Paragus quadrifasciatus  tibialis            #  "  !     (Diptera: Syrphidae)

4+" 2 3*  1 /+0 $ , - . ) *  +, - ($% & '  )*& "  -.#, .#/0  12 &3 4)*& 5 560  7'8 +   #)+ # ,&$  #$%& '()*& !" A3'1 5 560 .13 #)+  & 5 560 ;< ')= >?@   5 560 9:'1 .#, .#/0  .#/0 4)*&  #C >)*&   )*& " -.#, .#/0 3)= B,#0  ( ( J I : A#,H@ F,0 -  ',#/ : E,& F,0 ) &56  T#$= U# ,Q V:*$@  #  &'*P 9 RS$1 .Q &  L O & .#, &  9$P 9*' MN 3 ;  Paragus L Paragus quadrifasciatus Meigen, 9*' & 4$:,3 [ #0  ;=#@ '4Y 9  $& '\1 9 9SYZ1 O, . &&  .) &# 3 EW+  E_ _ #_ 9_*' '`+  &'= 3 &$  ;=#@ T1 . 7(* .#, $1  ] ^ & Paragus tibialis Fallen, 1817 1822 # c_0 .?_ 1 _# . _  (_ ( Area Under Curve ) &'_ * #_,3 [Z_ aP_ 3 &$  T1 $&  9 /0 b0  ^' # C$1  # c0 O,#$) 1 9 O,#0 7# & * .? 1  1 9 O,#0 7# 1& O 4* 1 && .)* d,* e E:0 3 &$  ^'  '$= & 7#_ _ .$_: 0 &#_  .$:13  e)P 9 *  ] ^ . && P. tibialis  P. quadrifasciatus 9*' ;=#@ T1 EP & f 0#0 9 9_*' & #_ '_`+ # f1* Rh1 Q  : 1&  .#, '  ?=#1 Rh1  f1 9*' & # '`+ # Y   g#8 E_^& 9=  O S0 k/N i/N f 0#0 9 P. tibialis  P. quadrifasciatus 9*' & #  61 #,3 [Z aP O 4* 1 51 . * 9$P . & 1 .)* 9SYZ1 O, &  9*' & # ;=#@  ; @ # 1 E& 9  T1 $&  Q . Syrphidae  Paragus  MaxEnt 3 T1  ;=#@ :  &7 

Predicting distribution models of two flower , Paragus tibialis and Paragus quadrifasciatus (Diptera: Syrphidae) in different climates of Iran

A. JABBARI 1, A. M. SARAFRAZI 2, A. A. SHAMSIPOUR 3 and S. IMANI 4 1 and 4- PhD student, Assistant Professor, Department of Entomology, Science and Research Branch, Islamic Azad University, Tehran, Iran; 2- Associate Professor, Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran; 3- Associate Professor, Faculty of Geography, University of Tehran, Tehran, Iran Abstract The genus Paragus with more than 50 known species in Iran has a high potential to control pest and concerve pollinator . This study was conducted to fill the information gap of the distribution patterns and habitat preferences of the two species, Paragus quadrifasciatus Meigen, 1822 and Paragus tibialis Fallen, 1817 in different climates of Iran. The distribution model was prepared based on species presence records besides seven bioclimatic variables and altitudes. The accuracy of the model was measured using the Area Under Curve Index. The Jackknife test showed the mean temperature of warmest quarter and the precipitation of warmest quarter had the most effect on the distribution patterns of P. quadrifasciatus and P. tibialis respectively. The results showed that semi-arid climates with cold winter and warm summer in northern latitudes of Iran were suitable for the presence of both species, the central and southern regions of Iran with very high temperatures were considered as unsuitable areas for the presence of both species. Area Under Curve indices for both P. quadrifasciatus and P. tibialis were 0.86 and 0.9, respectively, implying the high precision and accuracy of the models for predicting the distribution models of both species in this study. Key words: Distributon Modeling, MaxEnt, Paragus , Syrphidae.

 Corresponding author: [email protected] ... Paragus quadrifasciatus  Paragus tibialis           : # 9+  $% 

  # _> _ 3#_1 ]_/1 O _, . &3_ #0 .  e ,r'Y' ; 9_*' * _= & ._ h V_ ^  R ^&  ? 7#*   ]$:  [Z_ & _ 9$P 9*' llll 3 ;  .Q & '_P 9_ _ 9_*'  E: ,3 # $o1  ]\1 ,/ &# ]_/1  _:  _ 9$_ 3 ( Wiegmann et al ., 2011 ) ._/ . . E #$& V ^ 9_ 9_'0 V_ ^ _:P &_( , # 28 9= $: #)+ _ 9_*' ;=#_@ T_1  _ ^ _ho0 O _ S0  # ( Black et al ., 1990 )  3_)= e ,m0#$  ]/1 Q'n61 V__1'8 3 __P# EP__  (Species Distribution Model) O _& .'_8 9_ ( Kaiser et al ., 2007 ) &'_1 3   : & 7#_* 3 &$_ 3#1  9*' .'<$: ,3 $P & H# c0 Q'n61 O ,   =  T#$= &  & S1 ;5* oh S BIOCLIM  DOMAIN  GARP  MaxEnt # \* b'$1   ? &'*P   L41 .Q & O , 3 ]/1 # e ., = 1  , Elith et al ., 2006; ) E 9$ , /'0 V ^ A#$: LIVES  L_ ll 3 _ 9$P 9*' lll 3 ;  Syrphidae #_  9*' '5Y ;=#@  ; @ 9 9= ( Philips et al ., 2006  /_ &'*_P O ,   9*' fp & qY #)+ . $: . . *3&#@ (1 Presence - only ) 9*' '`+   && z &#_ &  _ /1  : ;5*  'o*3 3 S  *'P &# __> ,  &#__ 9__*' *   ? ,__ b'__* __  3__ T__1 _#h 3 .( Petanidou et al ., 2011 ) = 1  , .   *)  __, __1  __ 9__ MaxEnt ?__ 7#__* ]__/1 __ __m, 3  '_P E_' 9_  3 d_$<1   r,]  & /* Q e _, .'8 9 91*# ,O {<$* E8 (9= Wisz et al. , 2008 )  _ 9_ _ 9$_ 9  3 /1  S oh O &  E d _v'0  #_ _ 9_*' ;= #_@ _ ; @  # #c'1 A .( Van Emden and Harrington, 2007 )  , 1 ;=#_@ a^_* _82h 3 &$_   . Y $+ ,| 3'0 O , ]/1   L 3 ,> Paragus Lattrille, 1804 L .( Pearson et al ., 2007 ) E u_v'nP  _ *& s_5* #t= & &#$: 'h 9 9= E &'*P 9__ 13 &  &__S$1 __SYZ1 __ # P  __ T__ __h & .  _ 9_*' 7 0 Q  && A#$: e $=wY@ 95Z1 & _  _  1  ( Aguilar et al ., 2015 ) E #)+ ;=#@  ; @  3_)=  e ,r'Y' T#$= &  9$ #> .'8 9 __ ( Polce et al. , 2013; Aguirre-Gutierrez et al. , 2016 ) .( Sorokina, 2009 ) *#  1 #^ &$ &'1 &'_1 & . E_ 9_$# 7_(* MaxEnt ?_ 7#_* 3 &$ .# , & Syrphidae &'*P   L41 9 13 & 5 560 Cheilosia L_  _ 9*' ;=#@  #  , V   L41 Shakeryari et al ., e) $_:*'  1'*'_:=0 3'_+ & #$) L__  __ 9__*'  ( Milic et al. , 2013 ) Meigen, 1833 &'_1 _x /0  E/* ( 2012; Shojaei Hesari et al ., 2016 # # __, ? 9o__ (& Nikolic et al ., 2013 ) Pipiza Fallén, 1810 Jabbari et al ., 2013; Jalilian ) _ 7'_   E: ,3 9 L_  _ 9_*' 9_% E_  _ a<)1   # .>Y Paragus L_ & &'1 O , . E 9$P&#@ /* ( et al. , 2014 9_= Y_+ & _*& _4 Rh_1 9_  3 V,&  0, Pipiza  #_  _,    &'= #4* uoYp  = 1  @ yn1 ? * Rh_1 & '_P ;=#@ V :*$@ Cheilosia L   9*' Gilasian and Sorokina, 2011; Khaghaninia ) E  *&  .# , . . *& *$: '= (. and Hosseini, 2013  #)+ ;=#@ # &S$1   3 T1 .# , & 9_ 13 & _82h 9_*' #_ 9_  $_& E  ,/ 9_  . 3 9_= E  7(* MaxEnt ? 7#* 3 &$ O ,   9*' ] ^ 9 9$:  ;=#@ T1  $: 3,  #C ;=#_@ 9= &#=  Solhjouy-Fard et al . (2013 9 ) .'0 1 O _& .'_8 9_ /* '5Y V :*$@ O$# #\* &  L &#_= a<_)1  &' * # .# , &  O 9*' B@ '5Y V_1'8 O , #0#c'1  #$/   # #/  *'0 1  9$ oh S  (1@A ?* - . &+0 - => % :   +  <)'

7#_* 3 &$_ _ 7& 9_+#1 &  _ 9S#1 *&' &#=  '_  {  Q_  _: 9* Y  1& 4* O 1  .# , ?=#1 T_ $+ 9_= ')=   ] ^ 3 h5* ;=#@  ; @ ? _ O_ ;=#_@  #_ ._>1 #_0,O f_1* e_)P  7#  &'_= _Y E_& &'_ _ ] ^ . &  9*' '`+ , '  { # C0 #c .# , & #4 ,& 9SYZ1 & .  1 9_  O _ S0 &'_o* z#$& & /* '`+ 3  $:1 A?  Nabis palifer Seidenstucker, 1954  _ 9_*' ;=#_@ #_ . 9ƒ  &# 9*' * Rh1 E: Y O _13 ;'@   # Nabis Pseudoferus Remane,1949 ./_v ) .# , .$ B@ 3  &# 9*' * :   + O _ S0 9*' & # &# A#$: & #c'1 V18 & *  _ ( &? _,   +# ,'  9 ', 4/=    $<  T61/x 3#oY *_'}  '_4Y . ( Solhjouy-Fard and Sarafrazi, 2013 )  ]_ .  7(*  "    T h ? Y1 90 3 &$ L_  _ 9_*' _ O  9*'  p  e,r'Y'= .'<$: 3, b_0  , _  #C g#_8  T'h V1 82h 9 = .13 &#____= a<____)1 MaxEnt ~____'0 .# ____,  & Geocoris . _ E_oc  &#_ 9_*' * F , _0    ;'@ b'* V61 _ 9*' e,r'Y'=   .'<$: 3, O $<1   *'} V>Y  +   9)  & L O , V1= #)+   9*' * _ O ] 5$:1 9Z  # O ,  O € (% !l%" ) && &' . *_ V_5$1 4_) , 13 9_   _/4* 9_& „ e 0  && .__)*  d__$<1 s__5* & __ 9__*' &__S0  E__ 'h 3 Ante Vujic ' :#@ &?*  0 ,  # ,  3 L@  9*' * (. Solhjouy-Fard and Sarafrazi, 2016 ) . &$# .$: #v ')= E   &  3 T1 SYZ1 3 1 E& 9 B $*, 9_ s'_1 _ && V 60  9 ,?(0 : &  %  5ID 9_  3 | _  &# _=  _ 9_1*# 9_  $& &  3,& y'_ ,  #C 82h  # V:= T &  . Eoc  ( monitoring ) ; _@,  _ #_h  $W_+  _  _,?  91*# 9_*' * 9_ s'_ #1 _82h 9 = '\1 O 9 . E #=HY &_(1 #5$_ 4$_: 3, E 1,#, $:  ,3 b'0   3,  V_:= T & | 1 82h  # n<    &# E_ ]$_: '=  _ 9_*' # 61 Z # C0 #c  ; @ . Eoc csv E1# &  L__ 3 #__$/ &$__ '__\1 9__ .( Nikolic et al ., 2013 ) ?_ 7#_* 3 &$_ _ E:   C)    +" _*'0 _1 _82h O ,  T#$=   91*# & Paragus   & 9_*' & # ;=#@ 9)5* ArcGIS 10.2 (ESRI, 2013) .# _,  & 9$_  = E E,#,1   91*# & /1 ;5*  V>_ ) _ ] _#0 9_* 'h 9 .# , d$<1 ^ ] 9_*' & ;=#_@  _ T_1 '_\1 O _ 9_ . _ 9$& .( T _ .# _,  d$<1   ] ^ & P. quadrifasciatus  P. tibialis   _ # C$1 #c O S0 '\1 9 : K L   J 2!  V_1'8 O,#0 ]/1 # Oc0 S0  # MaxEnt 91*# 3   # #/ _ 9 _ Y ? Y* &  9*' ;=#@ '6* # d$<1 ^ E: 3, _ ] _^ EP_  _ 9*' ;=#@ '6* & ,'  { Hijmans et al ., ) WorldClim && ?_=#1 3 b_0  # C$1  & ?_ 7#_* E_^& .?_ 1  9*' & # # f1 '5Y E ,/* & .(  T )  9$# ( km 2 9) *c l E^&  ( 2005 . # 9*' & ;=#@ f1 T1 9‚ Holway et al ., ) 9_*'  7'  Jackknife E:0 z # c # c _0 O #$), 9= ,  (Q,9 2002; Roura-Pascula et al ., 2009 * B V _ 60  9 ,?(0  # $&  9*' ;=#@  3 T1 &  9_*' * s_5* O _ S0  #_ :  E + FG H CD .( .(  T ) * {<$* , /* | _1 9_ T 9_+#1 & . E_# #^ #\*1 9$>* &  &# A?_ '_)= Rh_1 _P# &  9*' '`+ 9= &''1 ... Paragus quadrifasciatus  Paragus tibialis           : # 9+  $% 

aP_ 3 T_1 &#_> 8  E^& # '\1 9 N2 :      /  H CD Elith ) _ &$ ROC (Receiver Operating Characteristic ) ?_ 7#_* 3 &$_   9*' ;=#@  3 T1 N M ROC &'_ * # _, 3 [Z_ ( et al ., 2006; Phillips et al ., 2006 _ #c'_1 SDM T_1 e , .'8 9 MaxEnt (Version 3.3.3 k)  &_8 9_1& O _ AUC ( Area Under Curve ) aP_ ,S :  &$ # ,3  \0 #$_) E^&  & .)* &8 9 e &?*, AUC 9= E "l Maximum number of iteration: 500, Convergence threshold: 10 -5, Regularization multiplier: 1, Maximum AUC uQ'_ S1   9*' ;=#@  '4Y  3 T1 & ? 7#* number of background paint: 10000, Cross – validation .( Pearce and Ferrier, 2000 ) E T'o^ &'1 „/l 3 #0Q replicates: 10

.$: 0  .$:13 1&  E 'h V18 9 z # .# ,   ^ ]   9/@ (N % Table 1. Climate zones of Iran based on moisture and temperature of summer and winter

Climates codes Moisture Winter Summer A-C-VW Arid e)P Cool †P Very warm 7#  P A-C-W Arid e)P Cool †P Warm 7# A-K-M Arid e)P Cold &# Mild T$S1 A-K-W Arid e)P Cold &# Warm 7# A-M-VW Arid e)P Mild T$S1 Very warm 7#  P A-M-W Arid e)P Mild T$S1 Warm 7# H-C-W Humid {'h#1 Cool †P Warm 7# H-K-M Humid {'h#1 Cold &# Mild T$S1 H-K-W Humid {'h#1 Cold &# Warm T$S1 H-K-C Humid {'h#1 Cold &# Cool eP HA-C-VW Hyperarid e)P  P Cool †P Very warm 7#  P HA-M-VW Hyperarid e)P  P Mild T$S1 Very warm 7#  P PH-C-W Post-humid {'h#1  P Cool †P Warm 7# PH-K-C Post-humid {'h#1  P Cold &# Cool eP PH-K-M Post-humid {'h#1  P Cold &# Mild T$S1 PH-K-W Post-humid {'h#1  P Cold &# Warm 7# SA-C-VW Semi-arid e)P 9 * Cool †P Very warm 7#  P SA-C-W Semi-arid e)P 9 * Cool †P Warm 7# SA-C-M Semi-arid e)P 9 * Cool †P Mild T$S1 SA-K-M Semi-arid e)P 9 * Cold &# Mild T$S1 SA-K-W Semi-arid e)P 9 * Cold &# Warm 7# SA-M-VW Semi-arid e)P 9 * Mild T$S1 Very warm 7#  P SH-C-VW Semi-humid {'h#1 9 * Cool †P Very warm 7#  P SH-C-W Semi-humid {'h#1 9 * Cool †P Warm 7# SH-K-M Semi-humid {'h#1 9 * Cold &# Mild T$S1 SH-K-W Semi-humid {'h#1 9 * Cold &# Warm 7#  (1@A ?* - . &+0 - => % :   +  <)'

.#  &, P. quadrifasciatus  P. tibialis ;=#@ T1 EP &  &$ 61 Z   # C$1 ON % Table 2. Environmental variations used in distribution model of P. tibialis and P. quadrifasciatus in Iran Codes Layers bio1 Annual Mean Temperature bio2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) bio3 Isothermality bio4 Temperature Seasonality bio5 Max Temperature of Warmest Month bio6 Min Temperature of Coldest Month bio7 Temperature Annual Range bio8 Mean Temperature of Wettest Quarter bio9 Mean Temperature of Driest Quarter bio10 Mean Temperature of Warmest Quarter bio11 Mean Temperature of Coldest Quarter bio12 Annual Precipitation bio13 Precipitation of Wettest Month bio14 Precipitation of Driest Month bio15 Precipitation Seasonality (Coefficient of Variation) bio16 Precipitation of Wettest Quarter bio17 Precipitation of Driest Quarter bio18 Precipitation of Warmest Quarter bio19 Precipitation of Coldest Quarter Alt. Altitude

.#  &, P.quadrifasciatus  P. tibialis '5Y ;=#@  3 T1 & E=)1 v& O #$),  61 Z   # C$1 PN % Table 3. Environmental variations with the most contribution percent in potential distribution modeling of P. tibialis and P. quadrifasciatus in Iran

Species Bioclimatic variables Percent contribution

bio 12 (annual precipitation) 35.1 bio 18 (precipitation of warmest quarter) 26.2 bio 14 (precipitation of driest month) 23.5 bio 10 (mean temperature of warmest quarter) 6.1 P. tibialis Alt. (Altitude) 4 bio 13 (precipitation of wettest month) 1.9 bio 5 (Max temperature of warmest month) 1.8 bio 9 (mean temperature of driest quarter) 1.3

bio 12 (annual precipitation) 33.6 bio 10 (mean temperature of warmest quarter) 30.1 bio 18 (precipitation of warmest quarter) 13.1 bio 14 (precipitation of driest month) 10.7 P. quadrifasciatus Alt. (Altitude) 8.7 bio 5 (Max temperature of warmest month) 1.7 bio 13 (precipitation of wettest month) 1.2 bio 9 (mean temperature of driest quarter) 0.9

... Paragus quadrifasciatus  Paragus tibialis           : # 9+  $% 

9 P. tibialis  P. quadrifasciatus  9*' ]/ 9=  Eoc QK  R  .( .( V> ) *&' &'= !   f 0#0 .# _,  #_# & 9*' & 3 &'=  &S0 b' (1 &

&' b'  T 9 ] ^ # 82h  )1  .# .# ,   ] ^ & Paragus quadrifasciatus (B)  Paragus tibialis (A) ;=#@ 9)5* N S 50 Fig.1. Distribution map of Paragus tibialis (A) and Paragus quadrifasciatus (B) in climates of Iran. For climate codes, see Table 1  (1@A ?* - . &+0 - => % :   +  <)'

P. tibiali s ;=#_@  3_ T_1 :        P. tibialis 9_*' & ;=#_@ _# : E   T    .$ V1 ')= Y    E :^  & 1 .)* 9__= __ & __1 .__)* (  " A  B V>__ ) P. quadrifasciatus   ?_P 9 _ +* 9_  3 '_)= Y   ^# T   #p ] _, r _ SA-K-W ] _^ 9_ & 9_*' & _6 #0 ;=#@   _ V_4 V1 3#oY   '= 9$ Y  91& uv'nP ) 7#_  _ .$_: 0  &#_  _ .$:13 e)P 9 * $ 'h O _,  &#_ ;=#_@  # o1 V61 ( ')= T  *=#  e_P  _ .$_:13 e)P 9 * $ 'h ] ,r  SA-C-W ;=#_@ T_1 _ ; _@ O € .(  " A V> ) E 9*' e__)P $ '__h ] __, r __ A-C-W  7#__  __ .$__: 0 ._)* MaxEnt ?_ 7#* 3 &$  P. quadrifasciatus 9*' 9_= 0 O   , . E 7#   .$: 0  eP   .$:13 _*  ,& 3 &+ 0 ? * 9*' O , ;=#@ V :*$@  & 1  SA-K-W _6 #0 ] _^ f _ 0#0 P . tibialis 9_*' &'1 &     .$ & ?=# $1 #$)  ')= T  & P . tibiali s 9*' O _,  P. quadrifasciatus 9*' &'1 & Y A-C-W SA-C-W _= 'h 9 .(  " B V> ) E ')= #p T   Y  'h 9 . E SA-C-W A-C-W  SA-K-W 'v 9 f 0#0 V61 .'8 9 .# , & Q 9 9&  ,  #C   g#8 9_*'  .$_ J & |_^ ] _^ 9* & P. tibialis 9*' = E_ _ && .)*  9*' O , '5Y ;=#@  # f1 A?'_)= .$_   ] _^ ; 3 P. quadrifasciatus O _,  _S ;=#_@ b'_* #_ RoZ1  3,&  P &+ 0 9= . E  . . E .# , &  9*' y#_ T  0 {#p T  3 ;=#@  & 9*' & # 9____*' ;=#____@ V ____:*$@ & ____v ____0 '_= 9$_  {#_p T  & .( , I 2 T'h & ')= 9_*' #$_) ;=#@ V :*$@ P. tibialis  P. quadrifasciatu s T _ & &'Y_  ‡& 9_Y ‡& 9}=   '= T  & 3#oY   _ E _:^ & P. quadrifasciatus 9*' 9 Eo:* P. tibiali s . E_ z#_3  _ '_= 9$  $  &  &+ 0  y# &  ;=#_@ V _:*$@ O ,#0Q 9*' O ., E ')= Y  _ e_)P 9_ * ] _^ & 9_*' &# S ;=#@ O #$), 9_  ')= Y    .$  *=#   V4 &61 ] _^ O _,  m ., E 7#   .$: 0  &#   .$:13 ._#P  &+ 0  ^#  #p .( , I V & .$ _1 O ,#0&#  1& O 4* 1 T & ll "ˆll mm *   &  ?_P 9 +* & *=#   V4 . E & Y  º C T_ 1 O #0, 7# 4* O 1  9& #v # ,3  #v T  ( Quercus Linnaeus ) s'_ 9_  3   $1   9*'  Q  ]_<0 &_S0 .( De Pauw et al ., 2002 ) E_ l l" 3  P. tibiali s 9_*' Hill (2010) 9_$ O, _,   , 0 & $: 9_ Eo_:* O ‚_@ o_:*  1& &  #  &'*P    # Djellab et al . (2013)  .$:4* Northwich 95Z1   V4 _ Q   ]<0  # ] $@  1&  #$) #0Q o:*  1& ~ , #_ _ # _, ?(Y s'_  _ V4 3  P. tibialis  9*' E__  ºC _ _ #  #__  l ºC &'*_P O _,  &#_ & ;=#_@ V _:*$@ 9)5* z# . *&#= A? 9 )1 ^ O _,  _ V_n  _1& _ u21_= 9_= ( Adashkevich, 1975 ) V :*$@  & 9*' O , 9=  9'$1 .'0 1 P. tibialis 9*' O _€ . E_ R_oZ1 SA-K-W _ ^ Rh1 & #)+ E_ *'_0  .# , ,> r'Y'= &61 & o1 ;=#@ &  _ . ;=#_@ 7_8 9*' &# ;=#@ V :*$@ 9)5*  Salix Linnaeus L_ ._   _  #_ o_1 V61 9= _ _   9}0  .  e *   9x ,& V1 .# , ?=#1 Glycyrrhizia glabra Linnaeus 9__*'  Medicago Linnaeus 9 _ +*  ( Bakhtiyari, 1998 )  &_  7#_ P   '  {   #__ o_1 ._ ? 1 Salix 9_*' .( Badripour, 2006 ) E_ .__)* Q__  __:  __1& __ ( Saharo-Sindian ) .# __, '__  Medicago .    ( Speight, 2014 ) 9*' O , qY #)+ .  & 1 ... Paragus quadrifasciatus  Paragus tibialis           : # 9+  $% 

.( .( Goeldlin de tiefenau, 1974 ) __= E__1 __ YS Centaurea 9_*' O _,   _ Q 9 _, HC0 &'_1   9$ . ? 1 G. glabra #_ 9= ( Djamali et al ., 2011 ) .#  , , ^'  :50 ._   3 #_4 &, (,> Rojo and Marcos-Garcia, 1998 ) E   ?_P 95Z1 E ^' Rh1 */  :50 z &'*_P ._   |_Z^ '_h 9_ *'_0  .# , 95Z1 fYp _ Rh_1 3 _> , 9_= &#_= O S0 9Y$S1 95Z1 3 ‚?  .__   Š?__ 9__= ( Badripour, 2006 ) $__: Umbelliferae P. quadrifasciatus  P. tibialis 9_*' ;=#_@  #_ V :*$@ .( Krsteska, 2011 ) E 9*' O , V1= #)+ . ? 1 #_ ? _ * .# _,  y#_ T _  {#p T    E :^ . E .# _,  & P. quadrifasciatus 9_*' '5Y ;=#@ # Rh__1 V1__ __ 8 '__h 9__  __ ] __:50 O __ z__ 9_1& V1_ #p .( , I .$ #p 95Z1  & 1 .)* _ _ 9*' O , Speight (2014) 9Z  O & . E  9*#$ 1, o1 95Z1 .$:1   '= &$1 & .$ O , 80 . . &#= A?  9*#$ ,1 Rh1  @ 9Y$S1 Rh1 3   /'_0 V_ ^ |_0#1 9= E 9*' O , &# ;=#@  # 3 :  E E  TE E+ E J HCD .$_ Y _  _ E _:^ #$_) _ #h 3 . &'_ 1 V1 # c _0 O,#$) b0  # C$1 E  ^ '$= ŒN b' (1 b?_1  |_0#1  .o   V4 V1 #p .( , I #_ . J( T_ ) _*&' & 9_*' &#_ ;=#_@ T1 &  9_*' O _,  ;=#_@  #_ f1   V61 .$ O , Y  e_,r'Y'=  _* T_1 3 _1 E_& 9_ _ # z ;=#_@  #_ V :*$@  s5* 3 #4 &, .,> *  a<)1 (  ( bio12 ) 9*Q * # C$1 9 9=  a<)1 P. tibialis 4 Rh1  83 Rh1 9= E .2  .$ 9*' O , _1 O,#0 e)P *  ( bio18 ) 1 9 O,#0 7# * 9_*' '_`+ E_/ Q_ V :*$@  s5* .'8 9 .$ O , T1 EP &  E=)1 v& O,#$) f 0#0 9 ( bio14 ) 9 __ +* *__=#  __ V__4 O __€ . __* __ && .__)* E_:0 B,_$* O _€ . J( T ) $& P. tibialis ;= #@ ;=#__@  #__ f__1 Rh__1 3 __> , .'__8 9__  ?__P bio5  bio12 bio18 _ ^  # C$1 &#= a<)1 Jackknife  #_ 9_=  ?_P Rh1 . *  a<)1 P .quadrifasciatus O_, ;=#@ 3 T1 &  # c0 O,#$) f 0#0 9 bio10  && ._)* ;=#_@ #_\* 3 f1 Rh1 .'8 9 9*' O , F_@ _ &' * .( J " E V>_ ) _* 9$_& _/8 9_ 9*' ( Quercus ) s'_ 9  3 ‹P   ;'@  & *  P . tibiali s 9_*' '5Y ;=#@ && .)* ( Response Curves ) 3 9__= ( Bodripour, 2006 ) E__ |__0#1  __ V__4 & _1 9_ O,#_0 7#_ _* _ $ot1  ] 5$:1 9Z  &  __, __1  __ 9__ 9__*' O __,  [ #__0 &'__1  __ ~ __61 #t=_+ _ _1 9Z   ( bio12 ) 9*Q *  ( bio18 ) O _,  & _ _=#@ ._   3 #4 &, .(,> Speight, 2014 ) _1 9_ O,#0 7# 1& O 4* 1  ( bio5 ) 1 O,#0 7# 1& #_$1 ˆll # _, 3 _80 & Rubus Linnaeus L  V4 ;=#_@ T_1 &  # C$1 O,#0 ]/1  9Z  & . E ( bio10 ) &#_ 9 ,HC0 &'1   9$ . ? 1 9= ( Bodripour, 2006 ) E  a<)1  &' * Roh  (bio12  bio18 ) P. tibiali s 9*' O __€ .( Goeldlin de tiefenau, 1974 ) E__ 9__*' O __, 9_*' '_`+ L*_ Rh_1 O, &  * ;,?  9= {#p T    E :^ ) *'0  .# , 95Z1 3 ,  E :^ ;,?  bio5 &'1 & 9= E Y+ & O, .  , 1 ;,? _*  && .)* 9*' O , '`+  # o1 Rh1 ( .# , _ , _1 ; _= 9*' '`+ T $+ JŒ ºC &+ 3 S 1& Centaurea L  Umbelliferae &'*P     9*' 9= 1& ;,?  9= &#=  )1 .'0 1 bio10 &'1 & O € Badripour, ) &'_ Rh_1 O _,  f_Yp  _ 9*' 3 Linnaeus _ , _1 ; _= 9_*' '_`+ T_ $+ ŒŽ ºC &_+ 3 S Umbelliferae   V   # 9*' O , qY #)+  ( 2006 "J.( A, B, C, D V> )  __   __ 9$__   9__ .  __ Q ( Speight, 2014 )  (1@A ?* - . &+0 - => % :   +  <)'

. .# , & Paragus quadrifasciatus (B)  Paragus tibialis (A)   9*' ;=#@ V :*$@ 9)5* N O 50 E f1*  9*' ;=#@  #  Rh1  O #0, f1 ?1#^ Rh1   0 ?1#^ 4* d h z # Fig. 2. Prediction of habitat suitability for Paragus tibialis (A) and Paragus quadrifasciatus (B) in Iran according to color range from red to blue, areas with red are most suitable areas and blue are unsuitable areas for species distribution

... Paragus quadrifasciatus  Paragus tibialis           : # 9+  $% 

&& .__)* Amoros-Jimenez et al . (2012)  __ __# z_# P. quadrifasciatus '5Y_ ;=#_@ _# &   # Sphaerophoria rueppelli Wiedemann, 1830 (Syrphidae)  ( bio12 ) 9*Q_ _* && ._)* B $*, MaxEnt   && O _€ && 3 _ * E 'h % l 3 ; 9 &'P ' *   f _ 0#0 9_ ( bio10 ) T_ _1 9_ O , #_0 7#_  1& O 4* 1 .3 ; _= _8  Q _ & h & E 'h ; = _* 9$_& T_1 O _,  EP_ &  E=)1 v& O #$), .( .( Larde, 1990 ) &' 1 &'*P O ,   Q &#_= a<_)1 Jackknife E_:0 # O € .(  T ) ._)* P. tibialis ;=#@    ;'@ so0 #  ( bio12 ) 9*Q A  (bio10 ) 1 9 O #0, 7#  1& O 4* 1 _S0#1 Rh_1 9_ s' #1  #   &'= 3 %  &&  _1& #t=_+  ( bio9 ) _1 9_ O #_0, e)P  1& O 4* 1 9_ s'_ #1 %  p_  _83 Rh1 9 s' #1 %  .# , _ ^ V_1'8 O #_0, ]_/1 f _ 0#0 9_ ( bio5 ) _1 O #_0, 7# |__0#1 &#__= . __ Speight (2014) . E__ __4 Rh__1 O _,  & P. quadrifasciatus ;=#@ T1 EP & H# c0 ‘_= e)P   V4 e)P (  3 P )  .$P F_@  _ &' * z_ #_ .( ! " E V>_ ) * &' 9SYZ1 . $ _: P. tibialis  _ 9*' 6 #0   ~ 61  ?8  O _,  ;=#_@ 9_Z  9_= &#= . .'0 1 ( Respons Curves ) ;=#__@ __  __  ;__'@ s__o0 &'__1 & O __€ 9_ &'_ ] 5$_:1 9_Z  e (, bio12 ) 9*Q *  9*' _#  _ &'= 3 %  _ a<)1 P. quadrifasciatus ; , ?_ 9_*' &'_ T_ $+  _* ; , ?_ _ 9> ,'h Rh_1 9_ s' #1 %   p  83 Rh1 9 s' #1  .)* ( bio5 , bio9 , bio10 ) F@   &' * #h 3 .   , 1 O _€ . $_: _4 Rh_1 9_ s'_ #1 % l  _S0#1 , _1& 9_1& e _, 9 9$:  9*' O , '`+ T $+  & 1 Rh_1  9*' O  [, #0 &'1    4$: 3, Speight (2014) 9_= 5h_1  &' ] $@  1&  , e @  & 9= E ‹P _*1 ) ( Quercus ) s'_ ._$P& _  _ V4  E )= ;=#_@ '5Y_ Rh_1 _ , 1&  v'nP O ,  & E_& |0#1 ) ?8 Rh1  ( .o  *=#   V4 9_1& bio9  bio10  #_ T_t1 '_h 9_ . _* 9_*' O , &# . E &#= . ( )* E)=  &'<*  1& l " ºC , 1& 91& bio5 &'1 &  l " ºC , 1& 9___*' &  #___  AUC B ,___$* :  WEEE) UEEE VEEE E_& 9  a<)1 Rh1 & 9*' O , '`+  # ] $@ O O _ S0 k/N i/N f 0#0 9 P. tibialis  P. quadrifasciatus !.( " A, B,C, D V> ) E 1 _1 E& 9   T1 $&  Q E^& 9= Ž( T )  ( Marginal response curves ) F_@  _ &' * _# ._)* 9_SYZ1 _,O  &  9_*' & # ;=#@  ; @  # _* ; , ?_ _ 9_*' & # b'^ T $+  & 1 .)* 3 _1 E_& 9_  _ 9_$ , z_ #_ B , _$* O , .  & 1 _ u21_= 9_= _= _1  _ @ ; _= _1& ; ,?   ; ,?   __ 9__*'  __ #  __ L__41 ;=#__@  3__ T__1 9_ . && E_5 Z1 .# _,  & 9_*' ;=#_@ V _:*$@ 9 9'0 ( /N ’N /N" kkJ ) T'__o^ V__ ^ AUC __ Cheilosia L__ 7#_ _ P  '_  { _ .# _,   ?=#1 Rh1 V Y& O V_ ^ AUC _ Pipiza L_   9*'  ( Milic et al. , 2013 ) ll mm 3 #___$ = 9* Y___ ___*  ( Bakhtiyari, 1998 ) .E ( Nikolic et al. , 2013 ) ( /N ’kM /N" kŒN ) T'o^ &'_ 9_ #_)+  # o1* ~ #, ( Badripour, 2006 )  e _, r'Y'=  _* 3  _,   &, ; m@ O, $*,B .( Grichanov and Ovsyannikova, 2009 ) E & . _& .'_8 9_ _  1 #_)+ 3 9*' & ^ [ #0 9_=  & 1 .)*   #   L41   9*'  7' . . E &' * 9, .# , & )+  .) &#  oh S .? 1 .&# Q & 61 Z   # C$1 O #0, ]/1 3 ,> E 'h . E &'*P O , &#   (1@A ?* - . &+0 - => % :   +  <)'

. Jackknife E:0  Paragus tibialis ;=#@ T1 & ^   # C$1 3 e , # # c0   &' * . A-D N P 50 &' b' ΠT 9  # C$1 V1= 7*  )1  # Fig. 3. A-D: The marginal response curves of the contribution variables to predict presence probability of Paragus tibialis with MaxEnt in Iran, E: Jackknif test. See Table 2 for environmental variable definition

P. quadrifasciatus  P. tibialis  # Maxent T1 3  1 , 3 XN % Table 4. Statistical evaluation of Maxent model for P. tibialis and P. quadrifasciatus Species Training AUC* Test AUC SD** P-value *** Training recordes Test recordes

P. tibialis 0.86 0.81 0.04 0.001 24 10

P. quadrifasciatus 0.9 0.85 0.04 0.001 22 9

*Area Under receiver operating characteristic Curve; **Standard deviation of AUC; *** P < 0.01. ... Paragus quadrifasciatus  Paragus tibialis           : # 9+  $% 

. Jackknife E:0  Paragus quadrifasciatus ;=#@ T1 & ^   # C$1 3 e , # # c0   &' * . A-D N X 50 . . &' b' ΠT 9  # C$1 V1= 7*  )1  # Fig. 4. A-D: The marginal response curves of the contribution variables to predict presence probability of Paragus quadrifasciatus with MaxEnt in Iran, E: Jackknif test. See Table 2 for environmental variable definition.

 # c _0 O #$), ( bio18 ) 1 9 O #0, 7# * P. tibialis 9  ,& 3 u$o:* 4$:  9*' & # &# 9= E [ƒ 9_*' &'_1 & 9= Y+ & E& 9*' O , ;=#@ T1 &  7#_  _ .$: 0  &#   .$:13  e)P 9 * ] ^ ( bio10 ) _1 9_ O #_0, 7#  1& O 4* 1 P. quadrifasciatus & 9_&   Q_  _ g#_8 & 'P ;=#@ V :*$@ T_+ O _,   . &' ;=#@ T1 EP & # c0 O ,#0Q  & V _:*$@ P. tibialis 9_*' && ._)* _ _# . _*& .# _,    _ _# _13 *  _,& 3 &_+ _0 9*' &#  r'Y'=   .$  ')= T    V4 9 +* & o1 ;=#@ #  6 #0   4$: 3, V 60 9 ,?(0 9 13 & #$) 9_*' 9= Y+ & E & ')= ^# T   #p T  . . E  . V 5$1 ~     |1' 3  #0 V1= '__)= {#__p T __  T __ & #$__) P. quadrifasciatus ;=#_@ #_ #c'1 ^ V1'8 . 1 3 . && ;=#@ V :*$@  (1@A ?* - . &+0 - => % :   +  <)'

T_ = _ 9_*' * , _  _#  # Novi Sad 4)*&  W *Y* ,]. &  #>)0  r'_Y'=   r'Y' . 0@& 3 Ante Vujic ':#@ 3

References

ADASHKEVICH, B. P. 1975. Entomophagous pests in fruit Improvement Research Institute (SPIRI), 1-44. crops (aphidophagous), Kolos, Moscow, Russia, All- DJAMALI, M., H. AKHANI, R. KHOSHRAVESH, V. Union academy of Agricultural Sciences of V. I. Lenin ANDRIEU-PONEL, P. PONEL and S. BREWER, (All-Union research Institute of biological methods of 2011. Application of the global bioclimatic plants protection), 1-191. classification to Iran: implications for understanding AGUILAR, G., D. BLANCHON, H. FOOTE, C. the modern vegetation and biogeography, Ecologia POLLONAIS and A. MOSEE, 2015. Queensland fruit mediterranea, 37 (1): 91-114. invasion of New Zealand: Predicting area suitability DJELLAB, S., A. VAN ECK and B. SAMRAOUI, 2013. A under future climate change scenarios, Unitec ePress survey of the of northeastern Algeria Perspectives in Biosecurity Research Series 2, (Diptera: Syrphidae), Egyptian Journal of Biology, 15: Accessed date: [26 Dec. 2016], Available at: 1-12. http://www.unitec. ac.nz/epress/ ELITH, J., C. H. GRAHAM, R. P. ANDERSON, M. AGUIRRE-GUTIÉRREZ, J., W. D. KISSLING, J. C. DUDIK, S. FERRIER, A. GUISAN, R. J. HIJMANS, BIESMEIJER, M. F. WALLISDEVRIES, M. F. HUETTMANN, J. R. LEATHWICK, A. REEMER and L. G. CARVALHEIRO, 2016. LEHMANN, J. Li, L. G. LOHMANN, B. A. Historical changes in the importance of climate and LOISELLE, G. MANION, C. MORITZ, M. land use as determinants of Dutch pollinator NAKAMURA, Y. NAKAZAWA, J. M. OVERTON, distributions, Journal of Biogeography, 44: 696-707. A. T. PETERSON, S. J. PHILLIPS, K. AMOROS-JIMENEZ, R., A. PINEDA, A. FERERES and RICHARDSON, R. SCACHETTI-PEREIRA, R. E. M. Á. MARCOS-GARCÍA, 2102. Prey availability and SCHAPIRE, J. SOBERON, S. WILLIAMS, M. S. abiotic requirements of immature stages of the aphid WISZ and N. E. ZIMMERMANN, 2006. Novel predator Sphaerophoria rueppellii , Biological control, methods improve prediction of species’ distributions 63: 17-24. from occurrence data, Ecography, 29: 129-151. BADRIPOUR, H. 2006. Country Pasture/Forage Resource ESRI, 2013. ArcGIS version 10.2. Environmental Systems Profiles: Islamic Republic of Iran, Accessed date: [24 Research Institute. Inc. ESRI, Redands. Dec. 2016]. Available at: http://www.fao.org/ag/ GILASIAN, E. and V. S. SOROKINA, 2011. The genus agp/agpc/doc/counprof/PDF%20files/Iran.pdf Paragus Latreille (Diptera: Syrphidae) in Iran, with the BAKHTIYARI, S. 1998. Complete Atlas of Gitashenasi, description of a new species, Zootaxa, 2764: 49-60. Tehran, Iran: Gitashenasi Geographic and Cartography GOELDLIN DE TIEFENAU, P. 1974. Contribution a l'etude Institute, 1- 28. systematique et ecologique des Syrphidae (Dipt.) de la BLACK, W. C., J. H. HATCHETT and L. J. KRCHMA, Suisse occidentale, Bulletin de la société 1990. Allozyme variation among populations of the entomologique Suisse, 47: 151 - 252. Hessian fly ( Mayetiola destructor ) in the United States, GRICHANOV, I. Y. and E. I. OVSYANNIKOVA, 2009. Journal of Heredity, 81: 331–337. Interactive agricultural ecological atlas of Russia and DE PAUW, E. D., A. GAFFARI and V. GASEMI, 2002. neighboring countries, Accessed date: [1 Nov. 2016], Agro-climatic zone maps of Iran, Seed and Plant Available at: http://www.agroatlas.ru/ ... Paragus quadrifasciatus  Paragus tibialis           : # 9+  $% 

HIJMANS, R. J., S. E. CAMERON, J. L. PARRA, P. G. 2013. Models of the potential distribution and habitat JONES and A. JARVIS, 2005. Very high resolution preferences of the genus Pipiza (syrphidae: diptera) on interpolated climate surfaces for global land areas, the Balkan Peninsula, Archives of Biological Sciences, International Journal of Climatology, 25: 1965–1978. 65: 1037-1052. HOLWAY, D. A., A. V. SUAREZ and T. J. CASE, 2002. HILL, P. M. 2010. The Flora and Fauna of the Northwich Role of abiotic factors in governing susceptibility to Woodlands, Northwich, UK, Northwich community invasion: a test with Argentine ants, Ecology, 83: woodlands ecology society, 1-33. 1610–1619. PEARCE, J. and S. FERRIER, 2000. An evaluation of JABBARI, A., A. AHADIYAT and R. HAYAT, 2013. alternative algorithms for fitting species distribution Species diversity of hover flies (Diptera: Syrphidae) models using logistic regression, Journal of Ecological and determination of the dominant species in Garmsar Modelling, 128: 147-127. region, Plant Protection Journal, 5: 13-21. PEARSON, R. G., C. J. RAXWORTHY, M. NAKAMURA JALILIAN, F., Y. KARIMPOUR, S. H. MALKESHI, E. and A. T. PETERSON, 2007. Predicting species GILASIAN, M. R. KAVIANPOUR, S. M. distributions from small numbers of occurrence MAHJOOB, M. T. TOHIDI and SH. BAGHERI records: a test case using cryptic geckos in MATIN, 2014. Evaluation of population fluctuation of Madagascar, Journal of Biogeography, 34: 102–117. predacious species of syrphid flies (Dip.: Syrphidae) on POLCE, C., M. TERMANSEN, J. AGUIRRE-GUTIÉRREZ, Cabbage aphid Brevicoryne brassicae in rapeseed N. D. BOATMAN, G. E. BUDGE, A. CROWE, M. P. fields, Agricultural Pest Management, 1 (1): 46-54. GARRATT, S. PIETRAVALLE, S. G. POTTS, J. A. KAISER, M. E., T. NOMA, M. J. BREWER, K. S. PIKE, J. RAMIREZ, K. E. SOMERWILL and J. C. R. VOCKEROTH and S. D. GAIMARI, 2007. BIESMEIJER, 2013. Species Distribution Models for Hymenopteran parasitoids and dipteran predators Crop Pollination: A Modelling Framework Applied to found using soybean aphid after its Midwestern United Great Britain, PLoS ONE, 8(10): e76308. States invasion, Annals of the Entomological Society PETANIDOU, T., A. VUJIC and W. N. ELLIS, 2011. of America, 100 (2): 196–205. diversity (Diptera: Syrphidae) in a KHAGHANINIA, S. and C. HOSSEINI, 2013. Taxonomic Mediterranean scrub community, Athens, Greece, study of Paragus Latreille (Diptera: Syrphidae) in the Annales de la Société entomologique de France, 47: East Azerbaijan and Kordestan provinces of Iran, 168-175. Efflatounia, 13: 8-18. PHILLIPS, S. J., R. P. ANDERSON and R. E. SCHAPIRE, KRSTESKA, V. 2011. Faunistic and quantitative analysis of 2006. Maximum entropy modeling of species species of the genus Paragus , Bulletin of Tobacco geographic distributions, Ecological modelling, 190: Science and Profession, 61: 31-40. 231-256. LARDE, G. 1990. Growth of Ornidia obesa (Diptera: ROJO, S. and M. A. MARCOS-GARCIA, 1998. Catálogo de Syrphidae) Larvae on decomposing coffee pulp, los sirfidos (Diptera Syrphidae) aphidófagos Biological Wastes, 34(1): 73-76. (Homoptera Aphididae) presentes en cultivos y plantes MILIC, D., S. RADANOVICH, J. STEPANOV, M. herbáceas de España y Portugal, Bollettino di Zoologia MILI ČIĆ and A. VUJI Ć, 2013. Prediction of current Agraria e di Bachicoltura, Ser.II, 30: 39-54. species distribution of Cheilosia proxima group ROURA-PASCUAL, N., L. BROTONS, A. T. PETERSON (diptera: syrphidae) on the Balkan Peninsula, Matica and W. THUILLER, 2009. Consensual predictions of Srpska Journal of Natural Sciences, 125: 69-78. potential distributional areas for invasive species: a NIKOLIC, T., D. RADIŠI Č, D. MILI Ć, V. MARKOVI Ć, S. case study of Argentine ants in the Iberian Peninsula, TRIFUNOV, S. JOVI ČIĆ, S. ŠIMI Ć and A. VUJI Ć, Biological Invasions, 11: 1017-1031.  (1@A ?* - . &+0 - => % :   +  <)'

SHAKERYARI, A., S. KHAGHANINIA and K. H. IRANI Syrphidae (Diptera), the Database of European NEJAD, 2012. Four species as new records of tribe Syrphidae, Dublin, Ireland, Syrph the Net, 1-319. Chrysogasterini (Diptera: Syrphidae) from Iran, Munis VAN EMDEN, H. F. and R. HARRINGTON, 2007. Aphids Entomology and Zoology, 7(1): 385-390 as Crop Pests, Wallingford, Oxford, UK, CABI SHOJAEI HESARI, E., SH. PASHAEI RAD and M. publications, 1-717. SEIFALAH-ZADE, 2016. Two new records of the WIEGMANN, B. M., M. D. TRAUTWEIN, I. S. WINKLER, family Syrphidae (Insecta: Diptera) from Iran, Journal N. B. BARR, J. W. KIM, C. LAMBKIN, M. A. of Crop Protection, 5: 643-648. BERTONE, B. K. CASSEL, K. M. BAYLESS, A. M. SOLHJOUY-FARD, S., A. SARAFRAZI, M. M. MOEINI HEIMBERG, B. M. WHEELER, K. J. PETERSON, T. and A. AHADIYAT, 2013. Predicting habitat PAPE, BR. J. SINCLAIR, J. H. SKEVINGTON, V. distribution of five heteropteran pest species in Iran, BLAGODEROV, J. CARAVAS, S. N. KUTTY, U. Journal of Insect Science, 13 (116): 1-16. SCHMIDT-OTT, G. E. KAMPMEIER, F. C. SOLHJOUY ‐FARD, S. and A. SARAFRAZI, 2013. Potential THOMPSON, D. A. GRIMALDI, A. T. impacts of climate change on distribution range of BECKENBACH, G. W. COURTNEY, M. Nabis pseudoferus and N. palifer (Hemiptera: Nabidae) FRIEDRICH, R. MEIER and D. K. Yeates, 2011. Data in Iran, Entomological Science, 17: 283-292. from: Episodic radiations in the fly tree of life, PNAS, SOLHJOUY ‐FARD, S. and A. SARAFRAZI, 2016. Patterns 108 (14): 5690-5695. of niche overlapping and richness among Geocoris WISZ, M. S., R. J. HIJMANS, J. LI, A. T. PETERSON, C. species (Hemiptera: Geocoridae) in Iran. Biocontrol H. GRAHAM, A. GUISAN and NCEAS Science and Technology, 26: 1197-1211. PREDICTING SPECIES DISTRIBUTIONS SOROKINA, V. S. 2009. Hover flies of the genus Paragus WORKING GROUP, 2008. Effects of sample size on Latr. (Diptera, Syrphidae) of Russia and adjacent the performance of species distribution models, countries, Entomological Review, 89 (3): 351-366. Diversity and Distributions, 14: 763–773. SPEIGHT, M. C. D. 2014. Species Accounts of European

... Paragus quadrifasciatus  Paragus tibialis           : # 9+  $%