat).
    [Show full text]
  • Headlamp History and Harmonization
    UMTRI-98-21 HEADLAMP HISTORY AND HARMONIZATION David W. Moore June 1998 HEADLAMP HISTORY AND HARMONIZATION David W. Moore The University of Michigan Transportation Research Institute Ann Arbor, Michigan 48109-2150 U.S.A. Report No. UMTRI-98-21 June 1998 Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. UMTRI-98-21 4. Title and Subtitle 5. Report Date Headlamp History and Harmonization June 1998 6. Performing Organization Code 302753 7. Author(s) 8. Performing Organization Report No. David W. Moore UMTRI-98-21 9. Performing Organization Name and Address 10. Work Unit no. (TRAIS) The University of Michigan Transportation Research Institute 11. Contract or Grant No. 2901 Baxter Road Ann Arbor, Michigan 48109-2150 U.S.A. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered The University of Michigan Industry Affiliation Program for 14. Sponsoring Agency Code Human Factors in Transportation Safety 15. Supplementary Notes The Affiliation Program currently includes Adac Plastics, BMW, Bosch, Britax International, Chrysler, Corning, Delphi Interior and Lighting Systems, Denso, GE, GM NAO Safety Center, Hella, Hewlett-Packard, Ichikoh Industries, Koito Manufacturing, LESCOA, Libbey-Owens-Ford, Magneti Marelli, North American Lighting, Osram Sylvania, Philips Lighting, PPG Industries, Reflexite, Stanley Electric, Stimsonite, TEXTRON Automotive, Valeo, Visteon, Wagner Lighting, 3M Personal Safety Products, and 3M Traffic Control Materials. Information about the Affiliation Program is available at: http://www.umich.edu/~industry/ 16. Abstract This report describes the development of automobile headlamps. The major topics covered include the following: the reasons for the emergence and use of different light sources, headlamp materials, optical controls, and aiming methods; differences between U.S.
    [Show full text]
  • 1 Description
    Operating Manual for hipFlex UIF, UIP & UIB2 (V1.00b) 1 Description The heart of hipFlex is a Microcontroller (uC) that contains the user interface firmware. Features of this circuit/UI combination include: • Choice of 3 different User Interfaces, UIF fixed lighting optimized, UIP portable lighting optimized and UIB2 bicycle lighting optimized. • High efficiency Buck mode (step down) switching regulator (maximum drive current set in firmware). Reverse polarity protected. • Single switch to select from various brightness levels, turn the unit on/off, select the operating modes and set menu options. • Non-volatile (EEPROM) storage of operating mode, last selected brightness level, and maximum drive level (1000mA, 1400mA, 2000mA, 2400mA or 2800mA). • Voltage sensing with three user configurable trip points for ½ discharged and nearly fully discharged and forced off (or warn only). Warning display via an optional 3mm or 5mm status LED or via the main LED. • Temperature sensing with user configurable trip point to limit output current to protect the driver and/or LED. 1.1 Wiring the hipFlex The picture shows the connections to hipFlex. The user provides DC power to the hipFlex (via battery, DC wallwart, vehicle/boat/RV 12V. hipFlex is reverse polarity protected with a low drop out FET (less than 50mV voltage drop across the FET). hipFlex requires a user provided momentary action switch that must be connected via leads soldered to the holes SWA and SWB. The switch needs to be a momentary action, push to close type, i.e. normally open contacts. Input power is connect via IN+ (positive input voltage) and IN- (negative input voltage).
    [Show full text]