This set of slides consists of a collecon of short presentaons on different topics, all related to diagnoscs. During my presentaon I will use the first ‘introductory’ presentaon as a guideline. I will discuss some diagnoscs in more detail, and make a selecon of the applicaons of diagnoscs, depending on the audience.

Plasma Diagnostics - how to study molecule formation in plasma ? -

Richard Engeln Introduction

“ your working gas mixture ≠ input gas mixture” (at high dissociation degree)

quote from Prof. J. Winter during his lecture during the 2005 Summer School on Low Plasma Physics: Basics and Applications Introduction Molecule Formation in Plasma

Plasma source substrate

O2 plasma expansion

O2 plasma impinging on a substrate taken from: A. Lebéhot et al. in ‘Atomic and Molecular Beams’, ed. R. Campargue Introduction Molecule Formation in Plasma

3 2 2 O( P)atm + NOads → NO2{ B1} → NO2{ A1} + hν

N2 plasma with O2 injected in the background Introduction Molecule Formation in Plasma

over-population

r, v - H2 detection via QMS detection of H - H2 + e --> H + H Introduction Molecule Formation in Plasma

Diffuse (translucent) clouds ! 40-100 K / 100 part./cm3 ! Unknown absorption features

Dark (dense) clouds ! 10-30 K / 104-108 part./cm3 ! Universal molecule factory

(from: H. Linnartz, CRD meeting (2004)) Introduction Questions when studying molecule formation in plasma ? (when in contact with a surface)

" What particles are arriving at the surface ?

" In which state are the particles arriving ?

" New molecules are generated: - electronically and/or ro-vibrationally Excited NO 2 excited ? - substrate material and temperature dependence ?

" Is there flux dependence on the generation process ?

Shuttle glow Introduction Questions when studying molecule formation in plasma ? (when in contact with a surface)

" What particles are arriving at the surface ?

" In which state are the particles arriving ? What is needed to answer " New molecules are generated: these questions ? - electronically and/or ro-vibrationally Excited NO 2 excited ? - substrate material and temperature dependence ?

" Is there flux dependence on the generation process ?

Shuttle glow Introduction Gas-phase optical diagnostics for the detection of stable molecules and atomic/molecular radicals

" (VUV) Laser Induced Fluorescence

- relative densities, + spatial resolution " Fourier Transform IR/UV absorption

- line of sight, + absolute densities, + large λ-range (overview spectrum ) " (Cavity Ring Down) absorption

- line of sight, + (very) high sensitivity " (spontaneous) Raman

- ‘low’ sensitivity, + every molecule Raman active, + spatial resolution Plasma Diagnostics (optical)

Optical diagnostic Parameters Examples

Doppler LIF w, T, n Ar-metastable

Two-photon LIF w, T, n H atom

r, v VUV LIF n(v,J), T H2

IR absorption n(v,J), T NO, N2O, NO2

Cavity Ring Down absorption n(v,J), T NH, NH2, NH3

Literature

On diagnostics (general):

! H R Griem, Plasma Spectroscopy (McGraw-Hill Book Company, New York, 1964)

! W Demtröder, Laser Spectroscopy,Basic Concepts and Instrumentation edited by F P Schäfer (Springer-Verlag, Berlin, Heidelberg, New York, 1981)

! K Muraoka, K Uchino, M D Bowden, Plasma Physics and Controlled Fusion 40, 1221 (1998)

! J-P E Taran, CARS spectroscopy in Applied Laser Spectroscopy, edited by W Demtröder and M Inguscio (Plenum, New York, 1990)

! G Berden, R Peeters, G Meijer, Int. Rev. Phys. Chem. 19, 565 (2000)

! G. Berden and R. Engeln, Cavity Ring-Down Spectroscopy, Techniques and Applications, Blackwell Publishing Ltd, United Kingdown (2009) Laser Induced Fluorescence spectroscopy Laser Induced Fluorescence (LIF)

Ø number of laser photons na absorbed in unit volume and time: laser na = σli I L nl V IL

Ø number of fluorescence photons Nf (λik) originating from V:

Aik N f = na V q f = σli I L nl V ⋅ Ai + R i Ø signal Sf: R j Sf = N f ⋅Ω / 4π ⋅T ⋅qph (λ)⋅Gph σli.IL Aik k

Ail S f ∝ nl l Laser Induced Fluorescence (LIF)

Advantages Disadvantages

Ø sensitive Ø not quantitative

Ø extra info from time behaviour Ø depending on gas composition

Ø experimentally straightforward (quenching) Ø possibility of 2D-imaging

LIF on ground-state atoms: ü ground-state atoms have large energy spacings Howe.g. H: toE(n=2) detect - E(n=1) the = 10.2 hydrogen eV atom ü species selectivity requires high energetic photons (H: λ <121.6 nm) experimentallyin the demandinggroundstatewith techniques LIF ? with for VUV-generation LIF ? 2 photon LIF

H excitation schemes

4 i R j 3 486 486 486 656 195 Aik 656 (2) 2 k 2 σli .IL

Ail 122 193 2 x 205 nm 2 x 243 nm 2 x 243 nm l n=1

Advantages Disadvantages

Ø no demanding VUV-generation Ø low 2-photon cross sections require Ø non-resonant fluorescence detection high laser intensities possible Ø 2-photon cross sections often not

Ø self-absorption can be avoided known Laser Induced Fluorescence (LIF)

Quantities deduced from LIF

~ v 500 Δν νlif Ø integrated intensity: n

400 Ø Doppler width: T

300 Δν 1 8ln2⋅kT D = 200 δν ~ T ν c M

100 Ø Doppler shift ν - ν0: v Fluorescence signal (a.u.) signal Fluorescence νth Area ~ n 0 97490 97492 97494 97496 97498 97500 97502 Frequency (cm-1) 2 photon LIF on atoms

monitoring H monitoring N

3s,d 3p 656 nm 745 nm 205 nm 207 nm Hα 2p 3s

205 nm 207 nm

1s 2p

Applications: Applications: Ø fast deposition of a-Si:H Ø deposition of a-C:N Ø H-source Ø plasma etching (photo-resist) Ø surface passivation

(VUV) LIF on H2 molecules

Excitation from H2(X, v=0) to H2(B)

Photons with energy ≅ 11 eV (λ ≅ 110 nm, Vacuum UV)

Fluorescence of H2 in B-state

λ in the Vacuum UV Absorpon spectroscopy absorption

Absorption spectroscopy

Sample Light Source

I(ν ) l I ( ) 0 ν

Lambert-Beer : I( ) I ( )exp[ l] ν = 0 ν −κν

Absorption: n(v, J ) κν = σν

ΔI If κ l is small: = κ l ν I ν 0 IR absorption

IR laser absorption

spectroscopy IR absorption

IR laser absorption

spectroscopy

Trace gas detection 1.0

0.9

CH 4 0.8 N O 2 H O 0.7 2

1306.0 1306.2 1306.4 1.0

Transmission 0.9

0.8 0.7 1306.0 1306.2 1306.4 Wavenumber [cm-1] FTIR absorption

Fourier Transform absorption spectroscopy

interferogram

0.020

0.015

0.010

0.005

0.000 intensity (a.u.) intensity -0.005

-0.010

-0.015

189500 190000 190500 191000 mirror position (cm-1) FTIR absorption

O2 FTIR measurement in a vessel

vessel

0.036 arc

window

interferometer 0.034

glowbar detectors

sample compartiment 0.032 intensity (a.u.) intensity

background sample 0.030

13120 13125 13130 13135 13140 13145 13150 13155 13160 13165 13170 -1 frequency (cm ) vesselfinalabsorption / graph 3 FTIR absorption

O2 FTIR measurement in a vessel

vessel

0.030

arc

window 0.025

interferometer 0.020

glowbar 0.015 detectors

sample compartiment 0.010 absorption

0.005

0.000

-0.005 13120 13130 13140 13150 13160 13170 frequency (cm-1) absorption

IR laser absorption FT IR absorption

+ ü Very high wavelength resolution ü Multiplex advantage ü High sensitivity ü Very large wavelength range

- ü Very small wavelength range ü Low wavelength resolution ü Sensitivity

Homo-nuclear diatomic species not detectable in IR absorption

Sensitivity

ΔI ≥10 − 3 (pulsed lasers) I 0

−3 è l 10 κν ≥

16 -3 Example: l = 0. 1 m è n(v, J) ≥10 m σ =10 −18 m2

N = n(v, J) ≥1018 m-3 tot ∑ v,J

Alternative schemes: Fourier Transform spectroscopy (multiplex, but low sensitivity) Cavity Ring Down spectroscopy (high sensitivity) CRD absorption

Sensitive direct absorption technique

(A. O’Keefe and D.A.G. Deacon, Rev. Sci. Instrum. 59 (1988) 2544)

ü absorption per unit of pathlength (cavity loss): 1/ cτ = (1− R + nσL) / d ü non-intrusive and remote ü high sensitivity due to effective multipassing ü directabsorption absorption per unit –> of line of sight measurement CRD absorption

Basic scheme of the pulsed CRD spectrometer

Ring-down time Cavity loss d 1 1-R nσL τ = = + c(1-R+nσL) cτ dd CRD absorption

Performing a pulsed CRD experiment

Ring-down transient CRD spectrum

1500

1000

500 Intensity (a.u.) (a.u.) Intensity Ring-down time (ns) Ring-down time (ns) 0 0 1000 2000 3000 4000 13100 13101 13102 time (ns) frequency (cm-1) CRD absorption

Performing a pulsed CRD experiment

CRD absorption spectrum Cavity loss (1/cm)

1 1-R nσL 5 1 1-R+ nσL == + 1/cm) 4 ccττ dddd -5 3

baseline 2 If cavity length is 45 cm, determine R. 1 absorption spectrum 1. R = 99 % loss (10 Cavity 0 2. R = 99.9 % 13100 13101 13102 -1 3. R = 99.99 % frequency (cm ) 4. Not enough information CRD absorption

+ optical technique

+ independent of intensity

+ direct absorption measurement: -- but: line-of-sight

+ high sensitivity due to effective multipassing

+ pulsed light sources: spectral range into the UV

+ experimentally straightforward (tunable laser, highly reflecting mirrors, PMT, ‘fast’ and ‘deep’ digitizer)

high potential for diagnostics in plasmas ETP setup

Plasma created at high pressure (~400 mbar) in cascaded arc plasma source

Expansion into low-pressure chamber (0.2 mbar)

+ injection of e.g. SiH4

Plasma in interaction with surface, leading to e.g. deposition or etching CRD absorption during deposition

CRD for the detection of SiH during a:Si-H deposition

Ar

oscilloscope

cascaded arc plasma source precursor injection expanding plasma filter PMT

R R laser pulse (tunable dye-laser)

protection flow (Ar) substrate holder CRD absorption during deposition

CRD spectrum of SiH measured during a:Si-H deposition CRD absorption during deposition

CRD spectrum of SiH measured during a:Si-H deposition

nσL/d

(1-R)/d CRD absorption on SiH

2 2 SiH detection: A Δ à X Π, 405 – 430 nm

T = 3000K vibr line width T (v=0) = 1800K rot Q 2 Q 150 1

) Simulated (LIFBase) Q (11.5) temperature -6 1 Q (14.5) 100 1 absorption + 50 R (14.5) cross-section Experimental 2 Absorption (x10

0 density 412,5 413,0 413,5 414,0 414,5 Wavelength (nm) TALIF spectroscopy on H atoms Ar/H2 plasma expansion

stationary shock wave anodeanode cathodescathode (× (3)3) (nozzle) (nozzle) subsonic flow M < 1 supersonic flow gasgas M > 1 inlet Mach disk M = 1 Cascaded arc arc Plasma expansion Rayleigh scattering on H/H2 plasma expansion

1022 ) -3 1/z2 1021 density (m 2 H 20 Pa 100 Pa 1020 1 10 100 axial position (mm) TALIF detection of H atoms

ion 13.6 3s2S 3p2P 3d2D Ø produce 205 nm via THG of a Nd:YAG 12.1 Hα 656.5 nm pumped dye laser 10.2 2s2S 2p2P Ø from spectral scans data on: n,T,v,f(v)

121.56 nm Lyman α 205.14 nm energy (eV) energy

0 1s2S

cascaded arc 205 nm 3.5 slm H2 I=40A, V=150V 205 nm

slitmask fliter gates PMT H atom density along the jet axis (TALIF)

100 Pa 1021 20 Pa ) -3

1020 Density (m

1019 1 10 100 z (mm) Effect of nozzle-length on H density

1021 ) -3

1020

H density (m H density nozzle length 6 mm 19 10 14 mm

1 10 100 axial position (mm) Effect of nozzle-length on H flux

5 short nozzle short long nozzle (x5)

) 4 arc -1 s

-2 nozzle

m 3 25

long 2 arc

1 nozzle

H flux density (10 0

-6 -4 -2 0 2 4 6 radial position (mm) Effect of nozzle-width on H flux

large diam. nozzle 1.0 short nozzle 8

) arc -1 s -2 0.8 nozzle m 25 0.6

8 0.4 arc

0.2 nozzle

H flux density (10 0.0

-15 -10 -5 0 5 10 15 radial position (mm) Conclusions

1. Large influence of nozzle geometry on J H flux

H2 rv H rv 2H H 2H H 2. Loss of H atoms due to surface 2 H 2 association (volume association far too slow) nozzle

loss of H atoms = production of

rv 21 -1 H2 at the surface H flux: ΦH > 10 s Dissociation degree = 0.4

P. Vankan et al., Appl. Phys. Lett. 86 (2004) 101501 S. Mazouffre et al., Phys Rev. E 64 (2001) 066405 Doppler-LIF spectroscopy on Ar atoms Expanding Thermal Plasma (ETP)

Plasma creation

Plasma chemistry

+ dangling bond creation by Eley-Rideal H-abstraction

SiH3 reflection dangling bond ~85% SiH surface diffusion: creation by ion SiH reaction 3 3 strong bond formation + ~15%: with danling bond 5-fold bonded Si dangling bond surface diffusion

Material processing Doppler LIF

Ar plasma expansion Rayleigh scattering Ar density as function of distance from the exit of the source

1022 ) -3

1021 Ar density (m

42 Pa 100 Pa 1020 1 10 100 Axial position (mm) Doppler LIF

Doppler LIF experimental setup

chopper diode laser BS BS

z-axis

Fabry Argon Perot lamp

diodes

filter

PMT reference

Lock in trigger amplifier Doppler LIF

Typical result of a Doppler LIF measurement

1.0

Argon lamp

0.5 Fabry Perot intensity (a.u.) intensity

LIF signal 0.0 1 2 3 4 5 6 7 8 9 10 11 piezo (a.u.) Doppler LIF Ar velocity distribution functions

0.5 z=59 mm

0.0

1.0 z=100 mm 0.5 0.0 intensity (a.u.) intensity 1.5 z=174 mm 1.0 0.5 0.0 -1 0 1 2 3 4 5 6 velocity (km/s) Doppler LIF

Ar atom velocity Ar atom temperature

20 Pa 1000 T (K) T velocity (m/s) 1000

100

-3 -2 -1 10-3 10-2 10-1 10 10 10 z (m) z (m)

calculated with: γ = 1.4 (theoretically: 5/3 for mono-atomic gas) zref = 0.0025 m T0 = 6000 K IR absorpon spectroscopy on

N2/O2 plasma N2/O2 plasma setup (IR diode laser absorption spectroscopy)

window retroreflector

I = 55 A

Ar

N2 window window pump

p = 20 Pa QMS

gas inlet window

Ar, N2 PMT

H2, O 2 pumps

diode laser

IRMA system Introduction Molecule Formation in Plasma

3 2 2 O( P)atm + NOads → NO2{ B1} → NO2{ A1} + hν

N2 plasma with O2 injected in the background

NO formation in an Ar-N2-O2 plasma Percentage of N (%) 2 100 90 80 70 60 50 40 30 20 10 0 6 20 Pa )

105 Pa 3.0 )

-3 5 -3 m m 19

4 20 2.0 10 3 (

2 1.0 1 NO densityNO (10 NO densityNO

0 0.0 0 10 20 30 40 50 60 70 80 90 100 Percentage of O (%) 2 N + NO → N2 + O N + NOads → N2O N2O formation in an Ar-N2-O2 plasma Percentage of N (%) 2 100 90 80 70 60 50 40 30 20 10 0 6 20 pa

) 105 Pa

-3 5 m

18 4

N2O only formed 3 at low O2 flow

2

O density (10 1 2 N 0

0 10 20 30 40 50 60 70 80 90 100 Percentage of O (%) 2 Time behavior of NO formation

in Ar-N2-O2 plasma

τres≅1s no O2 flow

O2 off after 3 min ⇓ )

-3 1.5 N2 off after 3 min no NO formation m 19 no N flow 1.0 2

NO formation >> τres 0.5 NO density (10 density NO 0.0 150 200 250 N on/in the surface Time (s) (no O storage) Time behavior of N2O formation in an N2-O2 plasma

τres≅1s 3 )

-4 O2 off after 1 min

O2 off after 5 min no O2 flow 2 ⇓

N2O formation >> τres

1 O mole fraction (10 fraction mole O 2 N NO on/in the surface 0 0 50 100 150 200 250 300 350 (depends upon O2 conditioning) Time [s] Conclusions

1. Input gas mixture, N2 and O2, changes into a

mixture of N2, O2 and NO, N2O and NO2. 2. Time-resolved measurements show that surfaces become saturated with N atoms and NO radicals.

3. In Ar-NO plasmas, up to 90% conversion of NO

into N2 and O2 IR absorpon spectroscopy VUV-LIF spectroscopy on Absorpon spectroscopy on r,v N2H/O 22 plasma molecules in plasma Why study hydrogen plasma expansions? (produced from a cascaded arc)

1. Use of H2 gas in processing plasma application - etching and cleaning - passivation during deposition

2. Astrophysical interest

- ‘hot’ H2, formed at grains through surface association, and acts as precursor in astro-chemistry

3. Fundamental study of H2/HD/D2 Lyman transitions - extension of database

4. The cascaded arc might be used as H- ion source, because r,v of high fluxes of H2 at low Te (around 1 eV)

/ Plasma & Materials Processing 9/7/12 PAGE 1 Plasma source and expansion

I = 40 – 60 A P = 5 – 10 kW

Φarc = 3 slm

5 parc = 0.2x10 Pa

pbg = 100 Pa

/ Plasma & Materials Processing 9/7/12 PAGE 2 Plasma expansion

T = 6000 K T = 1000 K T = 2000 K T = 400 K

/ Plasma & Materials Processing 9/7/12 PAGE 3 PLEXIS setup

/ Plasma & Materials Processing PAGE 4 PLEXIS setup

Laser table Vacuum chamber • Movable plasma Nd:YAG cylindrical (2m x 0.3m) source and substrate (450 mJ/shot @ 355 nm) 9 Pa / 3000 sccm H2 dye laser • Axial magnetic field (50 mJ/shot @ 460 nm) Bmax = 0.2 T ( 8 mJ/shot @ 230 nm)

/ Plasma & Materials Processing 9/7/12 PAGE 5 Ar/H2 plasma expansion

9/7/12 PAGE 6 Two photon Absorption LIF (TALIF) on atomic hydrogen

ion Ø Produce 205 nm via THG of a Nd:YAG 13.6 pumped dye laser 3s2S 3p2P 3d2D Ø From spectral scans data on: n,T,v,f(v) 12.1 Hα 656.5 nm

10.2 2s2S 2p2P

121.56 nm Lyman α 205.14 nm energy (eV) energy

0 2 cascaded arc 1s S 205 nm 3.5 slm H2 I=40A, V=150V 205 nm

slitmaskslit mask fliterfilter gated PMT gates PMT

9/7/12 PAGE 7 H atom density in H2 plasma expansion (TALIF)

21 10 ) -3

20 10 Density (m

20 Pa 100 Pa

19 10 1 10 100 Axial position (mm)

Mazouffre et al. Phys. Rev. E 64, 016411 (2001) 9/7/12 PAGE 8 r,v VUV-LIF detection of H2

H2 energy scheme Excitation and detection

Ø X à B transition in H2 (~11 eV) Ø Detection of fluorescence in the VUV range Ø Excitation with 120 – 165 nm photons, produced via SARS

1 10 depleted pump

0

10 AS1 AS2 10-1 AS3 -2 10 AS4 AS5

-3 AS6 AS7 Energy Energy (mJ) 10 AS8

10-4 AS9

120 140 160 180 200 220 wavelength (nm)

9/7/12 PAGE 9 SARS technique

Four-wave mixing process

M. Spaan, A. Goehlich, V. Schultz-von der Gathen, H. F. Döbele, Applied Optics 33 (1994) 3865 T. Mosbach, H. M. Katsch, H. F. Döbele, Rev. Sci. Instrum. 85 (2000) 3420 P. Vankan, S.B.S. Heil, S. Mazouffre, R. Engeln and D.C. Schram, H. F. Döbele, Rev. Sci. Instrum. 75 (2004) 996

/ Plasma & Materials Processing 9/7/12 PAGE 10 r,v VUV-LIF detection of H2

H2 energy scheme Excitation and detection

Ø X à B transition in H2 (~11 eV) Ø Detection of fluorescence in the VUV range Ø Excitation with 120 – 165 nm photons, produced via SARS

1 10 depleted pump

0

10 AS1 AS2 10-1 AS3 -2 10 AS4 AS5

-3 AS6 AS7 Energy Energy (mJ) 10 AS8

10-4 AS9

120 140 160 180 200 220 wavelength (nm)

9/7/12 PAGE 11 r,v VUV-LIF detection of H2

H2 energy scheme VUV-LIF detection scheme

9/7/12 PAGE 12 VUV-LIF setup

to pump Nd:YAG THG plasma S

M Dye (C440) M W PMT BBO

220 nm LN M 2 W

BS

M L W M H2 M 440 nm

to pump

PMT VUV PMT mono NO cell

9/7/12 PAGE 13 VUV-LIF setup

to pump Nd:YAG THG plasma S

M Dye (C440) M W PMT BBO

220 nm LN M 2 W

BS

M L W M H2 M 440 nm

to pump

PMT VUV PMT mono NO cell Measured H2 Lyman spectrum

10

8

6

4 Fluorescence (a.u.) 2

0 43650 43700 43750 43800 43850 43900 SH frequency (cm-1)

76890 AS8 frequency (cm-1) 77140

81045 AS9 frequency (cm-1) 81295

/ Plasma & Materials Processing 9/7/12 PAGE 15 VUV-LIF setup

to pump Nd:YAG THG plasma S

M Dye (C440) M W PMT BBO

220 nm LN M 2 W

BS

M L W M H2 M 440 nm

to pump

PMT VUV PMT mono NO cell

/ Plasma & Materials Processing 9/7/12 PAGE 16 VUV-LIF setup

to pump Nd:YAG TALIF spectrum of NO P =THG 2 mbar plasma S

M

Dye(a.u.) Fluorescence (C440) M W 44000 44020 44040 44060 44080 44100 44120 44140 44160 44180 44200 PMT

BBO

220 nm LN M 2 W Fluorescence (a.u.) Fluorescence 44200 44220 44240 44260 44280 44300 44320 44340 44360 44380 WavenumberBS (cm-1)

M L W M H2 M 440 nm

to pump

PMT VUV PMT mono NO cell

/ Plasma & Materials Processing 9/7/12 PAGE 17 VUV-LIF spectroscopy

TALIF spectrum of NO P = 2 mbar to pump Nd:YAG THG plasma S -1 dye laser frequency (cm )(a.u.) Fluorescence 22048 M22049 22050 22051 22052440002205344020 44040 44060 44080 44100 44120 44140 44160 44180 44200 Dye (C440) M W PMT NO via TALIF BBO

220 nm LN M 2 W Fluorescence (a.u.) Fluorescence 44200 BS44220 44240 44260 44280 44300 44320 44340 44360 44380 -1 H (v= 4,J= 7) Wavenumber (cm ) 2 via VUV-LIFM L W M H2 M 440 nm

to pump

73182 73184 73186 73188 73190 PMT VUV AS7 frequency (cm-1) PMT mono NO cell

/ Plasma & Materials Processing 9/7/12 PAGE 18 Measured H2 Lyman spectrum

H (rv) 2 v=3,J=5

v=3,J=12 v=4,J=2 v=2,J=9

state-selective

v=4,J=7 spatially resolved Intensity non-intrusive

FP

dynamic range > 4 orders NO detection limit ~ 1013 m-3

44040 44060 44080 44100 frequency (cm-1)

P. Vankan et al., Rev. Sci. Instrum. 75 (2004) 996

/ Plasma & Materials Processing 9/7/12 PAGE 19 Measured H2 Lyman spectrum

2.0 (3,5)

1.5 (4,7)

1.0

(3,9) (v,J)=(3,7) (3,6) 2 fluoresence (a.u.) fluoresence

0.5 H (3,8) (4,11) / (9,1) / (4,11) (2,17) (3,14) Advantages multiplexing: (2,10) (6,7) ü spectrum more dense 0.0 ü efficient measurement

44020 44060 44100 44140 44180 SH frequency (cm-1)

77260 AS8 frequency 77440

81415 AS9 frequency 81595

/ Plasma & Materials Processing 9/7/12 PAGE 20 Measured H2/HD/D2 Lyman spectra

100 Pa

1500 sccm H2 / 1500 sccm D2 45 A, z = 8 mm

O. Gabriel et al. Chemical Physics Letters 451 (2008) 204

/ Plasma & Materials Processing 9/7/12 PAGE 21 Measured and calculated Lyman Measured and calculated H /HD/D Lyman spectrum spectra 2 2

Spectroscopic data for H2 Spectroscopic data for HD Spectroscopic data for D2

H. Abgrall et al. Astron. H. Abgrall, E. Roueff, Astron. H. Abgrall et al. J. Phys. B: Astrophys. Suppl. Ser. 101 Astrophys. 445 (2006) 361 At., Mol. Opt. Phys. 32 (1993) 273 (1999) 3813

All H2 Lyman transitions HD Lyman transitions J < 11 D2 Lyman transitions J < 12

/ Plasma & Materials Processing 9/7/12 PAGE 22 Measured and calculated Lyman Measured and calculated H /HD/D Lyman spectrum spectra 2 2

New calculated Lyman transitions including higher rotational states (J > 10), incollaboration with Abgrall and Roueff

O. Gabriel et al. J. Mol. Spectrosc 253 (2009) 64

/ Plasma & Materials Processing 9/7/12 PAGE 23 Non-Boltzmann distribution for H2

“Hockey stick” 700 K for low J

3800 K for high J

/ Plasma & Materials Processing 9/7/12 PAGE 24 Non-Boltzmann distributions in H2/D2 jet

Low J: T = 700 K Low J: T = 500 K High J: T = 3800 K High J: T = 3400 K

Low J: T = 300 K High J: T = 3000 K O. Gabriel et al, J. Chem. Phys. 132 (2010) 104305

/ Plasma & Materials Processing 9/7/12 PAGE 25 Results on H- production through DA process

Te = 5000 K

Production rate of H- ions by dissociative attachment

17 -3 ne = 10 m O. Gabriel et al, J. Chem. Phys. 132 (2010) 104305

J. Horáček et al, Phys. Rev. A, 70 (2004) 052712

/ Plasma & Materials Processing 9/7/12 PAGE 26 Absorpon CRD spectroscopy spectroscopy on N2/H2 plasma NH3 production in N2/H2 plasma

+ dangling bond creation by Eley-Rideal H-abstraction

SiH3 reflection dangling bond ~85% SiH surface diffusion: creation by ion SiH reaction 3 3 strong bond formation + ~15%: with danling bond 5-fold bonded Si dangling bond surface diffusion NH3 production in N2/H2 plasma

N2/H2 plasma creation

+ dangling bond creation by Eley-Rideal H-abstraction

SiH3 reflection dangling bond ~85% SiH surface diffusion: creation by ion SiH reaction 3 3 strong bond formation + ~15%: with danling bond 5-fold bonded Si dangling bond surface diffusion Plasma chemistry

leading to e.g. NHx

NH3 formation ? Cavity Ring Down: principals and features

(O’Keefe and Deacon, Rev. Sci. Instrum. 59 (1988) 2544)

empty R R cavity 5 ns L with intensity Det. absorption light σ pulse n, 1/e d τ time

Ø absorption per unit of pathlength (cavity loss): 1/ cτ = (1− R + nσL) / d Ø non-intrusive Ø high sensitivity due to effective multipassing Ø direct absorption –> line of sight measurement Cavity Enhanced Absorption detection scheme

Rev. Sci. Instrum. 69, 3763 (1998) NH3 production in N2/H2 plasma

CEA measurement recorded in a vessel in which

N2/H2-plasma expands

Scanning frequency: 30 Hz Frequency range: 15 GHz 0.10 Averages: 1000 Measurement time: 30 s 0.08

0.06

The absorption coefficient ( ) κ ν 0.04 from intensity by:

(a.u.) intensity 0.02

⎛⎞S()0 ν ⎛⎞1-R κν()=⎜⎟−×1 ⎜⎟0.00 ⎝⎠S(ν )⎝⎠ d 6568.3 6568.4 6568.5 6568.6 6568.7 frequency (cm-1) NH3 production in N2/H2 plasma

Part of the absorption spectrum of NH3 as measured in an expanding N2/H2 plasma

4 Line width ) -1 3 cm -5

Ttr = 600 K 2

σ ≈ 10-22 m 2 1 absorption (in 10

N ≈ 1019 m-3 0 6568.4 6568.5 6568.6 6568.7 frequency (cm-1)

NH3 production in N2/H2 plasma

Ammonia density produced in expanding N2 plasma in

which H2 is injected in the background

3.0 Saturation behavior ) 2.5 explained by rate -3 determining steps: m 19 2.0 + + N + H2 -> NH + H + 1.5 NH + e -> N + H

1.0 density (10 density 3

+ NH 0.5 P = 100 Pa Total N flow is bg consumed 0.0 0.0 0.1 0.2 0.3 0.4 0.5

φH 2 ( + ) φH φN 2 2 NH3 production in N2/H2 plasma

Ammonia density as function of background pressure at

constant gas flow (N2-arc/H2-background)

Linear with pressure 4.0 )

(dNH3/dt constant) -3 m 19 3.0

3 particle reaction 2.0 stable intermediate density (10 density 3 1.0 NH Wall production (?) 0.0 0 50 100 150 200 Pressure (Pa) NH3 production in N2/H2 plasma

NH3 production in two different vessels

14 2.5 Ø Total gas flow of 2 slm through cascaded arc 12 2.0 Ø At maximum 12 % of 10 the background gas is NH3 1.5

8 3 3

6 1.0 % NH 4 % NH 0.5 larger surface-to- 2 volume ratio 0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 / φH φtotal 2

Appl. Phys. Lett. 2002, 81, 418 Conclusions

Input gas mixture, N2/H2, changes into

N2/H2/NH3 mixture

(12 % of the background gas is NH3).

NH3 is formed at surfaces.