9. Hankel Transform, Fourier Bessel Transform, and Radon Transform

Total Page:16

File Type:pdf, Size:1020Kb

9. Hankel Transform, Fourier Bessel Transform, and Radon Transform 9. Hankel Transform, Fourier Bessel Transform, and Radon Transform J. Scott Tyo OPTI 512R College of Optical Sciences University of Arizona Last Updated August 8, 2011 1. HANKEL TRANSFORM Many of the two-dimensional functions that we would be interested in in our optics class will have azimuthal symmetry. Examples are circular lenses and apertures. For the most part, we will consider only functions that do not vary with azimuth at all. However, the analysis tools that we develop here are generally applicable to other types of symmetry. If we consider a function that is azimuthally symmetric, we can write g(x, y)=g(r)=g x2 + y2 . (1) To compute the Fourier transform, we start with the typical method ∞ F (ξ,η)= g(x, y)e−j2π(ξx+ηy)dxdy (2) −∞ ∞ = g x2 + y2 e−j2π(ξx+ηy)dxdy. (3) −∞ We now make the change of variables x = r cos θ, y = r sin θ. We also define a cylindrical coordinate system for the frequency variables as ξ = ρ cos φ and η = ρ sin φ. Substituting these into Eq. 2 yields F (ρ, φ)= g(r)e−j2πρr(cosθ cos φ+sin θ sin φ)rdrdθ (4) ∞ 2π = rg(r) e−j2πρr cos(θ−φ)dθdr. (5) r=0 θ=0 One of the definitions of the Bessel function is given as 2π 1 −jx cos(θ−φ) J0(x)= e dθ. (6) 2π 0 We recognize this as the interior integral in Eq. 5, and we can now write ∞ G(ξ,η)=2π g(r)J0(2πρr)rdr = G(ρ). (7) 0 We see then that the Fourier transform of a circularly symmetric function is itself azimuthally symmetric. While this is simply a special case of the Fourier transform, it has a special name knows as the zero-order Hankel transform. Equation 7 is the forward Hankel transform, and the inverse transform is ∞ g(r)=2π G(ρ)J0(2πρr)ρdρ. (8) 0 It is important to note that the zero-order Hankel transform is simply a special way of evaluating the two-D Fourier transform for functions that are azimuthally symmetric. Therefore, all of the properties of the two-D Fourier transform also apply to the zero-order Hankel transform. 1 The three most important of azimuthally symmetric functions we will encounter in this course are the cyl function, the Gaus function, and the somb function. Actually performing these integrals is beyond the scope of this course. However, knowledge of the transforms is important. First, we can relate the cyl function to the somb function through π cyl(r) ↔ somb (ρ) . (9) f If we think about this, it should make sense. We know already that the rect function transforms to the sinc function. Since the cyl function is like a rect function in cylindrical coordinates, we should expect its Fourier transform to look like a sinc function in cylindrical coordinates, which describes the sombrero function. Likewise we can write the zero-order Hankel transform of the Gaus function as Gaus (r) ↔ Gaus (ρ) . (10) This follows from our knowledge of the Fourier transform of the Gaus function in rectangular coordinates. 2. FOURIER-BESSEL TRANSFORM The derivation in the previous section was specific to functions that were azimuthally symmetric in the (x, y)- plane. However, many classes of functions do not have this symmetry. Some of these functions can be written in terms of an azimuthal Fourier series as ∞ jmθ f(r, θ)= fm(r)e . (11) m=−∞ The orthogonality of the exponential functions allows us to compute fm(r) by multiplying both sides of Eq. 11 by e−inθ and integrating from 0 to 2π as 2π 2π ∞ 1 −jnθ 1 j(m−n)θ f(r, θ)e dθ = fm(r)e dθ (12) 2π θ=0 2π θ=0 m=−∞ ∞ 2π 1 i(m−n)θ = fm(r) e dθ (13) 2π m=−∞ θ=0 ∞ 1 = fm(r)2πδnm (14) 2π m=−∞ = fm(r). (15) With this representation we can once again compute the 2-D Fourier transform ∞ 2π ∞ jmθ −j2πρr(cos θ cos φ+sin θ sin φ) F (ρ, φ)= fm(r)e e rdrdθ (16) r=0 θ=0 m=−∞ ∞ ∞ 2π jmθ −j2πρrcos(θ−φ) = fm(r)e e rdrdθ (17) m=−∞ r=0 θ=0 ∞ ∞ 2π jmθ −j2πρrcos(θ−φ) = fm(r)r e e dθdr. (18) m=−∞ r=0 θ=0 To evaluate this we need to make the variable transformation α = θ − φ − π (19) dα = dθ, (20) 2 which allows us to write Eq. 18 as ∞ ∞ 2π jmφ jmπ imα j2πρr cos α F (ρ, φ)= e e fm(r)r e e dαdr. (21) m=−∞ r=0 0 We can now use the identity 2π 1 jx cos θ jnθ Jn(x)= n e e dθ (22) 2πj 0 to write ∞ ∞ jmφ m F (ρ, φ)=2π e (−j) fm(r)Jm(2πρr)rdr (23) m=−∞ r=0 ∞ jm(φ−π/2) = e Fm(ρ), (24) m=−∞ where ∞ Fm(ρ)=2π fm(r)Jm(2πρr)rdr. (25) r=0 The orthogonality of the Bessel functions gives us ∞ fm(r)=2π Fm(ρ)Jm(2πρrρdρ, (26) ρ=0 and we see that the Fourier-Bessel transform is in general self reciprocal. We see from Eq. 24 that the Hankel transform is a single term in the more general Fourier-Bessel transform. It should be noted that the Fourier-Bessel series is in general not complete, since the expansion is only in terms of Bessel functions of the first kind. However, the Bessel functions of the second kind diverge as r → 0, meaning that the functions that are left out of the set are undefined at the origin. 3. RADON TRANSFORM Let’s consider a very special case of a two-dimensional convolution. Consider the convolution of a two-D function with a one-D delta function f(x, y) ∗ δ(x)= f(α, β)δ(x − α)dαdβ (27) = f(x, β)dβ = p(x). (28) The notation p(x) is chosen to represent a one-dimensional projection of a two-dimensional function. The concept is illustrated in Fig. 1. Let’s consider now the Fourier transform of this projection F{p(x)} = P (ξ)δ(η). (29) However, we can use the convolution theorem to write that F{p(x)} = F{f(x, y) ∗ δ(x)} (30) = F (ξ,η)δ(η) (31) = F (ξ,0)δ(η). (32) 3 Figure 1. Convolution of the two-D function with a one-D delta function produces a projection function. Equation 32 is extremely important. It is known as the Radon transform, and tells us that the Fourier transform of a one-dimensional projection of a two-dimensional function gives us a one-dimensional slice of the two- dimensional Fourier transform. For this reason, the Radon transform is sometimes known as the projection-slice theorem. Now, if we rotate the object by some amount and take a second projection, we end up with a second slice of the Fourier transform at a different angle. In this way we can build up the two-D Fourier transform slice-by-slice by taking various projections of the object at different angles as shown in Fig. 2. This is the basic underlying principle of computed tomography (although the reconstruction these days is usually performed using a different inversion technique). 4 Figure 2. The basic principle of Computed Tomography relies on the Radon transform. Figure 4.9 from Barrett & Myers. 5.
Recommended publications
  • Zero-Order Hankel Transform Method for Partial Differential Equations
    Naol Tufa Negero / International Journal of Modern Sciences and Engineering Technology (IJMSET) ISSN 2349-3755; Available at https://www.ijmset.com Volume 3, Issue 10, 2016, pp.24-36 Zero-Order Hankel Transform Method for Partial Differential Equations Naol Tufa Negero Faculty of Natural and Computational Science, Department of Mathematics, Wollega University, Nekemte,Ethiopia. [email protected] Abstract This paper deals with the solution of Partial Differential Equations (PDEs) by the method of Hankel transform. Firstly, Hankel transforms is derived using two dimensional Fourier transform, next its properties are presented because their results are used widely in solving partial differential equations in the polar and axisymmetric cylindrical configurations, finally it applied to partial differential equation with precise formulation of initial and boundary value problems. In this article, we use the Hankel transforms method, namely Hankel transforms of zero order and of order one are introduced, such that PDE reduced to an ODE, which can be subsequently solved using ODE techniques which involves the Bessel functions. Moreover the main result of this paper is the zero-order Hankel transform method for Partial differential equations in unbounded problems with radial symmetry that is appropriate in the polar and cylindrical coordinates, which is analyzed in some detail. Keywords: Radial Fourier transforms, Two Dimensional Fourier Transform, Polar, Cylindrical and spherical Coordinates, Zero-Order Hankel Transform, Partial Differential Equations 1. INTRODUCTION: There are several integral transforms which are frequently used as a tool for solving numerous scientific problems. In many real applications, Fourier transforms as well as Mellin transforms and Hankel transforms are all very useful.
    [Show full text]
  • Cylindrical Waves Guided Waves
    Cylindrical Waves Guided Waves Cylindrical Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648—Waves in Cylindrical Coordinates D. S. Weile Cylindrical Waves 2 Guided Waves Cylindrical Waveguides Radial Waveguides Cavities Cylindrical Waves Guided Waves Outline 1 Cylindrical Waves Separation of Variables Bessel Functions TEz and TMz Modes D. S. Weile Cylindrical Waves Cylindrical Waves Guided Waves Outline 1 Cylindrical Waves Separation of Variables Bessel Functions TEz and TMz Modes 2 Guided Waves Cylindrical Waveguides Radial Waveguides Cavities D. S. Weile Cylindrical Waves Separation of Variables Cylindrical Waves Bessel Functions Guided Waves TEz and TMz Modes Outline 1 Cylindrical Waves Separation of Variables Bessel Functions TEz and TMz Modes 2 Guided Waves Cylindrical Waveguides Radial Waveguides Cavities D. S. Weile Cylindrical Waves Separation of Variables Cylindrical Waves Bessel Functions Guided Waves TEz and TMz Modes The Scalar Helmholtz Equation Just as in Cartesian coordinates, Maxwell’s equations in cylindrical coordinates will give rise to a scalar Helmholtz Equation. We study it first. r2 + k 2 = 0 In cylindrical coordinates, this becomes 1 @ @ 1 @2 @2 ρ + + + k 2 = 0 ρ @ρ @ρ ρ2 @φ2 @z2 We will solve this by separating variables: = R(ρ)Φ(φ)Z(z) D. S. Weile Cylindrical Waves Separation of Variables Cylindrical Waves Bessel Functions Guided Waves TEz and TMz Modes Separation of Variables Substituting and dividing by , we find 1 d dR 1 d2Φ 1 d2Z ρ + + + k 2 = 0 ρR dρ dρ ρ2Φ dφ2 Z dz2 The third term is independent of φ and ρ, so it must be constant: 1 d2Z = −k 2 Z dz2 z This leaves 1 d dR 1 d2Φ ρ + + k 2 − k 2 = 0 ρR dρ dρ ρ2Φ dφ2 z D.
    [Show full text]
  • The Bessel Function, the Hankel Transform and an Application to Differential Equations
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Summer 2017 The Bessel Function, the Hankel Transform and an Application to Differential Equations Isaac C. Voegtle Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Partial Differential Equations Commons Recommended Citation I. Voegtle, "The Bessel Function, the Hankel Transform and an Application to Differential Equations". Georgia Southern University, 2017. This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. THE BESSEL FUNCTION, THE HANKEL TRANSFORM AND AN APPLICATION TO DIFFERENTIAL EQUATIONS by ISAAC VOEGTLE (Under the Direction of Yi Hu) ABSTRACT In this thesis we explore the properties of Bessel functions. Of interest is how they can be applied to partial differential equations using the Hankel transform. We use an example in two dimensions to demonstrate the properties at work as well as formulate thoughts on how to take the results further. INDEX WORDS: Bessel function, Hankel transform, Schrodinger¨ equation 2009 Mathematics Subject Classification: 35, 42 THE BESSEL FUNCTION, THE HANKEL TRANSFORM AND AN APPLICATION TO DIFFERENTIAL EQUATIONS by ISAAC VOEGTLE B.A., Anderson University, 2015 A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE STATESBORO, GEORGIA c 2017 ISAAC VOEGTLE All Rights Reserved 1 THE BESSEL FUNCTION, THE HANKEL TRANSFORM AND AN APPLICATION TO DIFFERENTIAL EQUATIONS by ISAAC VOEGTLE Major Professor: Yi Hu Committee: Shijun Zheng Yan Wu Electronic Version Approved: 2017 2 DEDICATION This thesis is dedicated to my wonderful wife.
    [Show full text]
  • Appendix a FOURIER TRANSFORM
    Appendix A FOURIER TRANSFORM This appendix gives the definition of the one-, two-, and three-dimensional Fourier transforms as well as their properties. A.l One-Dimensional Fourier Transform If we have a one-dimensional (1-D) function fix), its Fourier transform F(m) is de­ fined as F(m) = [ f(x)exp( -2mmx)dx, (A.l.l) where m is a variable in the Fourier space. Usually it is termed the frequency in the Fou­ rier domain. If xis a variable in the spatial domain, miscalled the spatial frequency. If x represents time, then m is the temporal frequency which denotes, for example, the colour of light in optics or the tone of sound in acoustics. In this book, we call Eq. (A.l.l) the inverse Fourier transform because a minus sign appears in the exponent. Eq. (A.l.l) can be symbolically expressed as F(m) =,r 1{Jtx)}. (A.l.2) where ~-~denotes the inverse Fourier transform in Eq. (A.l.l). Therefore, the direct Fourier transform in this case is given by f(x) = r~ F(m)exp(2mmx)dm, (A.1.3) which can be symbolically rewritten as fix)= ~{F(m)}. (A.l.4) Substituting Eq. (A.l.2) into Eq. (A.l.4) results in 200 Appendix A ftx) = 1"1"-'{.ftx)}. (A.l.5) Therefore we have the following unity relation: ,.,... = l. (A.l.6) It means that performing a direct Fourier transform and an inverse Fourier transform of a function.ftx) successively leads to no change. Using the identity exp(ix) = cosx + isinx and Eq.
    [Show full text]
  • The Laplace Transform of the Modified Bessel Function K( T± M X) Where
    THE LAPLACE TRANSFORM OF THE MODIFIED BESSEL FUNCTION K(t±»>x) WHERE m-1, 2, 3, ..., n by F. M. RAGAB (Received in revised form 13th August 1963) 1. Introduction In the present paper we determine the Laplace transforms of the modified ±m Bessel function of the second kind Kn(t x), where m is any positive integer. The Laplace transforms are given in (2) and (4) below, p being the transform parameter and having positive real part. The formulae to be established are as follows (l)-(4): f Jo 2m-1 2\-~ -i-,lx 2m 2m 2m J k + v - 2 2m (2m)2mx2 v+1 v + 2 v + 2m (1) 2m 2m 2m where R(k±nm)>0 and x is taken for simplicity to be real and positive" When m = 1, x may be taken to be complex with real part greater than 1. The asterisk in the generalised hypergeometric function denotes that the . 2m . ., v+1 v + 2 v + 2m . factor =— m th e parametert s , , ..., is omitted; m is a positive 2m 2m 2m 2m integer. m m 1 e~"'Kn(t x)dt = 2 ~ V f V J ±l - 2m-l 2 2m 2m 2m 2m J 2m v+1 n v+1. 4p ' 2 2m 2 1m"' (2m)2mx2 2r2m+l v+1 v+2 v + 2m (2) _ 2m 2m ~lm~ E.M.S.—Y Downloaded from https://www.cambridge.org/core. 02 Oct 2021 at 05:34:47, subject to the Cambridge Core terms of use. 326 F. M. RAGAB where m is a positive integer, R(± mn +1)>0 and R(p) > 0; x is taken to be rea and positive and the asterisk has the same meaning as before.
    [Show full text]
  • Non-Classical Integrals of Bessel Functions
    J. Austral. Math. Soc. (Series E) 22 (1981), 368-378 NON-CLASSICAL INTEGRALS OF BESSEL FUNCTIONS S. N. STUART (Received 14 August 1979) (Revised 20 June 1980) Abstract Certain definite integrals involving spherical Bessel functions are treated by relating them to Fourier integrals of the point multipoles of potential theory. The main result (apparently new) concerns where /,, l2 and N are non-negative integers, and r, and r2 are real; it is interpreted as a generalized function derived by differential operations from the delta function 2 fi(r, — r^. An ancillary theorem is presented which expresses the gradient V "y/m(V) of a spherical harmonic function g(r)YLM(U) in a form that separates angular and radial variables. A simple means of translating such a function is also derived. 1. Introduction Some of the best-known differential equations of mathematical physics lead to Fourier integrals that involve Bessel functions when, for instance, they are solved under conditions of rotational symmetry about a centre. As long as the integrals are absolutely convergent they are amenable to the classical analysis of Watson's standard treatise, but a calculus of wider serviceability can be expected from the theory of generalized functions. This paper identifies a class of Bessel-function integrals that are Fourier integrals of derivatives of the Dirac delta function in three dimensions. They arise in the practical context of manipulating special functions-notably when changing the origin of the polar coordinates, for example, in order to evaluate so-called two-centre integrals and ©Copyright Australian Mathematical Society 1981 368 Downloaded from https://www.cambridge.org/core.
    [Show full text]
  • Radial Functions and the Fourier Transform
    Radial functions and the Fourier transform Notes for Math 583A, Fall 2008 December 6, 2008 1 Area of a sphere The volume in n dimensions is n n−1 n−1 vol = d x = dx1 ··· dxn = r dr d ω. (1) Here r = |x| is the radius, and ω = x/r it a radial unit vector. Also dn−1ω denotes the angular integral. For instance, when n = 2 it is dθ for 0 ≤ θ ≤ 2π, while for n = 3 it is sin(θ) dθ dφ for 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. The radial component of the volume gives the area of the sphere. The radial directional derivative along the unit vector ω = x/r may be denoted 1 ∂ ∂ ∂ ωd = (x1 + ··· + xn ) = . (2) r ∂x1 ∂xn ∂r The corresponding spherical area is ωdcvol = rn−1 dn−1ω. (3) Thus when n = 2 it is (1/r)(x dy−y dx) = r dθ, while for n = 3 it is (1/r)(x dy dz+ y dz dx + x dx dy) = r2 sin(θ) dθ dφ. The divergence theorem for the ball Br of radius r is thus Z Z div v dnx = v · ω rn−1dn−1ω. (4) Br Sr Notice that if one takes v = x, then div x = n, while x · ω = r. This shows that n n times the volume of the ball is r times the surface areaR of the sphere. ∞ z −t dt Recall that the Gamma function is defined by Γ(z) = 0 t e t . It is easy to show that Γ(z + 1) = zΓ(z).
    [Show full text]
  • Unified Bessel, Modified Bessel, Spherical Bessel and Bessel-Clifford Functions
    Unified Bessel, Modified Bessel, Spherical Bessel and Bessel-Clifford Functions Banu Yılmaz YAS¸AR and Mehmet Ali OZARSLAN¨ Eastern Mediterranean University, Department of Mathematics Gazimagusa, TRNC, Mersin 10, Turkey E-mail: [email protected]; [email protected] Abstract In the present paper, unification of Bessel, modified Bessel, spherical Bessel and Bessel- Clifford functions via the generalized Pochhammer symbol [ Srivastava HM, C¸etinkaya A, Kıymaz O. A certain generalized Pochhammer symbol and its applications to hypergeometric functions. Applied Mathematics and Computation, 2014, 226 : 484-491] is defined. Several potentially useful properties of the unified family such as generating function, integral representation, Laplace transform and Mellin transform are obtained. Besides, the unified Bessel, modified Bessel, spherical Bessel and Bessel- Clifford functions are given as a series of Bessel functions. Furthermore, the derivatives, recurrence relations and partial differential equation of the so-called unified family are found. Moreover, the Mellin transform of the products of the unified Bessel functions are obtained. Besides, a three-fold integral representation is given for unified Bessel function. Some of the results which are obtained in this paper are new and some of them coincide with the known results in special cases. Key words Generalized Pochhammer symbol; generalized Bessel function; generalized spherical Bessel function; generalized Bessel-Clifford function 2010 MR Subject Classification 33C10; 33C05; 44A10 1 Introduction Bessel function first arises in the investigation of a physical problem in Daniel Bernoulli's analysis of the small oscillations of a uniform heavy flexible chain [26, 37]. It appears when finding separable solutions to Laplace's equation and the Helmholtz equation in cylindrical or spherical coordinates.
    [Show full text]
  • Special Functions
    Chapter 5 SPECIAL FUNCTIONS Chapter 5 SPECIAL FUNCTIONS table of content Chapter 5 Special Functions 5.1 Heaviside step function - filter function 5.2 Dirac delta function - modeling of impulse processes 5.3 Sine integral function - Gibbs phenomena 5.4 Error function 5.5 Gamma function 5.6 Bessel functions 1. Bessel equation of order ν (BE) 2. Singular points. Frobenius method 3. Indicial equation 4. First solution – Bessel function of the 1st kind 5. Second solution – Bessel function of the 2nd kind. General solution of Bessel equation 6. Bessel functions of half orders – spherical Bessel functions 7. Bessel function of the complex variable – Bessel function of the 3rd kind (Hankel functions) 8. Properties of Bessel functions: - oscillations - identities - differentiation - integration - addition theorem 9. Generating functions 10. Modified Bessel equation (MBE) - modified Bessel functions of the 1st and the 2nd kind 11. Equations solvable in terms of Bessel functions - Airy equation, Airy functions 12. Orthogonality of Bessel functions - self-adjoint form of Bessel equation - orthogonal sets in circular domain - orthogonal sets in annular fomain - Fourier-Bessel series 5.7 Legendre Functions 1. Legendre equation 2. Solution of Legendre equation – Legendre polynomials 3. Recurrence and Rodrigues’ formulae 4. Orthogonality of Legendre polynomials 5. Fourier-Legendre series 6. Integral transform 5.8 Exercises Chapter 5 SPECIAL FUNCTIONS Chapter 5 SPECIAL FUNCTIONS Introduction In this chapter we summarize information about several functions which are widely used for mathematical modeling in engineering. Some of them play a supplemental role, while the others, such as the Bessel and Legendre functions, are of primary importance. These functions appear as solutions of boundary value problems in physics and engineering.
    [Show full text]
  • Bessel Functions and Their Applications
    Bessel Functions and Their Applications Jennifer Niedziela∗ University of Tennessee - Knoxville (Dated: October 29, 2008) Bessel functions are a series of solutions to a second order differential equation that arise in many diverse situations. This paper derives the Bessel functions through use of a series solution to a differential equation, develops the different kinds of Bessel functions, and explores the topic of zeroes. Finally, Bessel functions are found to be the solution to the Schroedinger equation in a situation with cylindrical symmetry. 1 INTRODUCTION 0 0 X 2 n+s−1 (xy ) = an(n + s) x n=0 While special types of what would later be known as 1 0 0 X 2 n+s Bessel functions were studied by Euler, Lagrange, and (xy ) = an(n + s) x the Bernoullis, the Bessel functions were first used by F. n=0 W. Bessel to describe three body motion, with the Bessel functions appearing in the series expansion on planetary When the coefficients of the powers of x are organized, we perturbation [1]. This paper presents the Bessel func- find that the coefficient on xs gives the indicial equation tions as arising from the solution of a differential equa- s2 − ν2 = 0; =) s = ±ν, and we develop the general tion; an equation which appears frequently in applica- formula for the coefficient on the xs+n term: tions and solutions to physical situations [2] [3]. Fre- quently, the key to solving such problems is to recognize an−2 the form of this equation, thus allowing employment of an = − (3) (n + s)2 − ν2 the Bessel functions as solutions.
    [Show full text]
  • Circular Waveguides Circular Waveguides Introduction
    Circular Waveguides Circular waveguides Introduction Waveguides can be simply described as metal pipes. Depending on their cross section there are rectangular waveguides (described in separate tutorial) and circular waveguides, which cross section is simply a circle. This tutorial is dedicated to basic properties of circular waveguides. For properties visualisation the electromagnetic simulations in QuickWave software are used. All examples used here were prepared in free CAD QW-Modeller for QuickWave and the models preparation procedure is described in separate documents. All examples considered herein are included in the QW-Modeller and QuickWave STUDENT Release installation as both, QW-Modeller and QW-Editor projects. Table of Contents CUTOFF FREQUENCY ........................................................................................................................................ 2 PROPAGATION MODES IN CIRCULAR WAVEGUIDE ........................................................................................... 5 MODE TE11........................................................................................................................................................ 5 MODE TM01 ...................................................................................................................................................... 9 1 www.qwed.eu Circular Waveguides Cutoff frequency Similarly as in the case of rectangular waveguides, propagation in circular waveguides is determined by a cutoff frequency. The cutoff frequency
    [Show full text]
  • The Laplace Transform of the Bessel Functions <Inlineequation ID="IE1
    The Laplace T,'ansform of the Bessel Functions where n ~ 1, 2, 3~ ... by F. M. RAhaB (a Cairo, Egitto - U.A.R.) (x) oo Summary. - The integrals / e--PtI(~ (1)xt~-n tl~--~dt and f e--pttk--iJ f 2a~t=~ni 1] di, n=l, 2, 3, .. o o are evaluated in term of MacRoberts' E--Functious and iu terms of generalized hyper. geometric functions. By talcing k~l, the Laplace transform of the four functions in the title is obtained. § 1. Introduction. - Nothing is known in the literature ([1] and [2]) of the Laplace transform of the functions where n is any posit.ire integer, except the case where the argument of the Bessel functions is equal to [~cti/2] (see [1] p. 185 and p. 199). In this paper the following four formulae, which give the Laplace transform of the above functions, will be established: / co 1 (1) e-Pttk--iKp xt dt=p--k2~--~(2u)~-'~x ~ o ](2n)2"p2]~_k nk ~ h n; : e :ei~ [~4x-~--]2 E A n; ~ + 2 , 2 2: (2n)~"p ~ 1 [[27~2n~2~ i . 1 E ~ n; 2 ~- , A n; 2 : 2: (2n)2"p 2 e:~ where R(k + U) ~ o, R{pI ~ o and n is any positive integer. The symbol h(n; a) represents the set of 318 F.M. RAGAB: The Laptace Tra.ns]orm o~ the Bessel Functions, etc. parameters o~ a+l a+n--1 8 (2~ e-ptt~-I xt dt = 2 k-~ r: o [ 1 1 1 ( 1 ) ( ~, 1 I, k, k+ h n; ~ h n ~, -~i ~ 2 )' ~ , ; --~.
    [Show full text]