Role for Ribosome-Associated Quality Control in Sampling Proteins for MHC Class I-Mediated Antigen Presentation

Total Page:16

File Type:pdf, Size:1020Kb

Role for Ribosome-Associated Quality Control in Sampling Proteins for MHC Class I-Mediated Antigen Presentation Role for ribosome-associated quality control in sampling proteins for MHC class I-mediated antigen presentation Débora Broch Trentinia, Matteo Pecorarob, Shivani Tiwaryc, Jürgen Coxc,d, Matthias Mannb, Mark S. Hippa,1,2, and F. Ulrich Hartla,2 aDepartment of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; bDepartment of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; cComputational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; and dDepartment of Biological and Medical Psychology, University of Bergen, 5009 Bergen, Norway Edited by Alexander Varshavsky, California Institute of Technology, Pasadena, CA, and approved January 20, 2020 (received for review August 21, 2019) Mammalian cells present a fingerprint of their proteome to the that production of an antigenic peptide would depend largely on adaptive immune system through the display of endogenous peptides the rate of translation of the corresponding protein, and less on its on MHC-I complexes. MHC-I−bound peptides originate from protein relative abundance or turnover once folded and assembled. This degradation by the proteasome, suggesting that stably folded, long- would be particularly important for viral proteins, which constitute lived proteins could evade monitoring. Here, we investigate the role only a minute fraction of the total cellular pool of proteins at the in antigen presentation of the ribosome-associated quality control early stages of infection (7). A number of studies showed that (RQC) pathway for the degradation of nascent polypeptides that are presentation of certain model proteins is inefficient in the absence encoded by defective messenger RNAs and undergo stalling at the of active synthesis, despite the presence of a large pool of mature ribosome during translation. We find that degradation of model pro- forms being degraded (16–18), while others reported productive teins by RQC results in efficient MHC-I presentation, independent presentation of mature proteins (19, 20). The mechanism of DRiP of their intrinsic folding properties. Quantitative profiling of MHC-I generation and the overall contribution of DRiPs to antigen peptides in wild-type and RQC-deficient cells by mass spectrometry presentation remain areas of active research. showed that RQC substantially contributes to the composition of the Here, we test the hypothesis that the ribosome-associated BIOCHEMISTRY immunopeptidome. Our results also identify endogenous substrates quality control (RQC) machinery may play a role in MHC-I of the RQC pathway in human cells and provide insight into common antigen presentation. RQC is a conserved eukaryotic pathway principles causing ribosome stalling under physiological conditions. ribosome-associated quality control | Listerin | MHC-I | immunopeptidome Significance Pathogens and tumors are detected by the immune system through he major histocompatibility complex (MHC) molecules play the display of intracellular peptides on MHC-I complexes. These a central role in the vertebrate adaptive immune system. T peptides are generated by the ubiquitin−proteasome system pref- MHC class I binds to short peptides (8 to 11 amino acids long) erentially from newly synthesized polypeptides. Here we show that sampled from the proteolytic products of intracellular proteins. the ribosome-associated quality control (RQC) pathway, responsible MHC-I−loaded peptides are presented at the cell surface, where for proteasomal degradation of polypeptide chains that stall during they are surveyed by CD8+ T cells for the presence of non−self- translation, mediates efficient antigen presentation of model pro- peptides (1). This system, present in all nucleated cells of higher teins independent of their intrinsic folding properties. Immuno- vertebrates, enables the recognition of cells infected with viruses peptidome characterization of RQC-deficient cells shows that RQC and other intracellular parasites, or cells accumulating aberrant contributes to the presentation of a wide variety of proteins, in- proteins resulting from malignant transformation. The presented cluding proteins that may otherwise evade presentation due to peptides originate mostly from degradation by the ubiquitin− efficient folding. By identifying endogenous substrates of the RQC proteasome system (2, 3), which is responsible for the controlled pathway in human cells, our results also enable the analysis of turnover of the great majority of cellular proteins, and for the common principles causing ribosome stalling under physiological rapid degradation of defective species (4). The immune response conditions. is remarkably efficient. In cultured cells, CD8+ T cells can rec- ognize infected cells in less than 60 min after viral penetration Author contributions: D.B.T., M.M., M.S.H., and F.U.H. designed research; D.B.T., M.P., and (5), despite the fact that viral proteins are usually very stable and S.T. performed research; D.B.T., M.P., S.T., J.C., M.M., M.S.H., and F.U.H. analyzed data; have slow turnover rates (6). Accordingly, cells require a mech- and D.B.T., M.S.H., and F.U.H. wrote the paper. anism for rapidly generating peptides from long-lived viral pro- The authors declare no competing interest. teins synthesized upon infection. This article is a PNAS Direct Submission. To explain the kinetic discrepancy between protein half-life This open access article is distributed under Creative Commons Attribution-NonCommercial- and MHC-I presentation, defective ribosomal products (DRiPs) NoDerivatives License 4.0 (CC BY-NC-ND). have been proposed to act as a significant source of self-peptides Data deposition: The mass spectrometry proteomics data have been deposited to the and viral peptides. DRiPs were defined as proteins that do not ProteomeXchange Consortium via the PRIDE partner repository with the dataset reach mature (stable) conformation and, unable to fold or as- identifier PXD014644. semble correctly, are targeted for rapid proteasomal degradation 1Present addresses: Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (7). The DRiP designation later evolved to include errors in and School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, transcription, splicing, and translation (8). While estimates for the 26111 Oldenburg, Germany. fraction of rapidly degraded newly synthesized proteins varied 2To whom correspondence may be addressed. Email: [email protected] or uhartl@ considerably (6, 9–13), it has also been suggested that proteasome biochem.mpg.de. substrates differ in their access to MHC-I presentation, with “true This article contains supporting information online at https://www.pnas.org/lookup/suppl/ DRiPs” undergoing privileged processing for presentation (14, doi:10.1073/pnas.1914401117/-/DCSupplemental. 15). Therefore, one appealing notion of the DRiP hypothesis is First published February 11, 2020. www.pnas.org/cgi/doi/10.1073/pnas.1914401117 PNAS | February 25, 2020 | vol. 117 | no. 8 | 4099–4108 Downloaded by guest on October 1, 2021 that removes nascent polypeptide chains from ribosomes that Experiments were performed using stable monoclonal cell lines for have stalled during translation (21) and thus qualify as DRiPs. In each construct in WT and in RQC-deficient (Listerin-KO) cells contrast to quality control mechanisms that monitor the folding obtained by CRISPR/Cas (SI Appendix,Fig.S1). Cycloheximide state of newly synthesized polypeptides, RQC senses the state of (CHX) chase experiments confirmed that both DD fusions (STOP translation (22). RQC comprises five steps: sensing of elongation versions) were stable in the presence of ligand (half-life of >9h), stalling, ribosome splitting and messenger RNA (mRNA) dis- but rapidly degraded in the absence of ligand, with a half-life of sociation, assembly of the RQC machinery on the 60S subunit, ∼4 h for FKBP STOP and ∼30 min for DHFR STOP (Fig. 1B). ubiquitylation of the nascent chain, and its extraction for pro- Thus the FKBPDD and DHFRDD of the fusion proteins fold teasomal degradation. The core components of the RQC ma- independently of the SIINFEKL-eGFP and are stabilized by the chinery in mammals are the ubiquitin ligase Listerin (23) and the respective ligand. factors NEMF and TCF25 (respectively, Ltn1/Rqc2/Rqc1 in Next, we compared the effect of DD ligand and the protea- yeast) (21, 22, 24). NEMF/Rqc2 recognizes the peptidyl−transfer some inhibitor MG132 on protein levels. Addition of ligand for 4 h RNA moiety at the interface of the dissociated 60S ribosome and increased GFP levels approximately fivefold for the STOP pro- recruits Listerin/Ltn1 (24, 25), which mediates ubiquitylation of teins and approximately twofold for the NS proteins (Fig. 1C). the stalled polypeptide near the ribosome exit tunnel (25–27). Combining DD ligand with MG132 did not result in a further RQC is intimately linked to two mRNA degradation pathways stabilization of the STOP proteins, but rather decreased their level that take place in the cytoplasm: nonstop mRNA decay (28) and by ∼20%, as overall protein synthesis slowed after 1 h of protea- no-go decay (29), which recognize mRNAs that lack stop codons some inhibition (38) (Fig. 1C and SI Appendix,Fig.S2). In con- and mRNAs that present obstacles to elongation, respectively. trast, NS protein GFP levels increased ∼18-fold upon combined
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Focus on the Small Heat Shock Protein HSPB1 Autofagie in De Erfelij
    Faculteit Faculteit Farmaceutische, Biomedische en Diergeneeskundige wetenschappen Biochemie en Biotechnologie Autophagy in inherited peripheral neuropathies: Focus on the small heat shock protein HSPB1 Autofagie in de erfelijke perifere neuropathieën: Focus op de kleine heat shock proteïne HSPB1 Proefschrift voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen: Biochemie en Biotechnologie aan de Universiteit Antwerpen. te verdedigen door Mansour HAIDAR Promotor Prof. Dr. Vincent Timmerman Antwerpen, 2018 1 2 “Haud igitur redit ad Nihilum res ulla, sed omnes Discidio redeunt in corpora materiai” Lucretius, De Rerum Natura, Book I. 250 3 4 Members of the jury Chair Prof. Dr. Wim Vanden Berghe, PhD (UA, Antwerp, Belgium) Promotor Prof. Dr. Vincent Timmerman, PhD (UA, Antwerp, Belgium) Internal jury member Prof. Dr. Wim Martinet, PhD (UA, Antwerp, Belgium) External jury members Prof. Dr. Joy Irobi (UHasselt, Hasselt, Belgium) Prof. Dr. Maurizio D’Antonio (San Raffaele Institute, Milan, Italy) Prof. Dr. Ir. Winnok De Vos (UA, Antwerp, Belgium) 5 6 Table of Contents Summary/Samenvatting 9 Rationale and Aims 13 Introduction Chapter 1 Autophagy as an emerging common pathomechanism in inherited 15 peripheral neuropathies Chapter 2 Small heat shock proteins: Their role in proteostasis 79 and neurodegeneration Results Chapter 3 HSPB1 is required for Autophagy: Insights from CMT-causing mutations 103 Chapter 4 An interactomics study of HSPB1 wild-type and mutant links it to the 129 autophagy receptor P62 Discussion 179 List of abbreviations 195 Curriculum Vitae 199 Acknowledgements 203 7 8 Summary Inherited peripheral neuropathies (IPNs) are genetically heterogeneous disorders affecting mainly the peripheral nervous system and with over 1500 mutations in more than 80 affected genes discovered so far.
    [Show full text]
  • Essential Genes and Their Role in Autism Spectrum Disorder
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Essential Genes And Their Role In Autism Spectrum Disorder Xiao Ji University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, and the Genetics Commons Recommended Citation Ji, Xiao, "Essential Genes And Their Role In Autism Spectrum Disorder" (2017). Publicly Accessible Penn Dissertations. 2369. https://repository.upenn.edu/edissertations/2369 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2369 For more information, please contact [email protected]. Essential Genes And Their Role In Autism Spectrum Disorder Abstract Essential genes (EGs) play central roles in fundamental cellular processes and are required for the survival of an organism. EGs are enriched for human disease genes and are under strong purifying selection. This intolerance to deleterious mutations, commonly observed haploinsufficiency and the importance of EGs in pre- and postnatal development suggests a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication and repetitive behavior. More and more genetic evidence points to a polygenic model of ASD and it is estimated that hundreds of genes contribute to ASD. The central question addressed in this dissertation is whether genes with a strong effect on survival and fitness (i.e. EGs) play a specific oler in ASD risk. I compiled a comprehensive catalog of 3,915 mammalian EGs by combining human orthologs of lethal genes in knockout mice and genes responsible for cell-based essentiality.
    [Show full text]
  • Mitochondrial Protein Quality Control Mechanisms
    G C A T T A C G G C A T genes Review Mitochondrial Protein Quality Control Mechanisms Pooja Jadiya * and Dhanendra Tomar * Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA * Correspondence: [email protected] (P.J.); [email protected] (D.T.); Tel.: +1-215-707-9144 (D.T.) Received: 29 April 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases. Keywords: mitochondria; proteome; ubiquitin; proteasome; chaperones; protease; mitophagy; mitochondrial protein quality control; mitochondria-associated degradation; mitochondrial unfolded protein response 1. Introduction Mitochondria are double membrane, dynamic, and semiautonomous organelles which have several critical cellular functions.
    [Show full text]
  • Comparative Transcriptomics and Host-Specific Parasite Gene
    www.nature.com/scientificreports OPEN Comparative transcriptomics and host‑specifc parasite gene expression profles inform on drivers of proliferative kidney disease Marc Faber1, Sophie Shaw2, Sohye Yoon1,8, Eduardo de Paiva Alves2,3, Bei Wang1,4, Zhitao Qi1,5, Beth Okamura6, Hanna Hartikainen7, Christopher J. Secombes1 & Jason W. Holland1* The myxozoan parasite, Tetracapsuloides bryosalmonae has a two‑host life cycle alternating between freshwater bryozoans and salmonid fsh. Infected fsh can develop Proliferative Kidney Disease, characterised by a gross lymphoid‑driven kidney pathology in wild and farmed salmonids. To facilitate an in‑depth understanding of T. bryosalmonae‑host interactions, we have used a two‑host parasite transcriptome sequencing approach in generating two parasite transcriptome assemblies; the frst derived from parasite spore sacs isolated from infected bryozoans and the second from infected fsh kidney tissues. This approach was adopted to minimize host contamination in the absence of a complete T. bryosalmonae genome. Parasite contigs common to both infected hosts (the intersect transcriptome; 7362 contigs) were typically AT‑rich (60–75% AT). 5432 contigs within the intersect were annotated. 1930 unannotated contigs encoded for unknown transcripts. We have focused on transcripts encoding proteins involved in; nutrient acquisition, host–parasite interactions, development, cell‑to‑cell communication and proteins of unknown function, establishing their potential importance in each host by RT‑qPCR. Host‑specifc expression profles were evident, particularly in transcripts encoding proteases and proteins involved in lipid metabolism, cell adhesion, and development. We confrm for the frst time the presence of homeobox proteins and a frizzled homologue in myxozoan parasites. The novel insights into myxozoan biology that this study reveals will help to focus research in developing future disease control strategies.
    [Show full text]
  • Proteomic Analysis of Mtor Inhibition-Mediated Phosphorylation
    Protein Cell DOI 10.1007/s13238-016-0279-0 Protein & Cell LETTER Proteomic analysis of mTOR inhibition- mediated phosphorylation changes in ribosomal proteins and eukaryotic translation initiation factors Dear Editor, analysis based on the SILAC (stable isotope labeling by amino acids in cell culture) method was carried out to analyze affinity The mammalian target of rapamycin (mTOR), as a critical enriched phosphoproteins from the untreated and rapamycin- Cell energy sensor and cell-growth regulator, controls protein treated 293T cells. The experimental workflow was displayed & 12 14 synthesis, autophagy and many important cellular processes in Fig. 1A. Briefly, cells grown in light medium ( C6 N2-Lysine 12 0 0 through forming functional distinct complexes, mTORC1 and and C6-Arginine, K R ) were treated with 200 nmol/L rapa- 13 15 mTORC2. mTORC1 that is sensitive to rapamycin, regulates mycin for 2 h, while cells grown in heavy medium ( C6 N2- 13 8 6 cell growth and protein synthesis, while mTORC2 that is Lysine and C6-Arginine, K R ) were untreated. Sucrose insensitive to rapamycin, regulates cellular metabolism and cushion centrifugation was used to isolate ribosomes. Pro- Protein the cytoskeletal organization (Gingras et al., 2001; Hay and teins extracted from the whole cell lysate or the isolated ribo- Sonenberg, 2004). Translation initiation is the rate-limiting some fraction of the untreated and rapamycin-treated cells step in protein synthesis, which proceeds through a multi- were mixed and trypsin digested. Then phosphopeptides step process that can be divided into three major steps. First, were enriched with TiO2 beads and analyzed by nano-LC-MS/ eukaryotic translation initiation factor 2 (eIF2) binds with GTP MS.
    [Show full text]
  • Mapping the Mammalian Ribosome Quality Control Complex Interactome Using Proximity Labeling Approaches
    M BoC | ARTICLE Mapping the mammalian ribosome quality control complex interactome using proximity labeling approaches Nathan Zuzow, Arit Ghosh, Marilyn Leonard, Jeffrey Liao, Bing Yang, and Eric J. Bennett* Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093 ABSTRACT Previous genetic and biochemical studies from Saccharomyces cerevisiae have Monitoring Editor identified a critical ribosome-associated quality control complex (RQC) that facilitates resolu- Sandra Wolin tion of stalled ribosomal complexes. While components of the mammalian RQC have been National Cancer Institute, NIH examined in vitro, a systematic characterization of RQC protein interactions in mammalian Received: Dec 12, 2017 cells has yet to be described. Here we utilize both proximity-labeling proteomic approaches, Revised: Mar 6, 2018 BioID and APEX, and traditional affinity-based strategies to both identify interacting proteins Accepted: Mar 9, 2018 of mammalian RQC members and putative substrates for the RQC resident E3 ligase, Ltn1. Surprisingly, validation studies revealed that a subset of substrates are ubiquitylated by Ltn1 in a regulatory manner that does not result in subsequent substrate degradation. We demon- strate that Ltn1 catalyzes the regulatory ubiquitylation of ribosomal protein S6 kinase 1 and 2 (RPS6KA1, RPS6KA3). Further, loss of Ltn1 function results in hyperactivation of RSK1/2 signaling without impacting RSK1/2 protein turnover. These results suggest that Ltn1-medi- ated RSK1/2 ubiquitylation is inhibitory and establishes a new role for Ltn1 in regulating mi- togen-activated kinase signaling via regulatory RSK1/2 ubiquitylation. Taken together, our results suggest that mammalian RQC interactions are difficult to observe and may be more transient than the homologous complex in S.
    [Show full text]
  • SDCCAG1 Antibody (N-Term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap18740a
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 SDCCAG1 Antibody (N-term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP18740a Specification SDCCAG1 Antibody (N-term) - Product Information Application WB,E Primary Accession O60524 Reactivity Human Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Calculated MW 122954 Antigen Region 236-264 SDCCAG1 Antibody (N-term) - Additional Information Gene ID 9147 SDCCAG1 Antibody (N-term)(Cat. Other Names #AP18740a) western blot analysis in WiDr Nuclear export mediator factor NEMF, cell line lysates (35ug/lane).This Antigen NY-CO-1, Serologically defined demonstrates the SDCCAG1 antibody colon cancer antigen 1, NEMF, SDCCAG1 detected the SDCCAG1 protein (arrow). Target/Specificity This SDCCAG1 antibody is generated from SDCCAG1 Antibody (N-term) - Background rabbits immunized with a KLH conjugated synthetic peptide between 236-264 amino The function of this protein remains unknown. acids from the N-terminal region of human SDCCAG1. Dilution WB~~1:1000 Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. Precautions SDCCAG1 Antibody (N-term) is for research Page 1/2 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 use only and not for use in diagnostic or therapeutic procedures. SDCCAG1 Antibody (N-term) - Protein Information Name NEMF Synonyms SDCCAG1 Function Component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates ubiquitination and extraction of incompletely synthesized nascent chains for proteasomal degradation.
    [Show full text]
  • Somatic Mutations in Early Onset Luminal Breast Cancer
    www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 32), pp: 22460-22479 Research Paper Somatic mutations in early onset luminal breast cancer Giselly Encinas1,*, Veronica Y. Sabelnykova2,*, Eduardo Carneiro de Lyra3, Maria Lucia Hirata Katayama1, Simone Maistro1, Pedro Wilson Mompean de Vasconcellos Valle1, Gláucia Fernanda de Lima Pereira1, Lívia Munhoz Rodrigues1, Pedro Adolpho de Menezes Pacheco Serio1, Ana Carolina Ribeiro Chaves de Gouvêa1, Felipe Correa Geyer1, Ricardo Alves Basso3, Fátima Solange Pasini1, Maria del Pilar Esteves Diz1, Maria Mitzi Brentani1, João Carlos Guedes Sampaio Góes3, Roger Chammas1, Paul C. Boutros2,4,5 and Maria Aparecida Azevedo Koike Folgueira1 1Instituto do Cancer do Estado de Sao Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil 2Ontario Institute for Cancer Research, Toronto, Canada 3Instituto Brasileiro de Controle do Câncer, São Paulo, Brazil 4Department of Medical Biophysics, University of Toronto, Toronto, Canada 5Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada *These authors have contributed equally to this work Correspondence to: Maria Aparecida Azevedo Koike Folgueira, email: [email protected] Keywords: breast cancer; young patients; somatic mutation; germline mutation; luminal subtype Received: September 26, 2017 Accepted: March 06, 2018 Published: April 27, 2018 Copyright: Encinas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Breast cancer arising in very young patients may be biologically distinct; however, these tumors have been less well studied.
    [Show full text]
  • Integration of Lncrna and Mrna Transcriptome Analyses Reveals
    G C A T T A C G G C A T genes Article Integration of lncRNA and mRNA Transcriptome Analyses Reveals Genes and Pathways Potentially Involved in Calf Intestinal Growth and Development during the Early Weeks of Life Eveline M. Ibeagha-Awemu 1,*, Duy N. Do 1,2, Pier-Luc Dudemaine 1, Bridget E. Fomenky 1,3 and Nathalie Bissonnette 1 ID 1 Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC J1M 0C8, Canada; [email protected] (D.N.D.); [email protected] (P.-L.D.); [email protected] (B.E.F.); [email protected] (N.B.) 2 Department of Animal Science, McGill University, Ste-Anne-De Bellevue, QC H9X 3V9, Canada 3 Département des Sciences Animales, Université Laval, Québec, QC G1V 0A9, Canada * Correspondence: [email protected]; Tel.: +1-819-780-7249 Received: 12 November 2017; Accepted: 21 February 2018; Published: 5 March 2018 Abstract: A better understanding of the factors that regulate growth and immune response of the gastrointestinal tract (GIT) of calves will promote informed management practices in calf rearing. This study aimed to explore genomics (messenger RNA (mRNA)) and epigenomics (long non-coding RNA (lncRNA)) mechanisms regulating the development of the rumen and ileum in calves. Thirty-two calves (≈5-days-old) were reared for 96 days following standard procedures. Sixteen calves were humanely euthanized on experiment day 33 (D33) (pre-weaning) and another 16 on D96 (post-weaning) for collection of ileum and rumen tissues. RNA from tissues was subjected to next generation sequencing and 3310 and 4217 mRNAs were differentially expressed (DE) between D33 and D96 in ileum and rumen tissues, respectively.
    [Show full text]
  • Figure S1. Gene Ontology Classification of Abeliophyllum Distichum Leaves Extract-Induced Degs
    Figure S1. Gene ontology classification of Abeliophyllum distichum leaves extract-induced DEGs. The results are summarized in three main categories: Biological process, Cellular component and Molecular function. Figure S2. KEGG pathway enrichment analysis using Abeliophyllum distichum leaves extract-DEGs (A). Venn diagram analysis of DEGs involved in PI3K/Akt signaling pathway and Rap1 signaling pathway (B). Figure S3. The expression (A) and protein levels (B) of Akt3 in AL-treated SK-MEL2 cells. Values with different superscripted letters are significantly different (p < 0.05). Table S1. Abeliophyllum distichum leaves extract-induced DEGs. log2 Fold Gene name Gene description Change A2ML1 alpha-2-macroglobulin-like protein 1 isoform 2 [Homo sapiens] 3.45 A4GALT lactosylceramide 4-alpha-galactosyltransferase [Homo sapiens] −1.64 ABCB4 phosphatidylcholine translocator ABCB4 isoform A [Homo sapiens] −1.43 ABCB5 ATP-binding cassette sub-family B member 5 isoform 1 [Homo sapiens] −2.99 ABHD17C alpha/beta hydrolase domain-containing protein 17C [Homo sapiens] −1.62 ABLIM2 actin-binding LIM protein 2 isoform 1 [Homo sapiens] −2.53 ABTB2 ankyrin repeat and BTB/POZ domain-containing protein 2 [Homo sapiens] −1.48 ACACA acetyl-CoA carboxylase 1 isoform 1 [Homo sapiens] −1.76 ACACB acetyl-CoA carboxylase 2 precursor [Homo sapiens] −2.03 ACSM1 acyl-coenzyme A synthetase ACSM1, mitochondrial [Homo sapiens] −3.05 disintegrin and metalloproteinase domain-containing protein 19 preproprotein [Homo ADAM19 −1.65 sapiens] disintegrin and metalloproteinase
    [Show full text]
  • The Changing Chromatome As a Driver of Disease: a Panoramic View from Different Methodologies
    The changing chromatome as a driver of disease: A panoramic view from different methodologies Isabel Espejo1, Luciano Di Croce,1,2,3 and Sergi Aranda1 1. Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2. Universitat Pompeu Fabra (UPF), Barcelona, Spain 3. ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain *Corresponding authors: Luciano Di Croce ([email protected]) Sergi Aranda ([email protected]) 1 GRAPHICAL ABSTRACT Chromatin-bound proteins regulate gene expression, replicate and repair DNA, and transmit epigenetic information. Several human diseases are highly influenced by alterations in the chromatin- bound proteome. Thus, biochemical approaches for the systematic characterization of the chromatome could contribute to identifying new regulators of cellular functionality, including those that are relevant to human disorders. 2 SUMMARY Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the “chromatome”) are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could thus reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.
    [Show full text]