Sensory Ecology of Electromagnetic Radiation Perception

in Subterranean Mole-Rats

(Fukomys anselli & Fukomys kafuensis)

Inaugural-Dissertation

zur Erlangung des Doktorgrades Dr. rer. nat.

des Fachbereiches Biologie und Geographie an der Universität Duisburg-Essen

Vorgelegt von

Regina E. Moritz

aus Bottrop

Januar 2007

Die der vorliegenden Arbeit zugrunde liegenden Experimente wurden in der Abteilung Allgemeine Zoologie der Universität Duisburg-Essen, Campus Essen, in der Abteilung Physiologie und Ökologie des Verhaltens und in der Dr. Senckenbergischen Anatomie der Johann Wolfgang Goethe-Universität, Frankfurt/Main durchgeführt.

1. GUTACHTER: Prof. Dr. Hynek Burda

2. GUTACHTER: Prof. Dr. Leo Peichl

3. GUTACHTER: Prof. Dr. Bernd Sures

VORSITZENDER DES PRÜFUNGSAUSSCHUSSES: Prof. Dr. Martin Heil

Tag der mündlichen Prüfung : 07. Mai 2007

Non quia difficilia sunt audemus, sed quia non audemus difficilia sunt.

Lucius Annaeus Seneca

in memoriam

Dr. Mathias Kawalika (1962-2006)

LIST OF CONTENTS

I SUMMARY — 1

II ZUSAMMENFASSUNG — 2

III GENERAL INTRODUCTION — 3 III.1 Subterranean Fukomys Mole-Rats — 3 III.2 Orientation in the Subterranean Habitat — 5 III.3 Sensory Adaptations in Fukomys — 6 III.4 Electromagnetic Radiation — 6 III.5 Contribution of this thesis to Fukomys sensory research — 8

A LIGHT PERCEPTION — 9

1 INTRODUCTION — 9 1.1 Visual Capabilities in Fukomys — 10 1.2 Arising questions — 12

2 MATERIAL AND METHODS — 13 2.1 Study — 13 2.2 Demonstrating Light Perception — 14 2.2.1 Study rationale — 14 2.2.2 Study procedure — 14 2.2.2.1 Halogen light — 14 2.2.2.2 Natural daylight — 16 2.2.2.3 Retinal involvement — 16 2.3 The Light Perception Threshold — 17 2.3.1 Study rationale — 17 2.3.2 Study procedure — 17 2.4 Light spectrum in a tunnel — 20 2.4.1 Study rationale — 20 2.4.2 Study procedure — 20 2.5 Statistical analysis — 22

3 RESULTS — 23 3.1 Demonstrating Light Perception — 23 3.2 The Light Perception Threshold — 25 3.3 Light spectrum in a tunnel — 28

4 DISCUSSION — 33 B MAGNETORECEPTION — 39

1 INTRODUCTION — 39 1.1 Magnetoreception in Animals — 39 1.2 The Earth’s Magnetic Field — 41 1.3 Using the Earth’s Magnetic Field — 43 1.4 From Earth to : Available Sensory Information — 44 1.5 From Behavioural Experiment to Proof: Compass Modes — 45 1.6 From Signal to Sensor: Transduction Mechanisms — 47 1.6.1 Magnetoperception via Biochemical Processes — 48 1.6.2 Magnetoreception via Magnetite — 50 1.7 From Sensor to Brain: Neuronal Processing — 57 1.7.1 Immunocytochemical methods — 58 1.8 Arising questions — 60

2 MATERIAL AND METHODS — 61 2.1 Study Animals — 60 2.2 Ruling out Biochemical Processes — 60 2.2.1 Study rationale — 60 2.2.2 Study procedure — 62 2.3 Narrowing down the Receptor Site — 64 2.3.1 Study rationale — 65 2.3.2 Study procedure — 67 2.4 Magnetic Orientation is Binocular — 70 2.4.1. Study rationale — 70 2.4.2. Study procedure — 71 2.5 Revealing Hippocampal Involvement — 71 2.5.1 Study rationale — 71 2.5.2. Study procedure — 71 2.6 Statistical analysis — 75

3 RESULTS — 76 3.1 Ruling out Biochemical Processes — 76 3.2 Narrowing down the Receptor Site — 78 3.3 Magnetic Orientation is Binocular — 83 3.4 Revealing Hippocampal Involvement — 87

4 DISCUSSION — 91

IV RÉSUMÉ & OUTLOOK — 99

V REFERENCES — 102

VI APPENDIX — 122 A Abbreviations — 122 B Figure legends — 124 C Table legends — 126 D Wavelength spectra — 127 E The rat brain hippocampus — 132 F ICC protocol — 133 G Glass slide gelatine cover recipe — 140 H Nissl-staining recipe — 140 I Technorama Forum Lecture: 2000 years of magnetism — 141 J Acknowledgements — 145 K Curriculum Vitae — 146 L List of Publications — 148

Summary 1

I SUMMARY

Subterraneanlivinganimalsmusthandleorientationintheirhabitatwithlimitedcues,among whichislightscarcity.Zambianmoleratsbelongtothegenus Fukomys andspendthe majority of their lifetime underground in extensive burrow systems. These molerats have generally been considered as functionally blind, but recent morphological findings have suggested that their visual capabilities must have been underestimated. The odds of cue scarcityundergroundhavealsoapparentlyledtotheuseofasensorysystemfororientation quiteuncommonin:magnetoreception. Thisthesisdealswithnewfindingsonboththevisualandthemagneticsenseinsmall Zambian molerat of the Genus Fukomys – two senses coupled to the minuscule, inconspicuous eye. While the retina provides the basis for light perception, the cornea is probablythesitewheremagneticperceptiontakesplace. Firstly, I show in part A that the formerly thought ‘blind’ Fukomys molerats can distinguish between light and dark even until at least a light intensity of 0.6 mol photons ⋅ m −2 ⋅ s −1 (approximately33lux).Thisthesishasalsoundergonethefirstapproach tomeasurewavelengthpropagationinatunnel,showingthatlongwavelengths(600700nm) travel,asexpected,furthestinahorizontaltunnel,andthatphotonsinthisspectralrangecan stillbedetected,thoughataverylow(scotopic)level,at70cmapartfromatunnelopening illuminatedwithalightintensityresemblingthatonaclearday. Secondly,inpartB,Ialsoshowthatthehitherto poorly understood transduction mechanism of the magnetic sense in molerats is based on magnetite rather than on biochemical processes. The site of the respective magnetiteharbouring receptors can be confined to the ocular region, more specifically the cornea, where ferrous inclusions with magneticpropertiesmightbecoupledwiththereceptorsformediatingmagneticinformation. Themagneticsenseisnotlateralised.Thisthesisalsocontributestoafurtherunderstandingof the neuronal processing of magnetic information in mammals, finding that hippocampal structures, e.g. structures coordinating spatial memories, are also involved in magnetic orientation.Magneticcuesmightsupplytheanimalwithbothdirectionalcompassandmap information.

Zusammenfassung 2

II ZUSAMMENFASSUNG Subterran lebende Tiere müssen bei der Orientierung in ihrem Habitat mit limitierten Informationen auskommen; zu diesen zählt auch Lichtknappheit. Sambische Graumulle gehörenzurNagergattung Fukomys undverbringendengrößtenTeilihresLebensunterirdisch inausgedehntenGangsystemen.DieseGraumullewurdenbislangstetsalsblindbezeichnet; jedochhabenneueremorphologischeStudiengezeigt,dassdievisuellenMöglichkeitendieser Tiere anscheinend stark unterschätzt wurden. Die Gegebenheiten der unterirdischen Reizarmut haben auch dazu geführt, dass Graumulle ein Sinnessystem zur Orientierung nutzen,dasunterSäugernrechtseltenvorkommt:dieMagnetwahrnehmung. Diese Arbeit beschäftigt sich mit neuen Ergebnissen zu dem visuellen und dem magnetischenSinninzweiGraumullartenausSambia( Fukomys anselli und Fukomys kafuensis )– zweiSinne,derenRezeptorebenenimwinzigen,unscheinbarenAugeverortetsind.Während inderRetinadieLichtwahrnehmungstattfindet,stelltdieCorneawahrscheinlichdenOrtder Magnetrezeption. TeilAmeinerArbeitzeigt,dassdiefrüherals‚blind’bezeichnetenGraumullesehr wohlzwischenHellundDunkelbiszueinemniedrigenSchwellenwertvonmindestens0.6

−2 −1 mol Photonen ⋅ m ⋅s wahrnehmen (ca. 33 Lux). Darüber hinaus habe ich den ersten Versuch unternommen, Wellenlängenweiterleitung in einem Tunnel zu bestimmen; wie erwartetkonntegezeigtwerden,dasslangeWellenlängen(600700nm)ineinemhorizontalen Tunnelamweitestengetragenwerden,unddassPhotonenindiesemSpektralbereichauchin 70cmEntfernungvonderTunnelöffnungbeieinereinemhellenTagähnelndenBeleuchtung immernochgemessenwerdenkönnen,wennauchineinem sehr niedrigen (skotopischen) Bereich. Zweitens zeigt Teil B dieser Arbeit, dass der bislang nur schlecht verstandene Übertragungsmechanismus des Magnetsinns auf Magnetit beruht, und nicht auf biochemischenProzessen.DerOrtderentsprechendenMagnetitbasiertenRezeptorenkann auf die Augenregion beschränkt werden, genauer auf die Cornea, in der eisenhaltige InklusionenmitmöglichenmagnetischenEigenschaftendieRezeptorenfürdieÜbertragung magnetischer Information darstellen könnten. Der Magnetsinn ist nicht lateralisiert. Diese ArbeitträgtauchzueinembesserenVerständnisderneuronalenVerarbeitungmagnetischer Information in Säugern bei, da sie Ergebnisse zur hippocampalen Aktivität unter magnetischen Stimuli vorstellt, also einer Hirnstruktur, die räumliche Erinnerungen koordiniert. Magnetische Signale könnten das Tier mit Richtungsinformation für den KompassundmitKarteninformationversorgen.

GeneralIntroduction 3

III GENERALINTRODUCTION Theterm“orientation”referstoananimal’sabilitytoorientinspaceandtime,tomaintaina specificspatialposition,ortocreatenewspatialrelationshipswithitsenvironment(Merkel 1980; Zwahr 1993). Finding the way is a necessity for securing territory, food and reproduction; orientation thus represents a life characteristic and explains the variety of orientationorgansandsystemstobefoundacrosstheanimalkingdom(Merkel1980).Howan organism perceives its environment and how it orients within it, depends on its sensory organs,whichtransducedifferentcuesdependingonwhethertheyareoptical,mechanical, electrical, olfactory, or other chemical stimuli (Merkel 1980). Stimulusevoked information must be 1) localised in space and 2) identified (Ewert 1973); though orientation is based mainlyonthesevariousinformationtypes,imprinting,memoryorlearningalsovitallysupport theorientationprocess(Merkel1980;Zwahr2003). Livingabovegroundprovidesananimalwithdiversecuesforspatialorientation,but the underground picture is less colourful: besides darkness, subterranean face restrictioninusefulorientationcuessuchasodoursorsounds(Burdaetal.1990a).Targets andlandmarksarenotdirectlyperceptibleand,asaconsequence,distantorientationisheavily impeded. Subterranean mammals need to solve several major tasks relevant to spatial orientation:1)theyhavetoorientquicklyandefficientlyintheirburrowsystem,inorderto access nest, food chambers, latrines, and harvesting grounds. 2)They must maintain their course direction when digging longer foraging and dispersing tunnels. Straight tunnelling conservesenergybecausetheanimalsdonotsearchinthesameareatwice.3)Theyneedto restore and interconnect damaged burrows, effectively bypass obstacles, etc. 4)Animals temporarilyleavingtheirburrowswhileforagingorsearchingformatesabovegroundneedto findtheirwaybackhome. Subterraneanlivingmammalsthusneedtomakeuseofefficient orientationcapabilities,whicharespecializedtowardsthispeculiarhabitat. III.1 Subterranean Fukomys MoleRats Molerats of the genus Fukomys , formerly denominated as (Kocketal.2006),are strictly subterranean rodents of the family Bathyergidae that occur in Africa south of the Sahara. To our current knowledge, the bathyergid family comprises six genera: Bathyergus , Cryptomys, Fukomys, Georychus, Heliophobius, and Heterocephalus (Faulkesetal.2004;Ingrametal. 2004;Kocketal.2006;vanDaeleetal.2004).Whilethegenus Cryptomys isdistributedacross South Africa, its sister genus Fukomys is widely distributed across Southcentral and West Africa(Ingrametal.2004).

GeneralIntroduction 4

Fukomys moleratsoccurmainlyingrasslandorsavanna(fig.1).Likeotherbathyergids, theyspendmostoftheirlifetimeinsealedextensiveburrowsystems,wheretheyforagefor geophytebulbsandroots.Mostspeciesshowaspecializedorganizationoftheirunderground systems with diverse tunnels, and designatednesting, food and latrine chambers (cf., Brett 1991;Scharff&Grütjen1997;Nevo1999;Scharffetal.2001).

Fig.1 Themolerats’Zambianhabitat. (A)showsatypicalfieldsitewheremoleratburrow systemscanbefoundbeneathadrysavannalandscapeintheSouthwestofZambia.(B)showsa burrowsubterraneouslybridgingthefootpathseparatingtwoadjacentmaniokfields,creatinga nourishinginterconnection.In(C)and(D),tunnelentrancesofaburrowsystemarepresented afterhavingbeenopenedbynativemolerathunters.Aftersuchawildlifecapture,moleratsare sittinginabathtub(E).(F)showstherarefieldfindoftwoadjacenttunnelentrances,probablya bendorcrossing,withapieceofbait(maniok)pluggedintotheleftentrancehole.

GeneralIntroduction 5

Fukomys molerats show a social system that is rare in mammals: eusociality. The animals live in large colonies that consist of the breeding pair and their nonreproductive offspringofseveralgenerations;mostoffspringshowalifelongphilopatry(Burda1989,1990; Burdaetal.2000). III.2 OrientationintheSubterraneanHabitat Subterranean Fukomys molerats show sporadic aboveground activity (Scharff & Grütjen 1997), but they presumably spend the majority of their life in their constantly dark subterraneanhabitat(cf.,Burda1990;Nevo1999).Fororientationwithinafamiliarburrow systemorforshortdistancetasks,landmarkindependentnavigationislikelytobeused.This kindoftruenavigationisdescribedbyananimal’sabilitytoreturntoaplacewithoutusing landmarksorcuesfromitsdestinationanditsoutwardjourney(Boles&Lohmann2003).In one type of true navigation, path integration (also called dead reckoning), an animal uses idiothetic cues, i.e. internal movement cues based on proprioceptive and vestibular information from sensory flow, or efferent copies of movement commands. However, dependingexclusivelyonselfgeneratedsignals,pathintegrationisseverelyconstrainedbythe rapid accumulation of errors (Etienne et al. 1988; Benhamou et al. 1990). Therefore, an external directional reference isinevitablefornavigation over longer tracks. For successful navigation within the complex burrow maze, a subterranean rodent thus requires, besides idiotheticcues,acompasssenseandalsoamentalrepresentationofitsenvironment,i.e.a cognitivemapthatcanbeusedforspatialnavigationandspatialmemory(reviewedinEtienne &Jeffery2004). Thesubterraneanecotopeis,ontheonehand,simplystructuredandstable,and,on theotherhand,highlyspecializedandpeculiar.Itsphysicalpropertiesdiffermarkedlyfrom theabovegroundbiosphere,particularlyinitsmonotonyandscarcityofstimuli(reviewedin Burdaetal.1990a;Burda&Begall2002;Burdaetal.2007).Subterraneanrodentshavethus evolved some (sometimes extreme) sensory adaptations in response to these conditions.A firstreviewonthesensoryecologyoftheseundergroundmammalswasgivenbyBurdaetal. (1990a)andrecentlyupdated(Francescoli2000;Begalletal.2007a).

GeneralIntroduction 6

III.3 SensoryAdaptationsin Fukomys Thephylogeneticallyoldestbasicsense,olfaction,hasbeenshowntobeextensivelyusedby subterraneanrodents.Ithelpstheme.g.inodourguidedforagingbymeansofkairomonesor during their important social interactions (reviewed in Heth & Todrank 2007). Hearing in these underground mammals is shifted to the lowfrequencyrange:bothhearingapparatus andvocalizationsaretunedtothesesoundsinaccordancewiththeacousticalpropertiesofthe subterraneanhabitat(reviewedinBegalletal.2007b).Regardingthetactilesense,subterranean rodents may well be regarded as touch specialists, in reactiontolifeinthetight,complex burrowsystems(reviewedinParketal.2007),andalsotheperceptionofsubstratevibrations isnotunusual(cf.,Narinsetal.1997;Radoetal.1998;Mason&Narins2001). Former studies on vision in subterranean mammals had proposed a convergent evolutiontowardsdegenerateeyes,butrecentfindingshaveunravelledadiversityofvisual systems, including unusual photoreceptor properties in blind molerats, Spalax ehrenbergi , (DavidGrayetal.2002)andinAnsell’smolerats, Fukomys anselli (Peichletal.2004).Inmost subterraneanspecies,visioncan,however,notserveforspatialorientationpurposes(reviewed inNěmecetal.2007). The Earth's magnetic field provides a relatively constant and reliable source of directional,andperhapsalsopositional,informationthatcanbeusedfororientation.Hence,it maynotbesurprisingthatthefirstevidenceforamammalianmagneticcompasscamefroma subterraneanrodent,Ansell’smolerat( Fukomys anselli )(Burdaetal.1990b).Theexactuseof thismagneticsenseanditsroleinorientationhashithertobeenunclear,butitisplausiblethat theycontrole.g.theirdiggingdirectionbymagneticinformation(Burda&Begall2002).Some other(subterranean)rodentshavebeendemonstratedtoeithershowspontaneousorlearned useofmagneticfieldinformation. III.4 ElectromagneticRadiation Electromagnetic(EM)radiationisevokedbymovingcharges(cf.,Liptonetal.1997).Itcan be classified into types due to variations in wavelength or frequency (i.e. oscillation rate). Frequencyandwavelengtharerelatedinversely:higherfrequencieshaveshorterwavelengths, and lower frequencies have longer wavelengths. Their relationship is defined, like all wave motions,throughthewave’svelocity(cf.,Pedrotti&Pedrotti1993;Hecht2001). Theclassificationintowavelengthtypesissummarizedintheelectromagneticspectrum.The spectrumisdefinedbythepropertiesofelectromagnetic disturbances propagating through space: these disturbances can be monochromatic (characterized by a single wavelength) or

GeneralIntroduction 7 polychromatic(characterizedbymanywavelengths).Theterm‘wavelength’denominatesthe distancebetweentwoadjacentcrestsofthewave’ssuccessivetroughsandcrests.Theterm ‘spectrum’ of the radiation denominates the distribution of energy among the various constituentwaves(cf.,Pedrotti&Pedrotti1993).Theradiationtypesinclude,followingtheir frequencyanddifferencesinthewaytheyareproducedordetected:radiowaves,microwaves, infraredradiation,visiblelight,ultravioletradiation,Xraysandgammarays(cf.,Hecht2001; Tipler2004).Thevisiblepartoftheelectromagneticspectrum(fig.A1)impliesjustanarrow rangeofelectromagneticwaves,i.e.fromapproximately380to770nm. Fig.A1 Theelectromagneticspectrum. Theelectromagnetic spectrumwithindicationsofwavelengths,frequencyandradiation types.Thevisiblespectrumismarkedastheareabetween380nmto 770nm;thelettersgivethevisiblecoloursViolet,Blue,Green,Y ellow,OrangeandRed(fromPedrotti&Pedrotti1993).

Thesewavesarecapableofproducingvisualsensationinthehumaneye;thustheyare referred to as ‘light’. The visible spectrum includes the range of colours from red (long wavelengthend)toviolet(shortwavelengthend)andisneighbouredbytheinfraredandthe ultraviolet region, respectively. These three regions (visible light, infrared and ultraviolet) together form the ‘optic spectrum’ (cf., Pedrotti & Pedrotti 1993). Fig. A2 gives the

GeneralIntroduction 8 electromagneticspectrumintermsofbothwavelengthandfrequencyandthevisiblepartof thespectrum. Electromagnetic waves of much lower frequency than visible light were first predicted by James Clerk Maxwell and later discovered by Heinrich Hertz. Maxwell established four simple equations connectingthepropertiesofelectric and magnetic fields, and he already foresawtheresultingwavelikenature of these fields, as well as their symmetry. According to these equations, a timevarying (i.e. Fig.A2 Visiblewavelengthsintheelectromagnetic spectrum. Theleftpartofthefigureshowsthe oscillating) electric field generates a inverselyproportionaldependencyofwavelengthsand frequenciesandthera diationtypes.BetweenIRandUV magnetic field and vice versa . The radiation,thevisiblespectrumisshownindetailwith oscillating fields form together an thetransitionbetweenvisiblecolours(from: http://extension.missouri.edu/explore/images/eq0453s electromagneticwave(cf.,Liptonet pectrum.jpg). al. 1997; Pedrotti & Pedrotti 1993). Thiswaveisselfpropagatinginspace;itselectricandmagneticcomponentsoscillateatright anglestoeachotherandtothedirectionofpropagation(cf.,Tipler2004).FromMaxwellon, light has been regarded a particular region of the electromagnetic radiation spectrum (cf., Liptonetal.1997;Pedrotti&Pedrotti1993). III.5 Contributionofthisthesisto Fukomys sensoryresearch My dissertation thesis deals with two of the above mentioned sensory aspects that are connectedtotheeye:thevisualandthemagneticsensein Fukomys molerats.Bothsensesdeal withincomingelectromagneticradiationsignals.Mythesisshouldfundamentallycontributeto 1)amoredetailedunderstandingoftheuseofthespecializedvisualsettingsofsubterranean Fukomys moleratsandto2)astepforwardinidentification,characterizationandparticularly locationofalightindependentmagnetoreceptorinthis.

LightPerceptionIntroduction 9

»Andifyouseealongtunnel,stayawayfromthelight!«( Donkey from ‘Shrek’ )

A LIGHTPERCEPTION

1 INTRODUCTION Orientationtowardsandwithhelpofthelightisphylogeneticallyoldandthuswidelyspread intheanimalkingdom(Merkel1980).Thevisualsystemisaverycomplex,butalsoverywell investigated sensory system. Large parts of the cortex and several subcortical systems are involved in its numerous functions, including perception and localisation of objects, controllingtheeyemovements,andvisualcontrolduringspatialmovements(Zeki1994). The eyeitselfrepresentstheentrygatetothevisualsystem;theinformationavailabletothevisual braincentersdependsontheeye’sfeatures(cf.,Němecetal.2007). Thephysicalpreconditiontovision,light,hasbeen,inthehistoryofscience,described eitherasparticlesoraswaves(lightwavesaremadeupbyphotons,whicharenothingelsebut discretepacketsofenergyorquanta).Thesetwodescriptions,however,arenotcompatible, andthetwentiethcenturymadeitclearthat“somehowlightwasbothwaveandparticle,yetit waspreciselyneither”.Thisparadoxon(the“waveparticleduality”)wasfinallyexplainedby quantumelectrodynamics(cf.,Pedrotti&Pedrotti1993;Tipler2004). Duringthelightperceptionprocess,aphotonisabsorbedbyanatom;itsubsequently excitesanelectronandelevatesittoahigherenergylevel.Iftheenergyisgreatenough,the electronmayescapethepositivepullofthenucleusandjumptoanenergylevelhighenough toliberateitfromtheatom.Ontheotherhand,whenanelectrondescendstoalowerenergy levelinanatom,itemitsaphotonoflightequaltothebridgedenergydifference(cf.,Hecht 2001;Tipler2004). Though the physical principles of light perception are the same across the animal kingdom, visual capabilities and underlying structures and mechanisms differ starkly. Light sensitivity,i.e.theexcitationpossibilitythroughlightisinmostcasesboundtospecificlight sensoryorgans,eyes,withatleastonevisualpigment.Therespectivevertebratesensoryorgan isthelenseye,adioptricalapparatusthatfollowsphysicalopticsandcreatesasharpandlight intensivepictureontheeye’sbackground;thistypeofeyewiththelightperceivingstructures beingturnedawayfromthelightsourceiscalled inverse (Czihaketal.1990).Thevertebrateeye

LightPerceptionIntroduction 10 probablyrepresentsacompositestructure,thatintegratesdistinctlightsensitivecelltypeswith independent evolutionary histories (Arendt et al. 2004), or, in other words, the eye results fromevolutionarilyconservedgenesandneverthelesshighlydivergentmorphologicalfeatures (Oakley2003). 1.1 VisualCapabilitiesin Fukomys Eyes of subterranean rodents show a high variability in size (Němec et al. 2007). The subterraneanAfricanmoleratshaveminusculeeyeswithaneyeballdiameterofabout2mm (Peichletal.2004).Aseyesizedeterminestheretinalimagesizeandthusimagequalityand visual acuity (Němec et al. 2007), they have hitherto been generally thought to lack a functionalvisualsystemandhavebeenregardedasblind,thisviewbeingsupportedbytheir constantly dark habitat and the displayed microphthalmia. Also, they do not show any immediate behavioural response to light or other visual signals such as object movement (Eloff1958;Burdaetal.1990a). However,theeyesofZambianmoleratsarelocatedsuperficiallyandarenotcovered byaskinlayerasisthecaseintheblindmolerat, Spalax ehrenbergi (cf.,Sanyaletal.1990),so thattheycanbedirectlyreachedbylight.Itiswellobservablethat Fukomys moleratsblink theireyesregularly,thattheireyesareinsomeindividualsmoreprotrudedthaninothers,and thattheymightusetheireyesfororientation(personallaboratoryobservations). It should be noted that already Poduschka (1978) doubted that molerats are fully unsusceptible to light. It then lasted more than twenty years until morphological and immunocytochemical studies indicated that vision in Zambian Ansell's molerats, Fukomys anselli, might be functional: despite their tiny eyes and also a quantitatively reduced visual system (Němec et al. 2004), adult Ansell’s molerats reveal a qualitatively normal dioptric apparatus and retina (fig. A3), plus a high cone share of about 10% (815,000/mm 2) (Oelschlägeretal.2000;CernudaCernudaetal.2003;Němecetal.2004;Peichletal.2004). Conesarethephotoreceptorsservingphotopic‘daylight’visionandcolourvision,in contrasttotherodsthatservescotophic‘night’vision.Thehighproportionofthese‘daylight’ or colour photoreceptors is rather unusual among mammals and unexpectedly high for a subterraneananimalifcomparedtonocturnalabovegroundlivingmammalslikeratswith0.5 3%cones(reviewedinPeichl2005).Nexttotheconeproportionintheretina,whichappears unusually high particularly as the rod density is unusually low (110,000150,000/mm 2), a secondpeculiaritycanbeobservedintheAnsell’smolerat’sretina:theopsincharacteristics.

LightPerceptionIntroduction 11

Inthenormalmammalianretina,twospectralconetypes,i.e.twovisualpigments,can befound:LconeswiththepigmentLopsinsensitivetomiddletolongwavelengths;andS cones with the pigment Sopsin sensitive to short wavelengths (reviewed in Jacobs 1993). TwentypercentoftheconesfoundintheAnsell’smolerat’seyeareexclusivelysensitiveto short wavelengths, 10% exclusively to long wavelengths, and 70% of the cones are potential dualpigment photoreceptors sensitive for both short and long wavelengths, but with the shortwave sensitive pigment dominating markedly (Peichl et al. 2004). Calculating the percentages together, 90% of the cones in the Fukomys anselli retinaaresensitivetoshort wavelightandstandincontrasttothecone situation in the blind molerat’s retina with no short wave sensitive cones at all (cf., Sanyal et al. 1990; CernudaCernuda et al. 2002). Fukomys anselli thuscouldtheoretically possess dichromatic colour vision, assumed that the postreceptoral circuitry is given (Peichletal.2004). However, it is difficult to exactly determine which wavelength precisely is absorbed by the visual pigments present in single photoreceptors. Though the opsin specificantibodiesidentifiedtheopsinfamily Fig.A3 Themolerateye. The upperpartof (SandL),Peichlandcolleagues(2004)could thepanelshowsasagittalsectionofthe Ansell’smole rateye;thediameteris notyieldinformationonthephotoreceptor’s approximately2mm.Picturewithkind exact spectral tuning, as the applied permissionbyL.Peichl.Thelowerpartofthe panelshowsaverticalsectionthroughthe antibodies recognize blue as well as UV retina,whichshowsanormallayer arrangementandnoindicationsofgross sensitive Sopsins (cf., Szél et al. 2000). regression.RPERetinalPigmentEpithelium, Though most mammalian Sopsins are OS/ISOutersegment/innersegment,ONL OuterNuclearLayer,OPLOuterPlexiform sensitive to blue light, it is not improbable Layer,INLInnerNuclearLayer,IPLInner thattheSconesinthe Fukomys retinareactto PlexiformLayer,GCLGanglionCellLayer (fromPeichletal.2004). UVlight, as is the case in some rodents (Jacobsetal.1991).

LightPerceptionIntroduction 12

Themethodofchoicetoexaminethespectraltuningoftheshortwavesensitivecones is MicroSpectroPhotometry (MSP) on single cells (also called single cell recording ), involving measurementsofabsorptionspectraofindividualretinalrodsorconesbypassingafinelight beamthroughthereceptorwhichispositionedonthestageofamicroscope.Thismethod appeared unsuccessful in Fukomys molerats,though.Despitetherelativelyhighnumber of conesinthemoleratretina(Peichletal.2004),anddespitethesuccessfullabellingofcones withPNA( peanut agglutinin )priortotheMSP,allcellsthatcouldbeisolatedoutoftheretinas of four animals, turned out to be common rods with absorbance peaks not unusual for rodents(J.Bowmaker&R.CernudaCernuda,personalcommunication). Regarding the neuronal level of vision in Ansell’s molerats, both olivary pretectal nucleusandventrallateralgeniculatenucleusareratherwelldeveloped,i.e.brainstructures involved in brightness discrimination. A comparable quality can also be found in their pupillarylightreflex,andsleeporchestratingandcircadianresponsestolight(Oelschlägeret al.2000;Němecetal.2004).Inaddition,lightexposureelicitsexpressionoftheimmediate earlygenecfosintheretrosplenialcortexindicatingthat F. anselli iswellattentivetovisual stimuli(Oelschlägeretal.2000). Ontheotherhand,amarkedreductionofvisualinputtothesuperiorcolliculusclearly hintsatjustalittleimportanceoflightstimuliforAnsell’smolerats(Němecetal.2004),and theauthorssuggestthattheapparentbehaviouralblindnessoftheseanimalsmightbecaused by the fact that they are unable to generate spatially appropriate orientation responses, particularly as those midbrain structures are also reduced, in which coordination of visuo motorreflexestakesplace. Allinall,theseprecedingfindingssuggestthatthe Fukomys moleratsunderstudydo distinguishlightintensitiesandthatlightmayaffecttheirbehaviour. 1.2 Arisingquestions The recent morphological and immunocytochemical findings of a mosaic of rather well developedorconservedeyestructuresandvisualcentrescombinedwithreductionsignscalled for a thorough behavioural examination of visual capacities of these molerats. Amid this evolutionaryandecologicaldiscrepancyofnoapparentneedforvisioninadarkunderground world and a theoretically functional visual framework, it is wondrous that no detailed behaviouralstudyonthevisualperformanceofbathyergidmoleratshadbeenundertakenso far.Wethusaimedatinvestigatingtheinfluenceoflightonthespontaneouspreferentialnest buildingbehaviourintwoZambian Fukomys species.Secondly,usingenucleatedanimalsfrom

LightPerceptionMaterial&Methods 13 other studies (B2.3), we wanted to examine retinal involvement by examining their light perceptionperformance.Thirdly,thelightperceptionthresholdwastobedetermined. Ithasremainedunstudiedtodatehowwavelengthsarepropagatedundergrounde.g. through an open tunnel entrance. To better understand the visual performance of the subterraneanmoleratsregardingtheirhabitat,weaimedatexaminingwavelengthpropagation inatunnel. 2 MATERIALANDMETHODS 2.1 StudyAnimals Wetestedadultpairsofdifferentageofthetwocloselyrelated Fukomys species F. anselli and F. kafuensis aswellastheirhybrids.Themoleratswerehousedatambientroomtemperature andunderanaturaldaylightdependinglightregimeinglasscagesofdifferentsizes(minimum: L60xW35xH35cm)filledwithalayerofhorticulturalpeatinthemolerathousingfacilities of the laboratories of theDepartmentofGeneralZoology, University of DuisburgEssen. Theywerefed ad libitum withcarrots,potatoes,lettuceandapplesandhadsufficientsupplies ofnestingandenrichmentmaterial(e.g.smallplasticboxes,tissuepaper,paperrolls,plastic rolls,plasticboxesandwoodenboxes).Theanimalswereeitherbornincaptivityorhadbeen captured in the fieldandkeptunderlaboratoryconditions for at least 18 months prior to experiments. Most pairs used in this study consisted of a male and a female breeder, and occasionallyofsiblingpairs.Wetookcaretotesteachmoleratonlyonceperexperimental setup,whichwasensuredbytheuseoftissuecompatibletransponders(biocapsules,12x2.1 mm, ISOstandard 11784) with unique number codes (ALVICtransponder, ALVETRA GmbH,Neumünster,Germany),thathadbeeninjectedsubcutaneouslywithacannula(32x 2.6mm)underasepticconditionsintoaskinfoldontheanimals’back.Themoleratshad beencarryingthetranspondersforacoupleofmonthspriortotheexperimentsanddidnot showanyadverseeffectstowardsthem.

LightPerceptionMaterial&Methods 14

2.2 DemonstratingLightPerception 2.2.1 Studyrationale Wepredictedthattheanimalswouldpreferdarkchambersoverlightonestobuildtheirnests (scotophilia) and would try to avoid lighted chambers (heliophobia), if they were able to perceive light. Spontaneous reactions to light were tested through preferential nesting behaviourunderstrongartificiallightversusdarknessaswellasundermuchlowernatural daylightintensitiesversusdarknesstoexaminewhethertheanimalspreferdarkorlightboxes tobuildtheirnests. Wefurthertestedtheinvolvementofretinalphotoreceptorsinthehereshownvisual performance of Zambian molerats.To this end,we used the enucleated molerats of our magnetoreceptionstudies(B2.3)andexaminedtheirvisualperformance.Shouldtheanimals notbeabletodistinguishbetweenlightanddarkanymoreunderthiscondition,theretina couldberegardedastheseatofthereceptorsmediatingphoticsignalsinZambianmolerats. 2.2.2 Studyprocedure Inthefirststudyofthischapter,altogether70adult pairs of molerats were tested in two differentexperiments:experiment1comprisedtheexposuretostronghalogenlightinatwo armedmaze,andexperiment2comprisedexposuretonaturaldaylightintensitiesinaneight armedmaze.Theexperimentsareseparatelylistedinthefollowing. 2.2.2.1 Halogen light Weexaminedmoleratsinatwoarmedmazeunderstronghalogenlight.Thetwochoicetest chamberwaslocatedinasmallwindowlessroomseparatedfromtheanimalhousingroom (fig.A4).Theapparatuswasmadefromlightimperviousplastic(0.5cmthick)andconsisted ofacircularcentreandtwooppositearms(L15xW9xH9cm)thatterminatedinnesting boxes(L20xW20xH20cm).Thenestingboxescouldbeclosedwithalidmadefromthe sameplasticmaterial.Inthemiddleofeachlidwasaspace(5x5cm),inwhichanopaque platecouldbeinsertedtoshadetherespectivebox. Weusedselfmadehalogenlamps(illuminant:100W)enlighteningthenestingboxes onbothsidesfrom20cmabove.Bothlampswereswitchedonineachtrialtoensureaneven distributionofthelampgeneratednoise.Aboveeachofthesquarelidspaces,weplacedglass dishes(6cmhigh,diameter9.5cm)filledwithcoldwaterinordertoabsorbtheheatradiation generatedbythehalogenlampsandtobalancethetemperatureregimewithinthemaze.We additionallymeasuredtemperatureintherunningsystemwithoutanimalsinsideandsensors

LightPerceptionMaterial&Methods 15 fixedinthemiddleofbothnestingboxesatabout10cmheight.Werecordedtemperature every ten minutes during eight runs of minimal 30 minutes (Eltek 1000 Series, Squirrel Meter/Logger;EltekLtd.,Cambridge,UK). Fig.A4 Mazesforlightperceptionstudies. Twoarmedmazewithhalogenlightswitchedon (A)andeightarmedmazewithtranslucentlidsonthenesting boxes(B).Inourstudy,fouropaque

andfourtranslucentlidswereused,beingrandomlydistributed. Inthehalogenlightedbox,whitelightintensitywas~60mol photons ⋅ m−2 ⋅ s−1 (LI 250LightMeter;LICORBiosciences,Lincoln,NE,U.S.A.)whileintheshadedbox,itwas totallydark(<0.01mol photons ⋅ m −2 ⋅ s −1 ).Thetunnelsandthecircularstartingboxwere hardlyreachedbylight(<0.5mol photons ⋅ m−2 ⋅ s−1 ).Withinthestartingbox(height30cm, diameter25cm),therewasametalliccylinder,whichwasinsertedtightlytotheplasticwall and could be partly rotated (±10 cm) by a thin bar from outside. By rotating the inner cylinder,theentrancesintothetwoarmscouldbeopened.Inthemiddleoftheinnercylinder, weplacedasmallersolidcylinder(height25cm,diameter10cm)topreventtheanimalsfrom buildingthenestinthispartofthemaze. We placed one molerat paironthebottomofthecentre cylinder with the doors closedandprovideditwithcarrotpiecesandstripesoftissuepaper(38x7cm).Thestarting boxwastightlyclosedwithalid.Bothterminalboxeswerecoveredtightlywithoneofthem randomlybeingopaquelyshaded(squarelidspacewithinsertedplate)andtheotheronebeing translucent(squarelidspaceopen).Thewaterfilleddisheswereplacedoverthesquarelid spaces,andthewhitelightsourceswereswitchedon.Thentheinnercylinderwasrotatedso thatthemoleratscouldenterandexplorebothsidesofthebinarychoiceapparatus.During thetests,theroom’sceilinglightingwasswitchedoff. Wecheckedforabuiltnestafter30minutesandmostnestswerefinishedbythen.We suppliedanimalsthathadnotyetfinishedtheirnest with more sheets of tissue paper and

LightPerceptionMaterial&Methods 16 checked again after another 30 minutes. A choice was counted as made as soon as the providedtissuepaperwascollectedinoneboxorifanimalsnested(=slept)inoneofthe tunnels. Wealsoperformedcontroltestswithtwoopaquelidsandwithtwotransparentlids, respectively,totestforrandomdistributionundercontrolconditions. 2.2.2.2 Natural daylight After the first positive results from the binary choice apparatus indicating a strong light avoidingbehaviour,wetestedpairsofmoleratsforthisheliophobicbehaviouralsounder much weaker natural daylight conditions in an eightarmed maze (fig. A4). The radial constructionofferedustheadvantageofeightboxeswithfourrandomlydistributeddarkand fourtranslucentlids,providingthemoleratswithagreaterchoice.Thisdesignenabledusto test preferential behaviour as well as possible systematic, lightindependent directional preferences.Theradialmazewasplacedonatable inthemolerathousingroom.Froma centralcylinder,eightradialarrayedtunnelsprotruded(representingthedirections45°,90°, 135°,180°,225°,270°,315°,360°),endinginnestingboxeswithremovablelidseithermade fromtranslucentorfromopaqueplasticmaterial.Exceptfortheselids,whichhadnosquare openings,measurementsandmodusoperandiwereexactlythesameasinthebinarychoice apparatus. Tests were conducted under ambient room temperature and during daytime in (German)winterwithlowdaylightintensitiesandnoadditionalroomceilinglighting.Light intensitiesintheboxeswithtranslucentlidsrangedbetween5and10mol photons ⋅ m−2 ⋅ s−1 (LI250LightMeter;LICORBiosciences,Lincoln,NE,U.S.A.). Aftereachtrialinbothexperimentalsetups,weplacedtheanimalsbackintotheir homecolony.Betweentrials,wewashedtheapparatusthoroughlywithamilddetergentand aceticacid(3%)toremoveanyodoroustraces. 2.2.2.3 Retinal involvement WetestedfiveadultpairsofenucleatedAnsell’smolerats(cf.,B2.3)fornestingpreferencesin atwoarmedmazewiththechoicebetweenstronghalogenlightanddarkness.Forenucleation detailsseeB2.4.Eachpairwastestedbetweenfourandseventimesdependingontheanimals’ motivationinordertogatherenoughdataforanalysis,asthenumberofenucleatedanimals wasrestricted.ThestudysetupfollowedtheonedescribedinA2.2.2.1forthehalogenlight experiment.

LightPerceptionMaterial&Methods 17

2.3 TheLightPerceptionThreshold 2.3.1 Studyrationale Nowthatweknewthemoleratscouldperceivelight,andthatevenatlowdaylightintensities, wewantedtonarrowdowntheirperceptionthresholdofwhitelight.Asconditionaltraining based on a strong white light stimulus connected to a food reward was unsuccessful (R. Wegner&P.Dammann,unpublisheddata),wetestedspontaneousreactionstoseveralgraded intensitiesofwhitelightinaTmazetofindoutdowntowhichlightintensityZambianmole ratscanlearn(i.e.perceive)thelocationofalight source in order to find a foodreward. Precedingthethresholdstudy,wetrainedthesameanimalstofindafoodrewardinfrontofa whitelightstimulusinadifferentsetupthantheunsuccessfulonetoconfirmthemolerats’ ability to perceive light and to create a basis of welllearned intensities for the threshold examinationprocedure. 2.3.2 Studyprocedure Fivemoleratsofthespecies Fukomys kafuensis (4females,1male)weretestedinthepreceding lightlearningexperimentandthreeindividualsofthisgroup(3females)wereconsecutively testedinthelightperceptionthresholdstudy. In the preceding learning experiment, the molerats were trained to reach a food reward connected to a light stimulus in a maze (for details, see fig. A5) using operant conditioning.Themazewasmadefromthick,lightimperviousplasticmaterialwithanon reflective, black inner side. Two coldlight lamps (KL 150B, Schott, Mainz; light source Xenophot15V150W)wereinsertedintobothterminaltunnelsoftheTshapedmazeand bothwereswitchedontopreventunilateralauditory,lampgeneratedcues.Theilluminated side,thattheanimalsweretrainedto,wasdeterminedinarandomizedpatternforeachrunof the experimental series. A food reward (sunflower seeds) was placed at the end of the iluminatedtunnel.Onthedarkside,lightwasblockedbyaninsertedmetalplate;sunflower seedswerealsoplacedonthisside,behindthemetalplate,toexcludethattheanimalswere guidedbytheodouroftherewardratherthanbythelightstimulus.Asthemetalplatewasnot tightregardingthefoodsmell,placingseedsonbothsidesensuredthattheanimalschosethe illuminatedsidetoreachtheirreward.Olfactoryorientationwouldhaveresultedinarandom choiceindependentoftheilluminatedside. The learning experiments comprised eight learning series with eight different light intensities,beginningwithalightintensitythatwasassumedtobedefinitelyperceivablebythe moleratsandthenbyreducingtheintensitygraduallydowninthefollowinglearningseriesin

LightPerceptionMaterial&Methods 18 ordertoreachagoodstartingintensityforthethresholdstudy.Theeightlightintensitieswere regulatedbythelamps’switchthatallowedtoadjust10intensitiesintotal.Lightintensitywas measuredwithaLI250LightMeter(LICORBiosciences,Lincoln,NE,U.S.A.).Theorder of the tested animals was randomized daily to avoid any dependency of the individuals’ performancetocertaindaytimes.

5a

3

6 5 4 2 1a 1 6 3

8

7

Fig.A5 Tmazeforthestudyoflightperceptionthresholdsinmolerats(topview). The mazecontainedastartingbox(1)thatwasconnectedtoastartingtunnel(2)byametalslider(1a). Thestartingtunneldivergedintotwotunnelends(3),whichwereseparatedbyanopaqueplastic wall(4)atthedecisionpoint(5).Thetunnelroofop enedatthedecisionpointintoasmallpeep hole,ontowhichatelescopetube(5a)wasinsertedforobservation.Thetunnelendswere illuminatedbycoldlightlamps(6),whosepointlightswereinsertedintoopaqueplasticendplates withappropriatenot ches(7).Behindtheseendplates,metalplates(8)withsquareopenings(5x5 cm)wereinserted,whichservedeitherasalightblocker(insertedwiththeopeningdirected downwards)orasframes(insertedwiththeopeningdirectedupwards)forthepaperfiltersusedin thethresholdstudy.Thesepaperfilterswereslidintothegapbetweenendplates(7)andmetal plates(8);intothisgap,thesunflowerseedswereplacedinthedarktunnel,whereasinthe illuminatedtunnel,theseedswereplaceddirectlyinfrontofthemetalplate.Sizeofthestarting box:16x16x16cm;heightoftunnels:8cm;widthoftunnels:9cm;totallengthofthetransverse tunnelelement:42cm;lengthofstartingtunnelelementuntiljunction:38cm.Figuremodified afteradraftbyT.Pletz.

LightPerceptionMaterial&Methods 19

Learningseriesconsistedofonetotwotrialsperdayonconsecutivedays.Eachtrial comprisedfiveruns.Thetotalnumberofrunsofonelearningseriesdependedstronglyonthe molerats’motivationandthusvariedheavily.The testedanimalwasplacedinthestarting box.Thestartingboxwasopenedafteronetotwominutesofhabituationbygentlypullingup the slide that separated the box from the long tunnel element. The animal in most cases quickly left the starting box and ran along the long tunnel. The telescope tube allowed watchingtheanimal’sdecisionatthedecisionpoint.Thechoices(lightordark)werethen recorded.Aftereachrun,themazewascleanedwithamilddetergentandcarefullywipeddry. The animal was placed back in the closed starting box and, after the five trials had been completed,inthefamilycage. Learningperformancewasrecordedastheshareofthetotalnumberofcorrectruns performedsofarcomparedtothetotalnumberofrunsperformedsofar.Learningsuccess wasdefinedasaconstantpercentalshareofmorethan50%(random)correctchoices. Inthethresholdstudy,thelowestofthelearnedeightlightintensitieswasusedasa baselineforquickdeterminationofthelowestmeasurablelightintensitytheanimalscouldbe trainedto.Duetomassivemotivationalproblemsintwoofthemoleratsandduetotheir relativebadperformanceinthelearningexperiments,onlythreeanimals(allfemales)were tested in the threshold study. These animals had proven to yield reliable results in the precedingruns. The experimental procedure followed the one of the learning experiment with the differencethatlightintensitywaschangedwithinatrial(fiveruns)inthefollowingway:the firstrunstartedwithalightintensitythattheanimalhadalreadyshownaslearned.Iftherun wascorrectlyperformed,i.e.whentheanimalchosetheilluminatedside,lightintensitywas reducedinthenextrun.Thishappenedaslongastheanimalwassuccessfullyperforming. Whentheanimalmadeamistake,i.e.chosethedarkside,thisintensitywasrepeatedinthe following run of the trial with maximally three repetitions. In case of three negative repetitions,lightintensitywasincreasedagain.Thenexttrialwasinanycasestartedwithan intensity that had been learned with certainty (more than 50%). Light intensities were regulated by inserting paper filters into the terminal tunnels (see legend fig. A5). It is importanttonotethatthetestserieswasendedbytechnicallimitations,i.e.itwasimpossible tocreate(andtestperceptionof)lightintensitieslowerthan0.6mol photons ⋅ m−2 ⋅ s−1 . Both lamps were switched on during the threshold experiments to generate equal conditionsonbothsidesofthemazeduetothelampgeneratednoise.Lightwasblocked fromthedarktunnelbyturningthemetalplatesupsidedownandbyinsertingalayerofthick, opaque felt. To make sure that the lamps did not heat up the maze and influenced

LightPerceptionMaterial&Methods 20 performancewithinorbetweentrialsorbetweenanimals,thatweretestedlateronatesting day, mean temperature of measures made every third second was recorded every minute duringtenrunsoffivetotenminutes(Eltek1000Series,SquirrelMeter/Logger;EltekLtd., Cambridge,UK).Temperaturewasmeasuredatthetwodecisionpointsofthetwotunnel terminals. Wealsoperformedcontroltestswithbothsidesilluminatedtotestforrandomchoices underequalconditions. 2.4 Lightspectruminatunnel 2.4.1 Studyrationale InordertointegratethehithertoresultsonvisioninZambianmolerats,weexaminedthe spectralcharacteristicsofwhitelightbeforeandduringpenetrationinatunnelsystem.Ithas beenjustrecentlyshownthatvasculartissueinthestemandintherootsofwoodyplantscan conductlight(Sunetal.2003).Theauthorsdemonstratedthatlightcanevenreachtheoutside oftheseplantstructuresbyleakingoutofstructuressuchasvessels,tracheidsorfibres.While lightfromthevisiblespectrumandfromtheultravioletrangeisapparentlybadlyconducted, thefarredandnearinfraredregion(i.e.beyond720nm)seemstobeconductedthemost efficiently.Thiseffectcertainlycomeswiththelongwavelengthcharacteroftheseregions,as longerwavelengthsaregenerallypropagatedbetterthanshorteronesduetothefewcontact pointsoftheirbroaderwaveswiththeoutersubstrateandthusduetothesmallerattenuation thattheyundergo. Subterranean burrow systems are a vastly unknown territory, and the possibility of hitherto not discovered ways of conductance of certain wavelengths such as the above mentioned findings (Sun et al. 2003) of sunlight into the earth show the importance of examiningwavelengthpropertiesunderground. 2.4.2 Studyprocedure Theexperimentswereconductedonawinterafternooninaroomwithoutceilinglightsto avoid photic contamination. Light intensity within the room was approximately 2.6 mol photons ⋅ m −2 ⋅ s −1 , thus below low daylight intensities. Wavelength propagation/attenuation was measured in a Tmaze (fig. A6). The main tunnel was filled with horticultural peat, attemptingtocreateasoilsurroundedtunnelwithintheplasticmaze.

LightPerceptionMaterial&Methods 21

ThemazewastightlyclosedagainstlightexceptoftheTshapedmazepartwherethe light was positioned (fig. A6). Here, an area of about 5 cm x 5 cm was being left open, imitatingtheopeningofatunnelroof(e.g.ashappenswhenatunnelisdamagedorbroken fromabovebyapredatororbymolerathunters).Lightintensityunderthisholewas0.06

−2 −1 mol photons ⋅ m ⋅ s undernaturallightconditions. Thesidesofthismazepartadjacentto theopeningwerecoveredwiththick,black,lightimperviouspapersheets.Whitelightwas producedbyahalogenlamp.Thislampwaspositionedabovethetunnelopeningatdifferent heights(80,60,40,20and10cm)tocreatediverselightintensitiesfromdaylighttosunlight.

HALOGEN LAMP

STAND LID

FIBRE DISTANCE BLOCK

Fig.A6 Tmazeformeasurementsoflightpropagationinatunnel. Allmazetunnelparts were9x9cminheightandwidth.Themaintunnelwas100cmlong,theT shapedtunnel120 cm.Thetunnelswereclosed.Thewhitelightsource,ahalogenlamp,waspositionedatdifferent heightsovertheopeningintheTshapedtunnel’smiddlebymovingitverticallyonastand. Duringthesemeasures,thespectrometerfibrewaspositioneddirectlyunderthelamp.Withthe lamppositionedat10cmabovethetunnelopening,thespectrometerwaspositionedatdifferent distancesfromthejunctioninthemaintunnel,fixatedonablock.

LightPerceptionMaterial&Methods 22

Wavelengths were measured with a HR4000 HighResolution Spectrometer and analyzed with SpectraSuite Spectrometer Operating Software (both Ocean Optics Inc., Dunedin,FL).Thecollectionareaofthefibrewas0.12cm 2;calibrationwasperformedonthe samehalogenlampused.Wefirstlyperformedaspectralanalysisdirectlybelowthehalogen light positioned at different heights to examine the arriving spectral distribution at diverse lightintensities.Additionally,weperformedmeasurementsat5,10,20,30,50,60,65,67.5, and70cmfromthelightentranceintothetunnelopeningbyinjectingthefibrefromtheend ofthemaintunnelandfixatingitonawoodenblockataheightofaboutfivecentimetres;this was done to examine maximal wavelength propagation/attenuation in a tunnel with white lightinfiltratingthistunnelperpendicularfromabove,withthelightsourcepositionedat10 cmheight. 2.5 Statisticalanalysis In the twoarmed and the eightarmed maze preference tests, and in the controls of the learning/thresholdexperiment,weanalyzedthedataforapreferentialchoiceusingChisquare tests. Intheeightarmedmazecondition,wecheckedforanypossibledistinctdirectional preference additionally with a circular statistics test (Rayleigh test of uniformity; ORIANA 2.02,KovachComputingServices,Anglesey,UK). Inthetwoarmedmaze,meantemperatures(givenasX±SD)measuredinbothboxes werecomparedusingapairedtwotailed ttest.ThesametestwasappliedintheTmazeofthe thresholdstudyforcomparingmeantemperaturesatthetwomeasurepoints(givenas X± SD). Resultsfromthelearningandthresholdexperimentswerenotstatisticallyanalyzed.A learningeffectwasconsideredassignificant,i.e.notrandom,whenthenumberofcorrect choices constantly summed up to a cumulated percentage of more than 50% of all runs. Learningsuccessinthelearningexperimentsisdemonstratedbytworepresentativelearning curves(forthestrongestandthesecondlowestlightintensity)intherespectivefigureswith therandomthresholdbeingindicated. Except for the circular statistics (ORIANA 2.02), all analyses were conducted with SPSS ®12.0.

LightPerceptionResults 23

3 RESULTS 3.1 DemonstratingLightPerception In the twochoice test chamber, themoleratsshowedclearheliophobicbehaviourtowards thehalogenlightstimulusandsignificantlypreferredthedarkbox(=scotophilia)fornesting 2 (fig.A7; N =20,Chisquaretest: X 1 =9.8, P=0.002). Inthecontrols,themoleratsdidalsonestinthecircularcentrearoundtheinserted smaller cylinder, designed actually to prevent them from nesting during the experiments. However,animalsshowedarandomchoicebetweenthesethreenestingpossibilitiesbothin 2 the dark/dark controls ( N = 16, Chisquare test: X 2 = 3.5, P = 0.17) and in the white 2 light/whitelightcontrols( N =16,Chisquaretest: X 2 =1.625, P=0.44). Meantemperaturesdidnotdifferbetweenthelighted(23.83±0.76°C, N =8)andthe darkbox(23.95±0.66°C, N =8;Paired ttest:t 7=0.63, P=0.548).

20 18 ** ** ns 16 14 12 10 8

Numberchoice of 6 4 2 0 dark vs. halogen light dark vs. halogen light dark vs. daylight 1 2(enucleated 3 animals)

Fig.A7 Nestingchoicesofsightedandenucleatedmoleratsunderdifferentlightregimes. Numberofchoicesfornestingchambersthatmoleratpairsmadeinpreferencetests.Testswere performedwithsightedanimalsunderdarknessversusahalogenwhitelightregimeinatwoarmed maze(black/white)andunderdarknessversusnaturaldaylightconditionsinaneightarmed maze(black/boldhatching);andwithenucleatedanimalsunderdarknessversushalogenlightina twoarmedmaze(black/polkadots).Significanceisindicatedwithtwoasterisksindicatinga Pvalue below0.01.

LightPerceptionResults 24

The molerats displayed significant heliophobic behaviour also under weak daylight conditionsintheradialeightarmedmazewithfourrandomlydistributedtranslucentlids(fig. 2 A7; N=18,Chisquaretest: X 1 =8, P=0.005).Animalsdidnotshowanypreferencefor nestinginaspecificdirection( N =18,Meanvectorα=325°,Lengthofmeanvectorr= 0.19,Rayleightest: P=0.52). Withtheeyesectomized,themoleratscouldnotdistinguishbetweenlightanddark 2 anymore(fig.A7; N=30,Chisquaretest: X 1 =0.133, P=0.72).Whenregardingthemole ratpairs’singularpreferences,thepicturewasinconsistent,butstillinsignificantregardingany preference(fig.A8),exceptonepairthatchosedarknessinfouroutoffourtrials( N=4,Chi squaretest: X2 couldnotbecalculatedduetotheconstantvariable N, P=0.045)andonepair thatchoselightmoreoftenthandarknessinanearly significant manner (P3, N = 7, Chi 2 squaretest: X 1 =3.57, P=0.06).Statisticalvaluesfortheotherfourtestedpairs(P1,P2,P4) 2 2 are:P1&P2, N=6,Chisquaretest: X 1 =0.667, P=0.41;P4, N=7,Chisquaretest: X 1 = 1.29, P=0.26.

7 ns ns ns ns * 6

5

4

3

Numberofchoice 2

1

0 P1P2P1 2 33P4P5 4 5

Fig.A8Singlenestingchoicesofenucleatedmoleratpairsbetweendarknessandwhite light. Numberofchoicesthatenucleatedmolera tsmadeinpreferencetestsunderdarknessversus ahalogenwhitelightregime(black/white)inatwoarmedmazewith“ns”indicatingnotsignificant differences,and*indicatingtheprobabilityoferror P<0.05.P1P5representthetestedpairs.

LightPerceptionResults 25

3.2 TheLightPerceptionThreshold Inthelearningexperiment,themoleratsshowedlearningsuccessinalleightappliedlight intensities, with correct choices of the illuminated tunnel in far more than 50% of all performedruns(tab.A1,seenextpage).Onlyanimal4showeddifficultiesduringlearning seriesofthreeintensities(32,13,and11mol photons ⋅ m −2 ⋅ s −1 ,respectively)withcorrect choices lower than the random probability. The individual learning gain over trials is demonstrated in the tworepresentativelearningcurves of the learning performance in the strongestandthesecondlowestlightintensity(figs.A9andA10,seesecondnextpage).Note that the three intensities 13, 10, and 11 mol photons ⋅ m −2 ⋅ s −1 , representing very close photonfluxrates,yieldednodifferencesinlearningperformances.Thesimilarvaluesresulted fromtechnicalproblemswiththelampsthatwererecognizednottillafterthestudy.These problemswereovercomebeforestartingthethresholdexperiments. Thethreetestedanimalsinthethresholdstudyshowedhighlearningratesincluding thelasttestedlightintensityof0.6mol photons ⋅ m−2 ⋅ s−1 withconstantcorrectchoicesin morethan50%ofthecases,mostlywithmuchmorethan60%correctchoicesandwithmore than65%correctness(cumulatedpercentagevalue)atthelowesttestedintensity(tab.A2,see nextpage).Nolearningcurvecouldbecreatedhere,astestswerenotconsecutivelyconducted withincreasinglightintensitiesanddidnotaimatvisualizingalearninggain. In the controls, the animals showed a random choice between the two illuminated 2 tunnelendings,indicatingnolateralpreference( N =26,Chisquaretest: X 2 =1.385, P= 0.24). Mean temperatures did not differ between the two measure points at the lighted decisionpoint(22.33±0.22°C, N =10)andthedarkdecisionpoint(22.31±0.17°C, N =10)

(Paired ttest:t 9=0.629, P=0.545).

LightPerceptionResults 26

TableA1 Light perception learning experiments. The table gives the final percentages of correctrunsinlearningserieswitheightdifferentlightintensities(i.e.theshareofallcorrectrunsinall performed runs). Maze runs were performed under operant conditioning to white light; correct −2 −1 decisionswerechoicesoftheilluminatedside.Lightintensitiesaregiveninmol photons ⋅ m ⋅ s . Thenumberofperformedrunsforeachlightintensityseriesisalsogiven;allanimalsperformedthe samenumberofruns.Notethatthesimilarvaluesofthefourth,fifth,andsixthseriesresultedfrom unrecognizedtechnicallampproblems. Intensity 32 23 18 13 10 11 7 5 Animal % % % % % % % % 1 71 58 76 70 80 76 71 80 2 62 53 76 57 70 76 74 53 3 62 54 56 53 65 80 79 53 4 44 61 60 45 50 48 56 53 5 62 54 58 61 80 64 63 47

no.runs 45 100 50 30 45 45 25 15 TableA2 Lightperceptionthresholdexperiments. Thetablegivesthenumbersofallruns andallcorrectrunsaswellasthepercentageofthecorrectdecisions.Mazerunswereperformedunder operant conditioning to white light; correct decisions were choices of the illuminated side. Light −2 −1 intensitiesaregiveninmol photons ⋅ m ⋅ s . Lightintensity Animal Runs Σ 7 5 4 3 2 1 0.6 Sum 178 4 24 23 44 45 29 9 1 Correct 128 3 20 19 32 29 19 6 Correct% 72 75 83 83 73 64 66 67 Sum 176 3 25 34 44 33 21 16 2 Correct 122 2 17 25 30 19 17 12 Correct% 69 67 68 74 68 58 81 75 Sum 173 4 31 40 45 31 13 9 3 Correct 113 2 25 25 24 20 11 6 Correct% 65 50 81 63 53 65 85 67

LightPerceptionResults 27

90 80 70 60 #1 #2 50 #3 40 #4

correct runs (%) runs correct 30 #5 20 10 0 5 10 15 20 25 30 35 40 45 trials

Fig.A9 Learningcurvesoffivemoleratstrainedtoawhitelightstimuluswithastrong −2 −1 intensityof23mol photons ⋅ m ⋅ s .Therandomthresholdof50%isindicatedbyabold blackbar.Fouroffiveanimals(exceptforanimal#4)showedalearninggainduringthelearning seriesandyieldedmorethan50%correctchoices.Animals#1and#2displayedconstant performancesabove60%duringthewholeseries.Animals#3and#5showedclassicallearning curvesduringtheseries,withanimal#5overcomingthe50%thresholdafter15,andwithanimal #3after35trials.

100

80 #1 60 #2 #3 40 #4 #5 correct runs (%) runs correct 20

0 5 10 15 20 25 trials

Fig.A10 Learningcurvesoffivemoleratstrainedtoawhitelightstimuluswithalow −2 −1 intensityof7mol photons ⋅ m ⋅ s .Therandomthres holdof50%isindicatedbyaboldblack bar.Allfiveanimalsreachedalearningperformancewithmorethan50%correctchoices;except foranimal#4,themoleratsevenweresuccessfulinmorethan60%ofallruns.Animal#1shows aclassicallearningcurve.Thisanimalseemedtobeparticularlymotivatedthroughoutthewhole study.

LightPerceptionResults 28

3.3 Lightspectruminatunnel Spectralanalysisofhalogenwhitelightofdifferentintensitiesderivingfromalamppositioned at different heights, showed that, as was to be expected, absolute irradiance (photon flux density)increasedwithincreasingintensity,i.e.withdecreasinglampheight(tab.A3).Thermal radiation(noise)ofthelightsourcewasalwaysdetectedinthespectralrangebeyond900/950 nm. TableA3 Lightintensitymeasurements. Lightintensitywasmeasuredinanartificialtunnel openingwiththeprobeofaspectrometerpositioneddirectlyinthelightpathofahalogenwhitelight sourceatdifferentlampheights(LH).Thetotallightintensityofthelightsourceasmeasuredbythe −2 −1 LICORinmol photons ⋅ m ⋅ s isgiven(measuredtotalintensity,MTI).Lightintensitiesofthe threewavelengthareasblue,greenandredasindicatedbythenmspectraaregiveninWatt/cm 2(W) −2 −1 as measured by the spectrometer, and converted into mol photons ⋅ m ⋅ s (phot). Diverse circumstancesresultinadeviationbetweenthemeasuredtotallightintensityandthecalculatedphoton sumofthethreemeasuredwavelengths;thesecircumstancesarediscussedinthetext.Theshareof each wavelength area within the total photon catch, i.e. the contribution of the wavelengths to the spectrum,isgivenin%basedonthemeanofthemeasuredtotallightintensityandthesumofthe singlewavelength’intensities(meantotalintensity,mTI);thesevaluesdonotexactlyaddupto100%. LH 400500nm 500600nm 600700nm sum MTI mTI W 20.87 115.07 122.52 258.46 80 phot 0.96 5.29 5.64 11.89 15 13.44 % 7.14 39.36 41.96 100 W 35.08 158.44 220.42 413.94 60 phot 1.61 7.29 10.14 19.04 24.3 21.67 % 7.43 33.64 46.79 100 W 146.31 464.57 517.59 1,128.47 40 phot 6.73 21.37 23.81 51.91 55.7 53.8 % 12.51 39.72 44.26 100 W 646.97 2,093 2,456.3 5,196.27 20 phot 29.76 96.28 112.99 239.03 304.4 271.71 % 10.95 35.43 41.58 100 W 2,185.6 7,254.5 9,600.7 19,040.8 10 phot 100.54 333.71 441.63 875.88 604.5 740.19 % 13.58 45.08 59.66 100

LightPerceptionResults 29

At80cmheight(withanintensityof15mol photons ⋅ m−2 ⋅ s−1 ), irradiance was generallylowandshowedpeaksat600nmand900nm,i.e.inthetransitionbetweengreen andredandintheinfraredregion(beyondapproximately800nm).At60cmheight(withan intensityof24.3mol photons ⋅ m−2 ⋅ s−1 ),irradiancewasmarkedlyincreased,andthepeakin theinfraredregioncouldnotbedetctedanymore;wavelengthswereobviouslyblockedbelow 450nm.At40cmheight(withanintensityof55.7mol photons ⋅ m−2 ⋅ s−1 ),irradianceagain increased, and also the peak in theinfraredspectral area occurred again. From this height (intensity)on,wavelengthswerealsopropagatedbeyond400nm.At20cmheight(withan intensityof304.4mol photons ⋅ m−2 ⋅ s−1 ),irradiancewasincreasedbyfivetimescompared tothevaluefromthe40cmheightmeasurement;thermalnoisefrombeyondapproximately 850nmincreasedmarkedly.Withthelamppositionedat10cmheightabovethefibre(with anintensityof604.5mol photons ⋅ m−2 ⋅ s−1 ),irradianceincreasedagainmarkedly.Adistinct peakcouldonlybedetectedat600nm;thermalnoisealreadyoccurredat850nm.Theshare ofphotonsinthebluespectralrange(400500nm)laybetween7and14%,inthegreenrange (500600nm)between34and45%,andtheredspectralrange(600700nm)displayedthe highestspectralproportionwith42to60%.Thewhitelightspectraproducedbythelamp beingpositionedin80cmandin10cmheightaregivenrepresentativelyinfig.A11onthe followingpage.AllotherspectracanbefoundintheAppendix(AD).

LightPerceptionResults 30

Fig.A11 Wavelengthspectraofwhitelightinatunnelopeningunderlowandstrong illumination. Spectraweremeasuredunderahalogenwhitelightsourcebeingplacedabovethe spectrometerfibreindifferentheightstocreatediverselightintensities.Thisfigureshowsthe −2 −1 wavelengthsharesofwhitelightwithanintensityof15mol photons ⋅ m ⋅ s inthetunnel openingproducedbyalampheightof80cmabovethehole(upperpartofthepanel)andthe −2 −1 wavelengthsharesofwhitelightwithanintensityof605mol photons ⋅ m ⋅ s withthelamp positioned10cmabovethetunnelopening(lowerpartofthepanel).Inthisandthefollowing spectralfigures,thewavelengthisindicatedatthexaxisinnm;absoluteirradiance(i.e.photonflux densitypertimeandarea)isgivenasWatt/cm 2/nmattheyaxis.Notethedifferentscaleof irradiance,indicatingasignificantincreasewhenthelampisclose.Alsonotethethermalnoiseon therightsideofthespectrum,whichisproducedbythelamp’swarmthandincreasingwiththe lampcomingclosertothefibre.

LightPerceptionResults 31

Measuringattenuationofwavelengthsinatunnelatdifferentdistancesfromtheilluminated tunnelopening,itbecameclearthatthespectralrangebetween400and500nm(blue)was alreadynot,ornotwell,propagatedanymoreatadistanceof5cmfromthelightsource. Wavelengthsfrom500nmto700nm(greenandred)werestilldetectablypropagateduntila distanceof60cm.Evenat65cmdistance,therewerestillsomemeasurablephotonsinthe redrange(600to700nm).At67.5cmdistanceandat70cmdistance,thefibrehardly,butstill detectedphotonsinthisspectralrange;thenumberofthesephotons,i.e.theintensitylevel stilllay,however,abovethescotopicrange(<9*10 5mol photons ⋅ m−2 ⋅ s−1 or<0.005lux; Kelber&Gross2006).Forallattenuationmeasurements,seetab.A4.Fortheattenuation measurementsoftherepresentativedistances5cm,30cm,and67.5cm,refertofig.A12on thenextpage.AllotherattenuationspectracanbefoundintheAppendix(AD). Inalldistances,theredspectralrangemadeupforthelargestproportionwithinthe totalspectrum(max.0.16%ofthetotalincomingphotons).Secondbestpropagatedwerethe greenwavelengths(max.0.07%,i.e.lessthanhalfasmuchasintheredrange),andtheblue wavelengthswereattenuatedstrongest(max.0.01%). TableA4 Lightpropagationmeasurements. Irradianceofthreewavelengthswasmeasuredin differentdistancesfromtheopeningofanartificialtunnelwithahalogenwhitelightsourcepositioned in10cmheightabovetheopening.Thedistanceofthefibre’scollectionareafromthejunctionis givenasDIST(seefig.A6).Lightintensitiesofthethreewavelengthareas(λ)blue,greenandredare given in Watt/cm 2 (W) as measured by the spectrometer, and converted into mol −2 −1 photons ⋅ m ⋅ s (phot). The share of each wavelength within the total photon catch, i.e. the contributionofthewavelengthareatothespectrum,isgivenin%basedonthesamecalculationasin tab.A3. λ(nm) DIST 5 10 20 30 50 60 65 67.5 70 W 2.05 0.92 0.42 0.29 0.08 0.05 0.06 0.12 0.01 400500 phot 0.09 0.04 0.02 0.01 0.004 0.002 0.003 0.005 0.0005 (blue) % 0.01 0.01 0.003 0.002 0.0005 0.0003 0.0003 0.0007 0.0001 W 10.57 4.33 1.90 1.24 0.3 0.2 0.17 0.12 0.02 500600 phot 0.49 0.2 0.09 0.06 0.014 0.009 0.008 0.005 0.001 (green) % 0.07 0.03 0.01 0.01 0.002 0.001 0.001 0.0007 0.0001 W 25.15 9.8 3.95 2.42 0.59 0.4 0.32 0.14 0.04 600700 phot 1.16 0.45 0.18 0.11 0.027 0.018 0.015 0.006 0.0018 (red) % 0.16 0.06 0.02 0.02 0.004 0.002 0.002 0.0009 0.0002

LightPerceptionResults 32

Fig.A12 Spectralattenuationofwhitelightinatunnel. Thefiguregives thewavelengthsharesofwhitelightofanintensityof604.5mol −2 −1 photons ⋅ m ⋅ s projectedintothetunnelopeningbyalampin10cm height.Irradiancemeasurementsaregivenconductedin5cmdistancefrom thetunnelopening(upperpanelpart),in30cmdistance(middlepanelpart), andin67.5cmdistance(lowerpanelpart).Notethechangingirradiancescale. Notealsothethermalradiationontherightsideofthefigure.

LightPerceptionDiscussion 33

4 DISCUSSION The first part of this thesis has presented new resultsonthevisualbehaviourofZambian Fukomys molerats,whichshowthattheeyehasseeminglytakenoverspecializedfunctionsin theseunderground‘blind’rodents.Ethologicalstudiesofmoleratvision,combinedherewith atechnicalstudyoftheopticalconditionsinamodeltunnel,openwidediscussionpossibilities inthefollowing. DemonstratingLightPerception Ourfirststudygivesethologicalsupportfortheassumptionmadeonthebasisoftherecent morphologicalfindings(Oelschlägeretal.2000;CernudaCernudaetal.2003;Němecetal. 2004;Peichletal.2004)that Fukomys moleratsarecapabletoperceivelight,thattheretina receives photic cues, and that this lightencoded information can be used to make a meaningfuldecision.However,therealadaptivemeaningofthisabilityisfarfrombeingclear. Forsure, Fukomys moleratsdonotfleeawayfromlightinpanic(ownobservation).Under our housing conditions, they sleepuncoveredonthesurface,thoughtheywouldhavethe possibility to transport the substrate to one corner of their cage and hide under it a behaviourblindmolerats( Spalax )ormoles( Talpa )wouldalwaysexhibit(H.Burda,personal communication).Inthefield,Zambianmoleratsappearquiterarelyaboveground(Scharff& Grütjen1997),probablye.g.whendispersing,foraging,orduringflooding,andtheydosoalso inthedaytime,demonstratingthattheirsurfaceactivityisnotstrictlynocturnal.Theyalsodo not show any efforts to hide or look for shaded or dark objects (M. Kawalika, personal communication). Surely these molerats do not need light information to know which direction they should dig in order to hide. Boththeir vestibular organ and somatosensory perception provide fast and reliable information on the directional matter as well as on whether the animal is above ground or fully or only partly in a tunnel. Based on these considerations,wespeculatethattheadaptivebiologicalmeaningoftheobservedcapacityto perceivelightmaylieratherinattentivenesstolightthaninperceivingandsearchingdarkness. Thisapproachexplainsbettertheparadoxonbetweenthevisualsystemunsuitedforabove groundorientation(or:designedforundergroundorientation)andthephotoreceptormosaic adaptedtotheperceptionofdaylightintensitiesratherthantoadarkenvironment(Němecet al.2007). Inmanycases,incidenceoflightmaywellindicateatunnelbeingopenedbypredators andmaythuswarntheanimalnottoapproachtheopeningtoocloselybuttoinsteadplugit (own field observations). This plugging of illuminated tunnels was elicited also under laboratoryconditionsinthepocketgopher( Thomomys spp.)(Werneretal.2005).Notethat

LightPerceptionDiscussion 34 opening of a tunnel does not lead to air currents within burrow systems (H. Burda; field measurements). However, first attempts in the course of this study to trigger plugging behaviourinilluminatedtunnelswereunsuccessful.Themazeused(lengthofthemaintunnel: 1m;lengthoftheilluminatedterminaltunnels:60cm)wasprobablytooshort,sothatthe molerats did not accept the maze as a tunnel system (A. Schinkoeth, personal communication). We suggest repeating these experiments in a maze system with the sizes similartothoseusedbyWerneretal.(2005)(maintunnel10mlong;sidetunnels1mlong). Thissystemwouldhaveasizeenlargedbythefactorten,enablingtheanimalstomovefreely over longer distances in the maze. A complementary explanation has been suggested by Němecetal.(2007):lightinfluxmayindicateanaccidentalburrowcollapseandinduceits maintenance. Differentiation between light and dark can help subterranean mammals to entrain either daily and/or annual cycles just as sighted, surfacedwelling mammals do. However, clearlyphotoperiodicEurasianblindmolerats( Spalax )withtheirminusculedegeneratedand subcutaneouseyesprovidethebestevidencethatphotoperceptionandvision(sight)canbe decoupled(Cooperetal.1993;reviewedinNevo1999).Amongbathyergids,thenakedmole rat ( Heterocephalus glaber ) from East Africa and also the Mashona molerat ( Fukomys darlingi ) from southern Africa show the capability of entraining circadian rhythms to light as a zeitgeber(Riccio&Goldman2000a,b;Vasiceketal.2005).However,onlyfewunpublished studies (Fleissner & Fleissner; Daan & Everts; Fritzsche & Gattermann) have examined circadianrhythmsin F. anselli .Allresultsstronglyindicatethattheanimalsdisplayfreerunning activityrhythmswithindividualspecificspontaneousperiods.Forseasonalentrainment,light inthenearlyconstant12:12LDrhythmofthehabitatsoclosetotheequatorwouldbehardly of use as a zeitgeber. Accordingly, Zambian Fukomys species do not undergo a seasonal reproductioncycle(Burda1989,1990;Scharffetal.2001). TheLightPerceptionThreshold Ourstudyoflearningdemonstratesonethingaboveall:thatlearningtasksareachallengein molerats, as performance on each day as well as over the whole study period depends extremely on individual motivation, a molerat character heavily influenced by the strong explorationdrivethatdecreasesrapidlyifthetaskremainsunchanged.Itbecomesalsoclear that,maybeduetolackingmotivation,learningintwochoiceexperimentsistimeconsuming anddoesnotyieldasconvincingresultsinZambianmoleratsasisthecasee.g.intwochoice learning experiments with European moles ( Talpa europaea ), that showed 90% correct responsesoveronly30to45trials(JohannessonGross1988).Evenmoreinterestingisthe factthatonlythreeanimalscouldbeusedinthethresholdstudy–duetolackingmotivation

LightPerceptionDiscussion 35 oftheothertwo,whichlingeredinthemazeverylongbeforemakingadecisionatall.These twowerethereproductivepair,bothbeingwildcaptured.Hencethequestionariseswhether itwasreallylackingmotivationthatmadethemperformsoreluctantlyorwhethertheirvisual capabilities were worse than those of their offspring reared in a lighted laboratory, and whethertheythusneededmoretimeforpreferentialdecisions.Itwouldbethinkablethatthe eye,orbettertheneuronalpathwaysofvision,degenerateafterbirthifnotconstantlyexcited by light cues. A loss of possible function during development has been already shown in Spalax ehrenbergi , where thelensestartstodegeneratesoonafterocular development onset (Sanyaletal.1990);however,thisdegenerativeprocessisphylogeneticallypredeterminedand independentoflaterlightexposure.Theprocessofneuronalplasticitywouldexplaintheuse ofvisioninthelightrearedoffspringbetter:neuronalplasticityreferstochangesthatoccurin brainorganization,particularlytochangesinthelocationofspecificinformationprocessing functions.Thesechangesderivefromlearningandalsofromexperience.Astheconceptof plasticitycanbeappliedtoenvironmentalevents(Schwartz&Begley2003),theunusualevent ofconstantlightexposuremightreactivatetheusuallyrarelyusedvisualbraincenters. Ourstudyshowedthatmoleratscanatleastdiscriminateadifferencebetweenlight anddarkintheintensityorderof0.6mol photons ⋅ m−2 ⋅ s−1 .Thisvalueseemssmall,and indeedthelightintensityappearedlow,but0.6mol photons ⋅ m−2 ⋅ s−1 equal33lux,and33 lux belongs to the photopic range of vision (>5 lux; Kelber & Gross 2006). However, subterraneanEuropeanmoles( Talpa europaea )havebeenshowntodiscriminatelightatmuch higherlightintensities(350lux),andtobeunabletoperceivelightatanintensityof60lux (JohannessonGross 1988) – the Zambian molerats have yet, in our study, shown a performanceabouttwiceasgoodastheEuropeanmole. Itisneverthelessapitythatboththelightsourcesandthelightmeasuringinstrument didnotallowtotestvisualperformanceunderpresenceoflowerlightintensities,evendown to scotopic levels (<9*10 5 mol photons ⋅ m−2 ⋅ s−1 or <0.005 lux). Tests examining light perceptionabilitiesinthescotopicrangeshouldbecarriedonwithlargersamplesizeswitha balancedsexratio.Thesetestsshould,however,bebasedonspontaneousbehaviourteststo bypassthemotivationalproblemsdescribedabove. Lightspectruminatunnel Ourmodeltunnelexperimentyieldedinteresting,thoughmainlynotunexpectedresultson lightpropagation/attenuationinatunnel.Itpicturedquitewellthenaturalstateofatunnel located superficially; though of course the amount of incoming radiation into an opened tunnel depends on its inclination, it can be assumed that light propagation in superficial

LightPerceptionDiscussion 36 tunnels resembles our results, as tunnels close to surface are often horizontal (personal observation).Verticalradiationintoatunnelholeisthusprobable,particularlyasinZambia, closetoequator,sunlightradianceoccursverticallyonmosttimesoftheday.However,the propertiesofboththematerial(plastic)andthecolour(black)ofthemodeltunnelare,of course,differenttothoseofsoil,andthisdifferencemightresultin‘false’lightpropagationor attenuationmeasurementscomparedtothenaturalsituation. The strongest intensity applied in our test was approximately 600 mol photons ⋅ m−2 ⋅ s−1 (equalling33,600lux).ThisintensityislikelytooccurinZambianmolerat habitats frequently: though a cloudless summer day might have up to 2000 mol photons ⋅ m−2 ⋅ s−1 (100,000 lux), infiltration of light always also depends on shading. Vegetation,ofwhichbushesandhighgrassarefrequentinthemolerathabitat(seefig.1),as wellassoilwhichmightblockatunnelopeningpartlyornearlytotally,aretwofactorsthat coulddecreaseincomingsolarradiationstrongly.Furthermore,conversionfactorsofstandard intensity measures into photon counts are dependent on the light source (McCree 1981), meaningthattechnicallydetermined600molphotonsmightdifferwhenbeingderivedfrom ahalogenlampwith100Worfromthesunwithitsapproximately1.37kWelectricpower reachingeachsquaremeteroftheEarth(http://lexikon.astronomie.info/sonne/index.html). Thesameemittedradiationmightthenresultinahigherincomingintensity;apurecalculation problem. Themeasuredwavelengthattenuationshowsthatwithinatunnel,thereishardlyany bluelightcontainedintheincomingspectrum;only0.01%ofthetotallightincomebelongsto theshortwavelengthsofthe400500nmrange,alreadyat5cmdistance(i.e.amolerat’shead length)fromthelightsource.Theseshortwavesare,duetotheirhighfrequency,asexpected attenuatedquickestinatunnel,astheyare,ofallvisiblecolours,scatteredmostalongthe tunnel walls. Hence, vision in the blue light or even in the UVlight spectrum seems improbableunderground.CommunicationofmoleratsviaUVlight,thatisviaurinemarkings visible in these wavelengths, is however still thinkable, as it has been, in predatorprey interactions,showne.g.involes(Viitalaetal.1995;Chávezetal.2003).Urineinmoleratsis thecarrierofimmanentinformation(Heth&Todrank2007).Evenifnotwithinaburrow system,wherenoUVlightispresenttolettheurinefluoresce,urinemarkingscouldserveasa probate means to orient or exchange information during the still unstudied periods the animalsspendaboveground.UrineUVpropertiesshouldbethusexaminedinmolerats,as theycouldgiveahintatabovegroundactivity.Tothisend,UVabsorbance,reflectanceand fluorescence should be measured in molerat urine according to the standard procedures describedinKoivulaetal.(1999)andKellieetal.(2004).Subsequently,aputativespectral

LightPerceptionDiscussion 37 tuningoftheshortwavesensitiveconetypetotheUVlightspectrumshouldbesuccessively examined,becauseithasbeendiscussedinPeichletal.(2004)thattheZambianmoleratS opsinmaybeUVsensitive.Thisfunctionalshiftmight be one explanation oftheunusual presenceofshortwavesensitiveopsinsinmolerats.Inmammals,ultravioletvisionhasbeen foundine.g.bats(Winteretal.2003)andinanumberofrodents(Jacobsetal.1991).Though theUVsensitivityoftheSopsinisundoubtedlyanancestralmammaliancondition(Huntet al.2001),theadaptivemeaninginthoserodentgroupsthathaveretainedit,e.g.whetherits formationhasbeendrivenbytheuseofterritorialurinemarks(Chávezetal.2003),remains anobjectofdiscussion. Thewavelengthspropagatedbest,i.e.attenuatedleastinatunnel,aregreenandred, withredbeingdetectableevenat70cmdistancefromthelightsource.Thoughtheamountof detectedredlightwasmeagre,itwastwicethephotoncatchintheblueorgreenrange,and wellintheareaofscotopicvision(seeabove).Thermalradiation,i.e.infraredradiation,was always detected. This finding did also not, as to the low frequency of long wavelengths, surprise;anditfitsalsowellthefindingsbySunetal.(2003),whodescribethatfarredand nearinfraredlightmightleakoutofplanttissue.Here,asecondexplanationforthebluelight sensitiveconeopsin,thoughahighlyspeculativeone,shouldbeintroduced.Itisprincipally imaginable that the blue cones are a kind of infraredlight detector for orientation along longwaveradiationwithintheburrowsystem.Physically,itwouldbepossiblethatIRquanta, whichare,particularlyatlowfluxrates,difficulttodetectforawarmbloodedanimaldueto thermal contamination, activate photoreceptorsinamultistagequantalprocessthatwould provide the necessary energy for excitation of the cis/trans transfer in the ‘blue’ visual pigments (K. Götz, personal communication). Another option is the socalled “blue eyes” effect,recentlyfirstlypresentedataconference(Kaernbach&Scheibelhofer2006).Thename of the effect is deduced from the blue halosthatoccuronbothsidesofaredlightspot focusedoninadarkroom;theauthorssuggestthiseffectasbeingretinal.Ifbothatransferof thishumanstudytomoleratsandwildspeculationsareallowed,therodentcouldsee‘blue’, andthatisevenasymmetricalblueform,byviewingonlyasingleredlightspot.Bymoving theheadandperceivingredlightfromdifferentspatialpositions,theshapeofthebluehalos couldthenyieldinformationonintensity,direction,anddistanceofthelightsource. Inanycase,whethermolerats‘see’the(infra)redlightordetectitbyanothersensory system,itwouldbeadvantageousforananimaltorecognizeanopenorcollapsedtunnelas soonaspossibleinordertoplugormaintainit.Astherearenoaircurrentsinanopentunnel (seeabove),detectingtheopeningfromadistanceofalready60to70cmwouldallowthe animaltoquicklyreactandplugthetunnelsystem.Regardingtheredlightpresentinatunnel, a system sensitiveenoughtointegrateevenlowphotonsharesof0.02%ofthetotallight

LightPerceptionDiscussion 38 incomewouldallowtheanimaltostillreactat30 cmdistancefromthebrokenintunnel. Withinatunnelsystemhavingamaintunnelof200mlengthormore(Hickman1979),30cm isashortdistanceandwouldsuggesthighsensorysensitivity.

MagnetoreceptionIntroduction 39

»Quellepeutdoncêtrelaforcephysique,partoutprésente,aussibiendansleshauteursdel’atmosphèrequedans laprofondeurdesflots,quipourradirigerleslégionserrantesdesanimauxmigrateurs?Iln’enexiste,àmonavis, qu’uneseule,cellequinoussertaussiàdirigernosnaviressurlesmers:jeveuxdirelemagnetismeterrestre.« (Charles Viguier, 1882 )

B MAGNETORECEPTION

1 INTRODUCTION 1.1 MagnetoreceptioninAnimals Magnetoreception is the ability to sense/perceive magnetic cues (intensity and/or the orientationofthelocalgeomagneticfield)andtransfer them to the nervous system,which extracts, processes, and interprets the relevant information. This information derives from electrical currents evoked by the Earth’s core and mantle rotating against each other and creatingamagneticfield(cf.,Press&Siever2003).Thesecurrentsproviderelativelyconstant andreliableinformationfororientationbecausetheyarealwaysavailableanduninfluencedby external factors such as a swiftly shifting cloud cover. In contrast to other compass mechanisms,suchasthestarandsuncompass,orientationusingthemagneticcompassisan innatemechanism(shownforwarblersinWiltschko&Gwinner1974),correspondingtothe reliabilityoftheEarth’smagneticfield’sinformation,whoseusedoesnotrequirecircadianor seasonal movements of an external reference. It seems thus clear to view the magnetic compass as a particularly useful system for the immediate realization of innate nominal directionsandforthecalibrationofotherinnatesystems. Animalsfromanumberofgroupshavebeendescribedaspossessingandorienting with a magnetic compass during navigation (cf., Kirschvink et al. 1985, Wiltschko & Wiltschko1995).Atleastinthediversevertebrategroups,themagneticcompassdoesnot, however,presentauniformsystem.Whilebirds(Wiltschko&Wiltschko1972,1995)andsea turtles (Lohmann & Lohmann 1992; Light et al. 1993) magnetically orient via a socalled inclinationcompass,fish(Quinnetal.1981)andsubterraneanrodents(Marholdetal.1997a) useapolaritycompass(forfurtherinformationonthecompasstypes,seeB1.5).Amphibians seemtousebothsystemsinparallel(Phillips1986). Despite Aristotle’s observations of regular prewinterly bird migrations, and despite the strong evidence from the 19 th century that migratory birds use components of the

MagnetoreceptionIntroduction 40 magnetic field as putative orientation factors(Middendorf 1859 1,Viguier1882),itwasnot untilthe1960sthatmagneticcompassorientationcouldbedemonstratedinabird(Wiltschko &Merkel1966).Thefirstmammalshowntohaveamagneticcompasswas,asmentioned above(III.3),theZambianAnsell’smolerat( Fukomys anselli )(Burdaetal.1990b).Thisrodent speciesstillplaystheleadwhenitcomestoarefinedandcontinuouslyexpandedknowledge ofthemagneticcompasssenseinrodents. As in the monotonous world underground, the Earth’s magnetic field provides a reliable source of directional, and perhaps also positional, information, this compass mechanism is not a surprising finding in a subterranean mammal, as the Earth derived information helps an animal, in absence of other stimuli, to navigate effectively, i.e. to determinewhereitis,whereitwantstogoandhowtogetthere. Magnetotaxis and alignment behaviour exist in diverse taxa from bacteria to honeybees,andnavigationbasedonmagneticinformationoccurs,amongstothers,inlobsters andmolluscs(Kirschvink&Gould1981;Cainetal.2005). Interrestrialvertebrates,magnetoreceptionhasbeenunambiguouslydemonstratedin sharks,salmonids,newts,turtlesandmigratoryandhomingbirds(reviewedinWiltschko& Wiltschko1995;Lohmann&Johnsen2000;Meyeretal.2005).Recently,thebatcouldbe addedtothelistofmammalsthatusemagnetoreception,showingtouseasunsetcalibrated magnetic compass for longdistance navigation (Holland et al. 2006). Furthermore, several rodent species have been proposed to use the magnetic field for compass orientation or responsestogradientsortotemporalvariations(Wiltschko&Wiltschko1995),butamagnetic compasssensehasbeendemonstratedunambiguouslyinonlytwosubterraneousspecies:the AfricanAnsell’smolerat F. anselli (Burdaetal.1990b,Marholdetal.1997a,b)andtheblind molerat( Spalax ehrenbergi superspecies)fromIsrael(Burdaetal.1991;Kimchi&Terkel1999, 2001; Kimchi et al. 2004). Magnetoreception has also been demonstrated in two epigeic species: the Djungarian hamster ( Phodopus sungorus ) (Deutschlander et al. 2003) and the laboratory mouse (Muheim et al. 2006). Earlier studies of magnetic orientation in rodents providedambiguousandinsomecasesquestionableresults(Mather&Baker1981;Madden& Phillips1987;Sauvé1988;Augustetal.1989).

1»[...],soliegtderGedankenahe,esmögedieerstaunlicheUnbeirrbarkeitderZugvögel–trotzWindund Wetter,trotzNachtundNebel–ebendaraufberuhen,dassdasGeflügelimmerwährendderRichtungdes Magnetpolessichbewusstist,unddemzufolgeauchseineZugrichtunggenaueinzuhaltenweiss.[…]Gleichdem Schiffer,derseinenKursindieKarteeinträgtsoofterdieRumbeseinerRichtschnur,derMagnetnadel, wechselt,istauchderVogelunablässigsichdessenbewusst,wannundwievielerabweicht[…].Währendaber derSchiffer,beiderEintragungseinerKurse,nochdiejedesmaligeDeklinationsgrössederMagnetnadelvonden MeridianenseinerSeekarteninAbrechnungzubringenhat,liestsichderVogeldieGrössedes Abweichungswinkelsu n m i t t e l b a r ab[…].«(Middendorf,1859)

MagnetoreceptionIntroduction 41

1.2 TheEarth’sMagneticField Attheendofthe16thcentury,WilliamGilbertdeterminedthattheEarthisabigmagnet, implyingthatithasamagneticfield(cf.,Lanza&Meloni2006).TheEarth’smagneticfield (fig.B1)isadipolefield,i.e.asystemcomprisingtwomagneticcharges(ormasses)ofequal intensityandoppositesigns(cf.,Skiles1985;Lanza&Meloni2006).Thesemagneticfield’s measurementsarebasedonsuperimposedcontributionsfromdifferentsources. Correspondingtothesedifferentorigins,theEarth’smagneticfieldofforcecanbe separatedinto:the main field ,generatedinthefluidcorebyageodynamomechanism;the crustal field ,generatedbymagnetizedrocksintheEarth’scrust;the external field ,generatedbyelectric currents flowing in both ionosphere and magnetosphere through interactions of the solar electromagneticradiationandthesolarwind with the Earth’s magnetic field; and the magnetic field resultingfromanelectromagnetic induction process generated by electric currents induced in the crust and the upper mantle by external magnetic field time variations – the Earth is partly an electric conductor,andcurrentscanbeinducedinits conducting parts byexternaltimevariations. Fig.B1 SchematicalviewoftheEarth’s magneticfieldlines. TheEarthis ThemoststablepartsoftheEarth’smagnetic representedbyasphere,NandSaretheideal fieldarethe main andthe crustal field,which magneticpolepositions(fromLanza& Meloni2006). mainly determine its spatial structure. The fieldisalsosubjecttotimevariations.Thesecanbedividedintolongtermvariationdueto changeswithintheEarth,andshorttermvariationofexternalorigin(see external field above) (cf.,Lanza&Meloni2006).TheEarth’smagneticfieldbehaveslikeasmall,verystrongbar magnetclosetotheEarth’scentrethatistiltedagainsttherotationaxisbyabout11°(cf., Press&Siever2003). Determiningexactgeomagneticcoordinates,i.e.identifyingexactpositionsofpoints on the Earth’s surface with respect to a geomagnetic reference (similar to geographic coordinates),isenabledbyuseofcolatitudesandlongitudesinthegeomagneticdipoleframe. Thiscoordinatesystemalsoenablestheidentificationofnorthandsouthgeomagneticpoles as those points on the Earth where the ideal central dipole axis intersects the surface. Accordingly, the geomagnetic equator is the ideal line on the surface representing the intersectionoftheplanepassingthroughtheEarth’scentreorthogonaltothecentraldipole (Lanza&Meloni2006).

MagnetoreceptionIntroduction 42

TheEarth’smagneticfield’sstrengthisgivenbytheintensity(expressedinT).Atthe magneticpoles,thetotalintensityofthenaturalmagneticfieldisstrongestwithmorethan60 T; it decreases down to values of about 30 T at the magnetic equator, and reaches its minimumwith26TattheeasternSouthAmericancoast.Totalintensitydependsonthe sun’spositionandthisdependencycomeswithcircadianandseasonalchangesinascalefrom 10to30nT.Magnetictopographyisalsodeterminedbythepresenceofundergroundore deposits,whichcanleadtolocalanomaliesthatgraduallychangethemagneticfieldinaddition to its globally asymmetric character. Furthermore,magnetic stormswith strengths of up to 500nTcanproducemarkedchangesoftheEarth’smagneticparameters(cf.,Press&Siever 2003;Lanza&Meloni2006). Fig.B2 TheschematicalEarth’smagneticfield. Themain fieldoftheEarthisproducedinthecoreandcontainsboth dipoleandnondipolecomponents.Thefieldevokedbythe magneticdipoleinthecoreasrepresentedbythebarmagnetis shownbyfieldlinesofmagneticforces.Theselines demonstratethecourseofintensityandinclinationbetweenthe magneticequatorandthemagneticpoles(fromWalkeretal. 2002). The magnetic streamlines resulting from the magnetic properties of the electrical currentsextrudeatthesoutherngeographicpole(equallingthenortherngeomagneticpole) andruninconcentriccirclestothenortherngeographicpole(thesoutherngeomagneticpole), wheretheydiveagainintotheglobe(fig.B2).TheEarth’smagneticfieldisthusbuiltupasa

MagnetoreceptionIntroduction 43 vector field, whose detailed properties as well as its spatial and temporal variations are extensivelydiscussedinSkiles(1985)andLanza&Meloni(2006). 1.3 UsingtheEarth’sMagneticField MovingthroughtheEarth’smagneticfield,ananimalinducesanelectricfieldacrossitsbody. Thisfieldisorientedperpendiculartotheplanecontainingthedirectionofmovementandthe magneticfield.Itsstrengthismaximalwhentheanimalmovesperpendiculartothemagnetic field.Themovinganimalcouldprincipallythusrelocateitsdirectionuntilitsselfgenerated electricfieldisbothofappropriatedirectionandstrength(cf.,Dusenbery1992). BoththeregularandgradualmagneticparametersoftheEarth’smagneticfieldcanbe usedbyanimalstoorient.Tothisend,twotypesofinformationaresupplied:themagnetic fieldvector ( F)providesdirectionalinformationthatcanbeusedasacompass,whiletotal intensityand/orinclination(seebelow)giveinformationthatsupportspositiondetermination onamagneticmap.Forcompassorientation,threecomponentsoftheEarth’smagneticfield areofimportance.Anindividualcanobtaindifferentialinformationeitherfromthespatially varyinggradientsofintensityofthemagneticfieldorinclination(i.e.theanglebetweenthe magneticfieldvectorandthehorizontalplane,seebelow),orfromdirectionalcuesprovided by horizontal polarity (i.e. direction of the magnetic field lines pointing towards magnetic North,asvisualisedbyacompassneedle).Additionally,geologicalformationsmaydisturbthe localmagneticfieldandserveascharacteristicmagneticlandmarks(Dusenbery1992). Thefunctionalmechanismofthemagneticcompass,e.g.inbirds,isnot,however,in contrasttothetechnicalcompass,basedonthemagneticfield’spolarity,butonitsinclination: the streamlines that leave the Earth at the northern geomagnetic pole in the southern hemisphereandreentertheglobeinthenorthernhemisphereatthesoutherngeomagnetic pole form inclination angles, which alter systematically with geographical width. These inclination angles amount to 90° at the poles and 0° at the equator. By perceiving the streamlinesandusingtheseangles,ananimalcanperceivethecourseofthemagneticaxis. The angles supply the animalwith information on the direction the animal is heading, i.e. polewards or equatorwards. That means that e.g. migrating birds interpret the inclination angles and their course for orientation; this system is thus called an inclination compass (Wiltschko&Wiltschko1972,1995;Wiltschkoetal.1993).Withthiscompass,birdsdonot discriminatebetween“North”and“South”,butreceiveinformationonthe“poleward”and “equatorward” direction, respective to the magnetic poles and the magnetic equator. Birds fromthenorthernandsouthernhemispherethuspossessthesame“migrationprogramme” enticingthemtomigrate“equatorwards”intheirrespectiveautumn(Wiltschkoetal.1993).

MagnetoreceptionIntroduction 44

Combiningtheinformationonthelocallyvaryinggradientsininclinationandmagnetic fieldintensity,ananimalcandeterminemagneticcoordinatesofanyparticularlocationwithin a given corridor. Although total intensity and/or inclination may provide positional (map) information, it is the magnetic vector that provides the necessary directional (compass) information(seeabove;reviewedine.g.Wiltschko&Wiltschko1995,2005,2006;Bingman& Cheng2005;Lohmann&Lohmann2006;Phillipsetal.2006). 1.4 FromEarthtoAnimal:AvailableSensoryInformation About50billionmigratorybirdstravelyearlywithsinglemigratingdistancesofupto15,000 km(cf.,Berthold1990).Femaleseaturtlesswimhundredstothousandsofkmthroughthe Atlantic Ocean to reach their natal beach for nesting. To this end, magnetic information becomesimportantoncetheyareintheopensea(Lohmann&Lohmann1996).Subterranean rodentsorientsuccessfullyinalightlessundergroundhabitat.Inair,waterandsoil,animals usetheEarth’smagneticfieldforderivinglocationanddirectioninformation(Wiltschko& Wiltschko 1995). However, the sensory mechanisms underlying these compass orientation achievementshave,untiltoday,largelyremainedunclear. Tounderstandthemagneticsense’smechanismsbetter,threemainquestionsneedto beanswered:(1)istherea“magneticsenseorgan”?,andifso,whatkindofstructuredoesit possess,whereisitlocalized,andhowisitinnervated?;(2)whichprimaryprocessesunderlie thereceptionofmagneticinformation?;and(3)whichbrainstructuresunderlietheprocessing ofthemagneticinformation? Dealing with the first question, these structures or receptors could be a relatively simple, easytolocate magnetic sense organ, such as the functionally converted electroreceptorsinsharksorrays(Kalmijn1978),butinotheranimalgroups,suchasimply structuredorganisapparentlyabsent. Thesecondquestionregardingthereceptororsensor level, however, seems more promising in terms of research results in diverse taxa. Two primary processes transducing magnetic information are currently mainly discussed. Firstly, processes that depend on permanentlymagneticparticlesofbiogenicmagnetite,secondlyreactionsthataretriggeredor controlledbyactivatedphotopigmentsintheretina(Leask1977;Yorke1979;Kirschvink& Gould 1981; Kirschvink et al. 1985; Schulten & Windemuth 1986). These processes and respectiverecentfindingsaredescribedindetailinchapterB1.6. ThelastquestionisconsecutivelyaddressedinchaptersB1.7, B2.andB3.4.

MagnetoreceptionIntroduction 45

1.5 FromBehaviouralExperimenttoProof:CompassModes Comparedtothehithertostudiedbirdswiththeirlightdependentinclinationcompass(cf., Wiltschko&Wiltschko1995),whichcanbe–atleastinhomingpigeonsswitchedofforon ifthealternativesuncompassisdisruptedunderovercastskies(Keeton1971),subterranean rodents have only limited access to photic cues. Consequently, the magnetic compass of Ansell’smoleratshasprovedtobelightindependent,andbasedonexploitingthemagnetic field’s polarity, thus behaving like a technical compass (Burda et al. 1990b, Marhold et al. 1997a). Studying a putative magnetic compass, the researcher receives confirmation from animals’responsestoartificialshiftsofmagneticNorthwithrespectivepredictabledirectional changes.Classicalexperimentsmakeuseofhomingorientation(reviewedine.g.Wiltschko& Wiltschko1995).Whereasplentyofevidenceexistsforhomingabilitiesinanimalsofdiverse taxa, this experimental approach poses severe limits when examining magnetic compass orientation:homingisrealizedoverlongerdistances;negativeresultsneedtobeconsideredin a motivational context; and being a complex multifactor task, homing can hardly provide evidencefortheexclusiveuseofaparticularorientationmechanism.Experimentalrefinement ofthismethod,practicableinsmallerorganismsalsounderlaboratoryconditions,isbasedon “simulated magnetic displacements”, i.e. when the animal is exposed to a defined artificial magneticfieldcharacterizingtheoppositesideofits“home”,whencorrespondingchangesin the direction ofitshomingorientationareexpected(cf.,Fischeretal.2001;Phillipsetal. 2002;Boles&Lohmann2003).Atleastmalesofseasonally breeding solitary subterranean mammals, which seek mates over longer distances (e.g. the silvery molerat, Heliophobius argenteocinereus ;Šumberaetal.2007),showgoodorientationabilitiespresumablybasedona magneticcompass.Homingabilitieshavebeendemonstratedalsoinotherdiversespeciesof subterranean mammals (cf., Burda et al. 1990a). Nevertheless, examining the proximate mechanisms of homing would be technically very difficult both in the field and in the laboratory,forinstancebecauseofthelimitedavailabilityofanimalsandprobablyseasonally limitedmotivation. Spontaneousbehaviour,specificallyinnatepreferenceforacertaindirectiondisplayed by a migratory direction or positioning of a nest, is an experimental asset. The magnetic orientationassayforrodents,firstappliedinAnsell’smolerats(Burdaetal.1990b),issimple: moleratsareplacedinacirculararenawithscatterednestingmaterialandfooditems.Inan undisturbedgeomagneticfield(inthegivencasecharacterizedby66°inclinationand46T), themoleratspreferablyplacetheirnestinthesoutheastern sector of the arena. Magnetic intensityandpolarityinthearenacanbemanipulatedbyapairofHelmholtzcoils,bye.g.

MagnetoreceptionIntroduction 46 shiftingmagneticnorthbyaspecifiedangle.Themoleratsplacetheirnestsaccordingtothe altered magnetic field and relative to their southern magnetic preference direction. This experimentaldesign,whichinsomestudieshasbeenmodifiedtoaradial8armmazewith terminalnestboxes,hasprovenusefulfordemonstratingmagneticcompassorientation,also intheblindmolerat(Burdaetal.1991;Kimchi&Terkel2001)andintheDjungarianhamster (Deutschlanderetal.2003). A modified arenaassay to test whether animals use magnetic cues for orientation whendigginginordertohideorescapefailedinSouthAmericantucotucos( Ctenomys talarum ) (Schleich & Antinuchi 2004) and coruros ( Spalacopus cyanus ) (Begall unpubl.). Theseresults, however,donotconclusivelyexcludethepresenceofamagneticcompassintheseanimals,as itispossiblethattheydonotrelyonthemagneticcompassinstressfulsituations.Standard nestbuildingexperimentsprovedunfeasibleincoruros,becausenonestwasbuiltinmostof thetrials(82%). Aconstructiveandinnovativemodificationofthisexperimentalarenadesigninvolves learning:thenestpositioninanarenaisimposedupontheanimalsbyusingafixednestbox, anditisthentestedwhethertheanimalslocatetheirnestplaceornestboxaccordingtothe previouslylearnedrelationshiptothemagneticfield,whentheyarereleasedintoanew(clean) arenaand/orafterthemagneticfieldhasbeenmanipulated.Inthisway,magneticcompass orientationhasbeenshownintheDjungarianhamster(Deutschlanderetal.2003)andinthe laboratorymouse(Muheimetal.2006).Thisexperimentalparadigmcertainlyharboursalotof potential,alsointhestudyofspatialorientationinsubterraneanmammals. Maze experimentshaverarelybeenappliedinthestudy of magnetic orientation of subterranean rodents. At least Ansell’s molerats behave in a maze differently than e.g. laboratoryrats(Burda,ownunpubl.observ.).Theylearnamazeafterthefirstrun,butstartto make“falseerrors”,drivenbyexploration,inlaterruns.Furthermore,explorativebehaviour or xenophobia may be species and gender specific, making the evaluation of maze experiments a more complex task (Heth et al. 1987; Burda, own unpubl. observ.). Nevertheless,intheblindmolerat,magneticcuesalsoplayaroleinmazenavigationandpath integration(Kimchietal.2004). Indications for magnetic compass orientation may also be derived from field observations.Subterraneanmammalsinnaturalhabitatswithpoorfoodsupplytendtobuild linearlyarrangedburrowsystemswithalong,straightmaintunnel,thesocalledrunway,anda nestfrequentlypositionedrathereccentricallywithrespecttothelongestaxisoftheburrow system(cf.,Eloff1951;Hethetal.2002andliteraturecitedtherein).Itcanbespeculatedthat in a uniform habitat, without geomorphologic and other features, such as water streams, slopes, rocks, roads, trees, fields or neighbours, that might potentially canalise burrowing

MagnetoreceptionIntroduction 47 direction, animals may project their spontaneous directional preference into a predictable orientation of the burrow system. Indeed, the first hints for possible magnetic compass orientationintheAnsell’smolerat(Burda1987)werederivedfromafewthenavailablemaps ofburrowsystems,whichexhibitedapparentlyincidentallyanorthsouthorientationof theirlongestaxis.Lovegroveetal.(1992)andSchleich&Antinuchi(2004)couldnotconfirm any prevailing directionality of burrows in Fukomys damarensis and Ctenomys talarum , respectively. Apart from the fact that these studies did not include circular statistics as a methodtoassesstheorientation,therandomordirectionalpatternsobservedmayhavebeen duetotheproblemthatapparentlyestablishedoldsystemswereexamined,wheretheoriginal primary tunnel might not have been recognizable anymore (or perhaps even no more existent). Burrow systems are not static, but are steadily reworked and rearranged (cf., Šumberaetal.2003). Consistentwiththesubterraneanlifestyle,themagneticcompassofAnsell’smolerats hasbeenspecifiedasalightindependentpolaritycompass,asneitherlightnorartificialshifts of inclination affected the preferred southeastern nesting direction (Marhold et al. 1997a). Similarly,themagneticcompassoftheblindmoleratislightindependent(Kimchi&Terkel 2001)and,althoughthispointhasnotbeenaddressedexplicitly,itishighlyprobablethatits compassisalsopolaritybased. The directional positioning of nests in molerats may express alignment behaviour towards the magnetic field’s polarity and per se does not prove that the animals use the magnetic compass also in navigation. However, the findings that the blind molerat uses magneticcuesasastable,externalreference(comparabletovisualcuesinsightedmammals) for orientation within complex maze systems (Kimchi et al. 2004) as well as recent neuroanatomicalfindings(describedbelow)indicatethatthemagneticcompassofmoleratsis involvedinbothpathintegrationandnavigation. 1.6 FromSignaltoSensor:TransductionMechanisms An extensive body of evidence demonstrates that two starkly different magnetoreceptive mechanismshaveevolvedinterrestrialvertebrates:(1)alightdependentmechanisminvolving aphotoinducedradicalpairreactionoccurringinaspecializedphotoreceptor(thesocalled RadicalPairMechanism(RPM),and(2)alightindependentmechanisminvolvingparticlesof biogenic magnetite (reviewed in e.g. Kirschvink et al. 2001; Ritz et al. 2002; Johnsen & Lohmann 2005; Wiltschko & Wiltschko 2005, 2006). Note, however, that despite the behaviouralevidenceforthesetwosystems,theprimaryreceptorshavenotyetbeenidentified in any animal with certainty. It should also be noted, that evidently these two distinct

MagnetoreceptionIntroduction 48 magnetoreceptive systems occur complementarily in newts and birds: apparently, these animalsusethelightdependentradicalpairmechanismtoderivecompassinformation,anda lightindependentmagnetitebasedmechanismtoderivemapinformation(cf.,Phillips1986, Phillipsetal.2002;Munroetal.1997a,b;Brassartetal.1999). 1.6.1 MagnetoperceptionviaBiochemicalProcesses The radicalpairmodel(RPM)assumesresonancephenomenaofexcitedphotopigmentsin the optic system and explains the transduction process of magnetoreception by the biochemical transfer of macromolecules to energetically higher states. It has been firstly suggested by Leask (1977, 1978) and then extended and complemented by Schulten & Windemuth(1986)andRitzetal.(2000).Themodelassumesthatmagnetoperceptionisbased onbiochemicalprocesses,inwhichmacromoleculesofthevisualsystem(e.g.rhodopsinor iodopsin)reactinanexcitedtripletstatedependentontheirrelativepositiontothemagnetic field’sdirection.Specialreceptorstructuresontheretinaarespecificallystimulated.Allradical pairhypothesesassumethataphotopigmentistransferredintoanexcitedstateviaacceptance ofaphoton.Magnetoreception,inthesemodels,isthusalightdependentsystem. Leask(1977,1978),inhis“opticalpumpingmodel”, presumes a resonance effect betweenoscillationsoftherespectivetripletconditionofamoleculefromtheopticsystem andtheoscillationofthesurroundingmagneticfield.Theopticalpumping,abyproductof thenormalvisualprocess,wouldexplainthenonpolarreactionstotheEarth’smagneticfield. ThenewermodelsbySchulten&Windemuth(1986)andRitzetal.(2000)resemble Leask’s,buttheyassumeabiradicalreaction,thatinteractswiththesurroundingmagnetic field. By acceptance of a photon, specialized photopigments are excited and form singlet radicalpairswithanunpairedelectron.Bysinglettripletinterconversion,excitedsingletpairs in antiparallel spin are transferred into excited triplet pairs in parallel spin. The Earth’s magnetic field influences the dynamics of this conversion between antiparallel and parallel spin.Thetripletgaindependsonthestrengthoftheexternalmagneticfieldaswellasonthe orientationoftheinvolvedmacromoleculestowardstheEarth’smagneticfield(fig.B3).As singlet and triplet products possess different chemical characteristics, magnetic compass informationcanbederivedthroughthecomparisonofdifferingtripletgainsindiversespatial directions. This mechanism, however, presupposes that respective receptors are fixed sphericallyinaspecificorder. Leask(1977),Schulten&Windemuth(1986),andRitz et al. (2000) suggested the retinalphotoreceptorsasthe locus ofmagnetoreceptionbecauseoftheirsphericalarrangement. Here, a specific excitation pattern could result from the magnetic field’s directions, out of

MagnetoreceptionIntroduction 49 whichtheanimal(here:thebird)couldthendeducethemagneticfield’saxialdirection(Ritzet al.2000).Inaccordancewiththishypothesis,thereareelectrophysiologicalstudiesshowing thatneuronsincertainareasoftheavianvisualsystem,namelyinthenucleiofbasalrootsof the optic nerves (nBOR) and in the optic tectum, respond to directional changes of the magneticfield(Semmetal.1984;Semm&Demaine1986;Beason&Semm1987).These resultswereonlyachievedunderlightconditionsandwithcompleteretinas.Itthusappears likelythatphotoreceptorsintheavianeyesimultaneouslyserveasmagnetoreceptors,andthat nBOR and the optic tectum, being identified asvisually specific to directions, maybethe informationsuppliersofthemagneticfield’sdirection.

Fig.B3Reactionschemeoftheradicalpairmechanism. After excitationviaaphoton,asingletradicalpair( S)isformedthroughan electrontransferfromadonatormolecule(D)toanacceptor molecule(A).Thesingletradi calpaircanpassoverintoatripletstate (T)viasinglettripletinterconversion.Thisinterconversiondepends onthesurroundingmagneticfieldasdoesthetripletgain.Triplet productspossessdifferentchemicalcharacteristicsthansinglet productsandcouldthusplayrolesinreceivinginformationonthe magneticfield’sdirection(fromWiltschko&Wiltschko2006). Consistentwiththismodel,bothcompassorientationofbirdsandnewtsdependon wavelength and/or light intensity (Phillips & Borland 1992a, b, c; Wiltschko & Wiltschko 2002). Whileinnewts,theputativereceptorsarelocatedinthepinealorgan(Deutschlander etal.1999a,b;Phillipsetal.2001),thedecisivemagnetoreceptionprocessesinbirdstakeplace intheeye(Wiltschkoetal.2002,2003).Interestingly,theyseemtoberestrictedtotheright eye(Wiltschkoetal.2002),withthisstronglateralizationalreadybeingdemonstrableatthe receptorlevel(Möller2006).Also,recentstudiesstronglysupporttheRPMmodel,showinga

MagnetoreceptionIntroduction 50 disruption of magnetic orientation by weak, oscillating radio frequency fields in the MHz range;theseaffectenergystatesinradicalpairsystems(Ritzetal.2004;Thalauetal.2005). Despitetheseresults,ethologicalstudiesonaputativewavelengthdependencyofmagnetic orientationspeakagainstaninvolvementofthenormalvisualpigmentsintheavianretina (Wiltschko & Wiltschko 2001, 2002). Because of these obvious contradictions, other photopigments are currently discussed as transduction candidates in radical pair based magnetoreception such as cryptochromes (Ritz et al. 2000), a recently discovered class of photoactiveflavoproteins.Thesepigmentshavebeenmainlyconnectedwiththeregulationof circadianrhythmsandhavemeanwhilebeendemonstratedindiverseplantandanimalspecies (reviewedinCashmoreetal.1999;Sancar2003).Inmagnetoreception,cryptochromesareof specialinterest,astheypossesschemicalcharacteristicsthatcouldbefunctionallycrucialfor theradicalpairmodel.Firstly,theycan,incontrasttoopsins,formradicalpairs(Giovanietal. 2003);secondly,theyabsorblightintheshortwaveareaofthespectrum(Sancar1994),under which migrating birds orient towards their ancestral migrating direction. Thirdly, since cryptochromecouldbedemonstratedinthemouseretina(Miyamoto&Sancar1998),ithas alsobeenfoundintwoothervertebrateretinas(Zhu&Green2001;Baileyetal.2002;Haque etal.2002).Allherementionedcharacteristicssupportpossibleinvolvementofcryptochrome as the supplier of directional information for the magnetic compass, and indeed, cryptochromesmayactasthemagnetoreceptormoleculesinbirds,possiblywiththehighly ordered and constantly directed opsins as potential, spherically fixed, and spatially neighbouringinteractionpartners(Möller2006;Mölleretal.2004;Mouritsenetal.2004). 1.6.2 MagnetoreceptionviaMagnetite The introduced cryptochrome molecules putatively underlying the RPM obviously work together with the wavelengthdependent avian compass (cf., Mölleretal.2004)andhence representanunsuitablemechanismfore.g.subterraneanrodentslivinginaphotondeprived ecotope.Lightindependentmagnetoreception thussupposedly implicatesmagnetiteparticles (cf., Kirschvink & Gould 1981; Shcherbakov & Winklhofer 1999; Kirschvink et al. 2001; Davilaetal.2003)asthemorelikelyresponsiblesignalmediatorinsubterraneanmolerats. Thereceptorderivesitssignaltransductionfromferromagneticparticlesembeddedinhighly innervatedtissue.Ferromagnetismdenominatesthestateofasubstance,whosespinmoments areallmutuallyparallelandconcordantandimpartatotalmagneticmomenttothedomain, i.e.tothelinkbetweentheatomandthecrystalstatethatisdefinedbytheatomsandthe resultingcrystalsizeandshape.Incontrasttoe.g.acompassneedlealwayspointingnorth,a ferromagneticgrainharboursmanymagneticmomentsinterferingwitheachother,leadingto

MagnetoreceptionIntroduction 51 anincreasedmagnetizationintensity J(cf.,Lanza&Meloni2006;forferromagnetisminarock seefig.B4). In the magnetite hypothesis, primary processes are assumed to be based on small particles of magnetite. These magnetite particlesarethoughttoorientlikeacompass needle corresponding to the magnetic field and thus transfer information to the sensory apparatus.Forseveraldecades,ferrousoxide

(Fe 3O4)hasbeenregardedapossiblebasisfor magnetic compass orientation in diverse species(Walcottetal.1979;Presti&Pettigrew Fig.B4 Ferromagneticgrainsinarock. Thegrainsacquiretheirspontaneous 1980; Kirschvink & Gould 1981; Kirschvink magnetization Jiaccordingtotheeasy etal.2001;Winklhoferetal.2001;Fleissneret directionsoftheEarth’smagneticfield,the magneticfieldvector F.Thisdomain al.2003).Thismagnetitetheorywasoriginally magnetization Jitendstoremaininthe originaldirection,i.e.intheeasydirection suggested by Lowenstam (1962), who correspondingtotheminimumvalueof discovered that the teeth of a primitive magnetostaticenergy.Itishowever,bythe torqueofanexternalmagneticfield( H),also mollusc were capped with magnetite. But it alignedintoitsdirection.Thetwodirections was probably the Greeks who first reflected correspondt otwoenergystates,separatedby abarrier.When Hisstrongenough,the upon the wondrous properties of magnetite, barrierisovercome,andthedomain’s spontaneousmagnetizationisrecreatedinthe the magnetic iron ore FeOFe 2O3andfamed field’sdirection.Thisresultingmagnetization lodestone (“leading stone”). The lodestone Jristhenaturalremanentmagnetization (NRM)(fromLanza&Meloni2006). appearsinGreekwritingsbytheyear800BC (cf., Mattis 1965). For more historical information and interesting details on magnetic characteristics,pleaseseethe“TechnoramaForumLecture”byP.Doherty,giveninextracts inAppendixAI. In contrast to the octahedral magnetite crystals found naturally in rocks, biogenic magnetite is always hexagonal and extremely uniform in size and shape. Magnetite’s membranebound nature rules out the possibility of other than biological origin, because magnetitecannotcrosscellmembranes(Kirschvink1983;Credle1988). Unlikeanyotherbiogenicmaterial,theverydensemagnetiteisbothferromagneticand anelectricalconductor.Asametallicironoxide,ithasbyfarthehighestelectricalconductivity ofanyknownbiogenicsolid.Itsconductivityisroughly6000timesbetterthanthatofthe axoplasminsquidneuronsandresultsfromelectrons hopping between Fe 2+ andFe 3+ ions occupyingadjacentgapsinitslattice;thispropertymakesitanexcellenttransmitterofsensory information (Kirschvink 1983). When of the proper size and shape, magnetite couples

MagnetoreceptionIntroduction 52 stronglywithmagneticfields,producinginteractionenergiesintheorderof kT (Kirschvink& Gould 1981). With such a material, a wide variety of magnetoreceptors are theoretically possible in which magnetic fields exert mechanical forces. Magnetite crystals coupled to secondaryreceptorcellssuchasmusclestretchreceptors(seebelow)mayconvertmagnetic informationintoelectricalsignals,andthissignalpatternmightthenchangewiththemagnetic direction or gradients that the animal faces. In principle, the crystals act as permanently magnetisedbarmagnetstwistingintoalignmentwiththeEarth’smagneticfieldifallowedto rotatefreely(Lohmann&Johnsen2000).Thoughthismagnetotaxishasformerlynotbeen consideredsensitiveenoughtoaccountforthedetectionoftheextremelyweakfluctuationsof thegeomagneticfield(Yorke1979),thefindingsofinnervatedmagnetitecrystalsforinstance intheneckmusculatureandbeaktissueofhomingandmigratorybirds(Presti&Pettigrew 1980,Fleissneretal.2003)showthatthesensitivityoftherespectiveparticlesmightwellbe highenoughtoatleastserveasadonatorofreferenceinformation.Secondly,magnetitebased receptors might be much more sensitive to changes in field intensity than are chemical receptionmechanisms,andthereceptors’charactermightdifferbetweencompasstypesand within their sensitive correspondence to diverse magnetic features (Lohmann & Johnsen 2000). It has, however, proved difficult to resolve magnetite microscopically. Also, iron oxidesarecommonenvironmentalandhistologicalcontaminants.Theycanalsooccurasby productsofdiversedegenerativebiologicalprocesses(Johnsen&Lohmann2005).Fixatives withlowerpHalsodissolvemagnetite(G.Fleissner&H.Burda,personalcommunication),so thatvisualizationofmagnetitecrystalswithintheircellularenvironmentremainsachallenging task(Johnsen&Lohmann2005).

Magnetitefollowsthemoleculeferrihydrite,anditistheironstorageproteinferrinin the molecule’s core that has been thought to be responsible for the mineralization of magnetitee.g.inpigeons(Walcottetal.1979).Yorke(1979)andKirschvink&Gould(1981) bothcreatedhypothesesonhowmagnetoreceptorsbasedonmagnetiteparticlescouldwork. Magnetite’sproperties varydirectlyasafunctionofitscrystalsizesandshapes,resultingina classificationoftwobasictypesofferromagneticorganelles,describedasdomains(seeabove): the singledomain (SD) and the superparamagnetic (SP) particles (Shcherbakhov & Winklhofer 1999). Principally, domains are divided into SD and multidomain (MD). The transgression from SD to MD occurs when the internal magnetostatic energy Em of a ferromagneticgrain,proportionaltothegrain’svolume,increasesuntil Emcanbereducedand thegrainsubdividesintotwo(ormore)partsinwhichthealignmentofthespinmomentsis antiparallel(fig.B5),andthetotalmagnetostaticenergyisdiminished(Lanza&Meloni2006).

MagnetoreceptionIntroduction 53

Inthecaseofmagnetite,theMDbehaviourcanbefoundforparticlesizesbetween 1to10m,andtheSDbehaviourforsizesbetween0.03to1m. Fig.B5 Magneticdomains. Thespinmomentsinasingle domain(SD)grainareparallel(a);inmultidomain(MD)grains (b,c),acertainnumberofmagnetizeddomainsminimize magnetostaticenergy.ThepassagefromaSDtoaMDgrain coversastatewiththegrainssubdividedinafewdomains;this stateiscalledpseudosingledomain(PSD)(fromLanza& Meloni2006). Ultrafine grains have a particular behaviour, called superparamagnetic (SP; approximately <0.05m) (fig. B6; Lanza & Meloni 2006). SD magnetite crystals act as permanentlymagnetisedbarmagnets.

Fig.B6 Magnetitegrainsizesandshapes. RangesingrainsizesandshapesforSP (superparamagnetic),SD(singledomain),PSD (pseudosingledomain)andMD(multidomain) particlebehaviour.Totheleft,acirculargrains,to theright,equidimensionalgrainsare shown(from Lanza&Meloni2006).

MagnetoreceptionIntroduction 54

Theirmagneticorientationremainsextremelystableuntilamagneticmomentoccurs thatislargeenoughtotwistthempassivelyintoalignmentwiththemagneticfieldifallowed torotatefreely(fig.B7). Fig.B7 Propertiesof magneticdomains. SD crystalsshowpermanent magneticmoments(red arrow)evenwhenan externalmagneticfield (MF)isabsent(B=0);SP crystalsdonot.Ifan externalMFispresent (blackarrow),SDcrystals alignwiththisfield.SP crystalsdevelopamagnetic momentthatchangeswith theexternalfield,withthe crystalitselfnotrotating (fromJohnsen&Lohmann 2005).

AchainofSDcrystals(asfoundintherainbowtrout,seebelow)mayexerttorqueor pressure on secondary receptors such as stretch receptors, hair cells or mechanoreceptors. Alternatively,rotationofintracellularcrystalsmightopenionchannelsdirectly,ifcytoskeletal filamentsconnectthecrystalstothechannels(fig.B8,seenextpage;Kirschvinketal.2001). SPmagnetitecrystalsdonothaveapermanentmagneticmomentandsocannotphysically rotateintoalignmentwiththeEarth’sfield;inanexternalfield,theyneverthelessdevelopa magneticmoment.Themagneticdirectionofaparticlecanchangewithoutmovingthegrain atall,asthegrainsizeisbelowthecriticalsizeforstability(Banerjee&Moskowitz1985).In an Earthstrength magnetic field, clusters of superparamagnetic particles (as found in the pigeon, see below) can attract or repel one another, depending on the orientation of the external field (Davila et al. 2003). These interactions can deform the matrix (e.g. the cell membrane)inwhichtheyareembedded(fig.B9,seenextpage). Moreover,SPparticlesoften formclusters,whosesizescanbeenlargedbythefactor 10 8comparedtotheirconstituent particles (Banerjee & Moskowitz 1985); recent simulations and experiments have demonstrated that a group of superparamagnetic clusters selfassembles into a chainlike structurethatbehaveslikeacompassneedleinanexternalfield(Davilaetal.2003).

MagnetoreceptionIntroduction 55

Fig.B8 Possiblemagnetitebasedreceptor modelsforSDcrystals. Thesemodelsarebased onmechanicalforcesofachainofmagneticSD particles.(A)Thegreyrectanglerepresentsa magneticparticlechainbeinganchoredtoa mechanicallyactivatedtransmembraneion channelthroughacytoskeletalfilament.Thetwo lowerfiguresshow3DmodelsofanSDchain linkedtomechanicallygatedionchannelsina receptorcellmembrane.In(B),thechainis connectedwithapivot(darkgreycube),thatis embeddedinthecellmembraneandconnectsthe chainwiththecellmembraneviamicrotubulelike strands(black),whilein(C),themagnetiteparticle rowislinkedwiththemembranedirectlythrough microtubulelikestrands.In(A),(B)and(C), torqueandthusmovementfromthemagnetite chainfollowingchangesoftheexternalMF,will causethechaintopullopenone(ormoreinB,C) ionchannel(s),allowingionstocrossandthuslead todepolarizationofthereceptorcell (afterKirschvinketal.2001;Walkeretal.2002).

Fig.B9 Apossiblemagnetitebased receptormodelforSPcrystals. Interacting clustersofsuperparamagneticcrystalsinthe membranesofneurons,followingthe orientationoftheexternalMF,attractorrepel eachother,deformingthemembraneand openingorclosingionchannels.WiththeMF paralleltothecellmembrane,e.g.,thecrystals’ internalMFs’alignment(redarrows)attract adjacentclusters likebarmagnetsbeingaligned inanendtoendrow(middle).Thisalignment resultsinacompressionofthemembraneand ionchannelclosure.WiththeMF perpendiculartothecellmebrane(bottom), theadjacentclustersbehavelikebarmagnetsin asidetosiderow,resultingininteractions stretchingthemembraneandopeningion channels(fromJohnsen&Lohmann2005).

MagnetoreceptionIntroduction 56

Magnetite particles associated with afferent trigeminal terminals, specifically the ophthalmicnervebranches,havebeenfoundintheupperbeaktissueofbirds(cf.,Hanzliket al.2000;Williams&Wild2001;Fleissneretal.2003),andalsowithintheolfactorylamellaeof the rainbow trout (Walker et al. 1997; Diebel et al. 2000). Congruently, impairment experiments involving anaesthesia and bilateral section of the ophthalmic nerve confirmed thatthisnervemightwellbethecarrierofmagneticfieldinformationtothebrain(Beason& Semm1996;Moraetal.2004).Electrophysiologicalrecordings(Semm&Beason1990;Walker etal.1997)aswellasconditionedchoiceexperiments(Walkeretal.1997;Moraetal.2004) suggested further that the magnetoreceptors associated with the ophthalmic nerve do not participateinthecompass,butinsteadyieldmapinformation.Thissuggestionarosebecause theneuronsreactedsolelytointensitybutnotdirectionchangesofthemagneticfield,for instanceshowninrecordingsofthecorrespondingnerveofthetrout(Walkeretal.1997).In Ansell’s molerats, our preliminary histological(Burdaunpubl.)andexperimental behavioural studies (Chapter B2.3) suggest thatthecornea,i.e.apaired,highlymechano sensitive ocular structure innervated by the ophthalmic nerve, may be the seat of magnetitebased receptors (for a vertebrate model of such receptors see fig. B10). In

contrast, CernudaCernuda et al. (2003) Fig.B10 Apossiblemagnetitebased receptortype. Threedimensional reportedfindingsofcrystalloidbodiesinthe reconstructionoftheputativemagnetite basedreceptorcellinthetroutvisualizedby inner segments of retinal photoreceptors of confocalmicroscopy.Onesingleopticalslice theAnsell'smolerat.Theauthorsinterpreted takenatthelevelofthemagnetiteparticle chain(arrow)isshownoffsetfromtherestof thesestructuresaspotentialmagnetitegrains, thereceptortoshowitsplacement(Diebelet suggesting the retinal photoreceptors as the al.2000). respectivemagnetitebasedstructure. Otherstudiesaimedatidentifyingamagnetitebasedreceptor,workedwithachange oftheparticlemagnetization.InAnsell’smolerats,exposuretoastrong,shortmagneticpulse (0.5T,5ms)resultedinanimmediate,longtermshiftofthepreferrednestingdirectionfrom SouthEast (160°) to East (86°) (Marhold et al. 1997b), hinting at a change in magnetic properties of the responsible receptor. In migrating birds, a similar pulse magnetization induced a change of the preferred migrating direction, depending on the applied pulse’s direction (Beason et al. 1995). With the ophthalmic nerve anaesthetised, pulsing did not disturbthebird’smagneticmigrationorientation(Beason&Semm1986).Theseresultsalso suggest that birds have magnetitebased receptors that yield information on the magnetic

MagnetoreceptionIntroduction 57 field’s intensity, but not on its direction (e.g. compass information). With help of such informationonintensitydifferences,animalscantheoreticallybuildupa„navigationmap“ overtime,toassistinlocatingtheirpositionandsearchingforknownplaces.Thetrigeminal characterofthedirectionalandnotpositionalmagneticfieldinformationhasbeensupported byNěmecetal.(2001,2004). 1.7 FromSensortoBrain:NeuronalProcessing Incontrasttothewealthofinformationontherolethatthemagneticsenseplaysinanimal orientation,onitsdistributionacrossanimaltaxa,andonitsbehaviouralcharacterization,our knowledgeoftheneuralsubstratesubservingmagneticorientationremainsmeagre(reviewed inJohnsen&Lohmann2005;Němecetal.2005;Wiltschko&Wiltschko2005):onlyafew studieshavetriedtoshedlightontheneuralaspectsofmagnetoreceptioninmammals. Early electrophysiological studies have demonstrated the presence of magneto responsiveunitsinthepinealorganoftheguineapig(Semmetal.1980),thelaboratoryrat (Reussetal.1983),andtheMongoliangerbil Meriones unguiculatus (Stehleetal.1988).Magnetic stimulationwasreportedtoaffectpinealmelatoninsynthesisinthelaboratoryrat(Olceseetal. 1985;Reuss&Olcese1986;Welkeretal.1983).Interestingly,theseeffectsappearedtobe lightandvisiondependent(Olceseetal.1985,1988;Reuss&Olcese1986),indicatingthe involvementofaphotoreceptorbasedmagnetoreceptionmechanism. Anothermechanismcomprisessocalledsecondmessengersignalcascades,onwhich thestimulationeffectisofalongeractingcharacter.Thesecascadesinvolve immediate-early genes (IEGs;alsocalled second messengers ),genesexpressedrapidly,i.e.withinminutesafterastimulus. Thus, they are also called primary response genes . IEGs induce many functionally different products. Among others, they encode, very quickly after stimulation 2, the production of ‘inducible transcription factors’ (ITF; e.g. Jun or Fos) 3. Subsequently, transcription and/or repressionofothergenesiscontrolledbypreexisting transcription factors and results in a change of neuronal response to the subsequent stimuli (Herdegen & Leah 1998) 4. In this context, the stimulus inducing ITF production does not have to be a ‘fixed’ event. Also ‘disinhibition’or‘negativestimuli’,i.e.theabsenceofthe‘positivestimulus’(e.g.deprivation oflight),caneffectivelyinduceITFs(Herdegen&Leah1998).Mappingoftheexpressedgene

2Thetranscriptionfactorsrepresent“proteinsthatcontroltheexpressionofgenes,andassuchtheyarethe masterregulatorsofeverycell’sdevelopmentandfunctioning.”(Herdegen&Leah1998) 3Socalled‘protooncogenes’denominatemutatedIEGencodedproteinsthatcausetransformation. TransformationcanhoweveralsoresultfromotherIEGencodedproteinssuchasJunBandFosBthatco operatewithprotooncogenes(Herdegen&Leah1998). 4Thepreexistingtranscriptionfactors,thatcontroltheonsetofIEGexpressionquicklyaftercellular stimulation,canbefounde.g.inthenervoussystemwhenexternalstimuliareabsent.Theyarethuscalled ‘constitutivetranscriptionfactors’(CTFs).

MagnetoreceptionIntroduction 58 productsyieldsatimelypictureoftheactualactivityinresponsetothestimulus.Obviously, transcriptionfactorsplayrolesinbothdevelopmentandfunctionsofthenervoussystem,and alsoinitsresponsestodiversestimuli.Inanimals,theextentofITFexpressionseemsrelated to the importance of the stimulus (Herdegen & Leah 1998). Recently, functional neuroanatomicalmappingbasedonmonitoringthisstimulusevokedexpressionofITFshas beenintroducedintomagnetoreceptionresearch(Němecetal.2001).Thismappingmethod canbeusede.g.toidentifyneuronsspecificallyactivatedbymagneticstimuli,anditalsooffers cellularresolutionandthepossibilitytoscreenforneuronalactivationthroughoutthecentral nervoussystem(reviewedinNěmecetal.2005).PreviousexperimentsperformedinAnsell's moleratsprovidedevidenceformagneticinputtothesuperiorcolliculus(Němecetal.2001). Interestingly, homologous brain regions of birds and mammals seem to be coopted independently into magnetic information processing: while in birds, magnetoresponsive neuronscouldbeidentifiedinsuperficiallayersoftheoptictectumreceivingarobustvisual input(Semm&Demaine1986),magnetoresponsiveneuronsinmolerats,ontheotherhand, werefoundwithintheintermediatelayersofthesuperiorcolliculusdominatedbytrigeminal input(Němecetal.2001)visualinputtothesuperiorcolliculusisextremelyreducedinthese rodents(Němecetal.2004).Sinceithasbeenrepeatedlydemonstratedthatmagnetitebased magnetoreceptionisassociatedwiththetrigeminalnervesystem,thedataprovidedbyNěmec etal.(2001)indirectlysupportthehypothesisof amagnetitebasedcompassmechanismin Ansell'smolerats. 1.7.1 Immunocytochemicalmethods Immunocytochemistry(ICC)isacombinationofimmunologyandmicroscopy.Itsprinciples are based on visualising geneproductsexpressedunder certain conditions or activities, i.e. antigens thatdisplayneuronalactivity(e.g.“cFos”,theproteinexpressedbythegene“cfos ”, thecellularcounterparttotheviralgene“ fos ”)(Beesley1993;Herdegen&Leah1998).These proteins can be markedbyappropriate antibodies (AB)thatbindveryspecificallytodiverse partsof‘their’antigeninthetissue.Thereactioncanbelocalisedwithrespecttocellstructure by the attachment of a marker to the antigenantibody complex. This marker is microscopically dense, and thus allows visualisation of the complex distribution across a tissue.ICCisahighlyspecificandarelativelyquickandsensitiveroutinemethod.However, toachieveahighsignaltobackgroundratioforunambiguousresults,severalaspectssuchas theantibody,themarkerorthelabellingtechniqueneedtobeconsidered.Theexactantibody choice determines the full range of all other used immunocytochemical reagents, as they dependononeanotherconsecutively(cf.,Beesley1993).

MagnetoreceptionIntroduction 59

Polyclonalandmonoclonalantibodies,eachwithdistinctive characteristics, can be usedinICC.Whereaspolyclonalantibodyseracompriseamixtureofhighaffinityantibodies, thatareactiveagainstdifferentepitopesontheantigen,monoclonalantibodiesarepuresera withoneofthepolyclonalconstituents.Theantibodies,glycoproteins,derivefromtheseraof hostanimalsafterantigeninjectionsthatinitiateantibodyproductioninthehost’sspleenbyB lymphocytes and plasma cells; these hosts are, in most cases, rabbit, sheep, or goat (cf., Beesley1993).

P AB Complex B P B A B P B B

P B A B P BY (Peroxidase avidin-biotin complex)

B Biotinylated Anti-Rabbit lgs Y Rabbit Primary Antiserum

Antigen

Fig.B11 Avidinbiotincomplex(ABC)immunolabellingmethod.ABCmethodwith theBiotinylatedandPeroxidaseAvidinbiotincomplex(ABC)conjugated2°AB( Biotinylated Anti -Rabbit Igs )directedagainsttheimmunoglobulinoftheanimalspeciesinwhichthe1° AB( Rabbit Primary Antiserum )hasbeenraised.Theterm Anti-Rabbit Igs denominatestheAnti Rabbitimmunoglobuline(Ig)ofthe antibodysclass(figuremodifiedafterBeesley1993).

To localise antigens via antibody marking, several possible immunocytochemical methodscanbeapplied,thechoiceofwhichdependsondiverseparameters.Here,onlythe appliedAvidinBiotinmethodwillbeintroducedindetail(fig.B11).Othertechniques(Direct method; Twostep indirect method; Protein A method; Unlabelled antibody methods; or Immunogoldmethods)canbefoundintherespectiveliterature(e.g.Beesley1993).Generally, methodsusingprimary(1°)andsecondary(2°)antibodiesarebasedonthepremisethatthe

MagnetoreceptionIntroduction 60 unlabelled1°ABisvisualisedbyalabelled2°AB,thatisdirectedagainsttheimmunoglobulin oftheanimalspeciesthe1°ABderivesfrom(e.g. rabbit primaryantiserum).Theavidinbiotin techniquesgoastepfurther:Avidinisabasicglycoproteinwithahighaffinityforthesmall watersoluble vitamin biotin. Biotin can be conjugated to various biological molecules, includingABs.Asmanybiotinmoleculescanbeattachedtoasinglemoleculeofprotein,the biotinylatedproteincanbindtomorethanoneavidinmolecule.However,stillthecolourless chromogenneedstobeconvertedintovisible,colouredendproducts.Thisjobisdoneby enzymesubstrate reactions, such as the hydrogen peroxidediaminobenzidene reaction that producesabrownendproductinsolubleinalcohol,xylene,andotherinorganicsolvents(cf., Beesley1993). 1.8 Arisingquestions Thepictureofhowanimalsperceiveandprocessdirectional information from the Earth’s magnetic field is still incomplete, as our knowledge of the associated physiological and neurobiologicalprocessesissketchy.Thoughinitialmagnetoreceptionstudiesinsubterranean rodents hint at the involvement of thesuperiorcolliculus (Němec et al. 2001), the largest enigmaisconnectedwiththereceptorlevel,becauseitisstillnotclearwhichtransduction mechanism(andthuswhichunderlyingreceptortype)playsrolesinthismammalianmagnetic orientationsystem.Withthesensoryreceptorformagneticinformation,acoherentprocess fromreceptorcelltoethologicalresponsecouldbedescribedandcouldthusinterconnectthe stateoftheartneurobiologicalwithethologicalandfunctionalmorphologicalresults. Asitishighlyprobablethatthereisnogeneralvertebrate“magneticsense”,andasa retinalreceptortypehasalreadybeendescribedinmigratingbirds(indetailinMöller2006),it would be of interest to better describe the respective, maybe differing, receptor type in a mammal,themagnetoreceptionmodelspecies Fukomys anselli .Questionsrelevanttothisthesis include:Isthetransductionmechanisminmammalsthesameasinbirds,i.e.canbiochemical processesbeexcludedandmagnetitebesupported,asearlierstudiessuggest?Wheredoesthe transduction mechanism take place, i.e. where are the sensory receptors located in the Zambianmolerat?Cantheybevisualized?Ismagnetoreception,asinbirds,lateralised?

MagnetoreceptionMaterial&Methods 61

2 MATERIALANDMETHODS 2.1 StudyAnimals Thetestanimalsforallstudiesinthispart(B)werewildcapturedZambianmoleratsortheir captivityborn offspring derived from the breeding stock at the Department of General Zoology, University of DuisburgEssen (see also Chapter A2.1). The tested adult molerat pairsbelongedtothetwocloselyrelatedsibling Fukomys species, F. anselli and F. kafuensis as wellastotheirhybrids.Importantly,asevidencedinmanypreviousaswellascurrentcontrol experiments,bothspeciesdonotdifferintheirdirectionalpreferencesinnestingexperiments. Mostpairsusedinthisstudyconsistedofamaleandafemalebreeder,andoccasionallyof siblingpairs.Eachanimalcarriedatissuecompatible,subcutaneoustransponder(biocapsule, 12 x 2.1 mm, ISOstandard 11784) with a unique number code (ALVICtransponder, ALVETRA GmbH, Neumünster, Germany), ensuring individual identification. Molerats were,ifnotdescribedotherwise,housedatambientroomtemperatureundernaturaldaylight in glass cages filled with a layer of horticultural peat and were fed ad libitum with carrots, potatoes,lettuceandapples.Experimentswereperformedunderthelocalgeomagneticfield ofEssen,Germany(45T;66°inclination);exceptionsaremarkedwithinthetext. 2.2 RulingoutBiochemicalProcesses Assumingthattheradicalpairswithinacellaresufficientlyordered,thesensitivityofradical reactionsonthedirectionofanexternalmagneticfieldcanprovidethebasisforamagnetic compasssense(seechapterB1.5.1.;Ritzetal.2000).Weakintensityhighfrequencyfieldsin theMHzrangeinterferewiththesinglettripletinterconversionandthusprovideadiagnostic tooltoidentifyradicalpairprocesses:thepatternofhighfrequencyeffectsonthemigrating behaviourhasforinstanceshownthattheavianmagneticcompassisbasedonradicalpair processes(Ritzetal.2004;Thalauetal.2005;Wiltschkoetal.2005). 2.2.1 Studyrationale Thesefindingsraiseaquestionaboutthenatureoftheprimaryprocessesunderlyingmagnetic compass mechanisms of other vertebrates than birds, like marine turtles and mammals (Wiltschko & Wiltschko 1995, 2005). We analyzed the magnetic compass mechanism of Ansell'smolerats.Incaptivity,thesesubterraneanrodentstendtobuildtheirnestspreferably inthesouthernhalfofaroundarena,areliablespontaneous behavior that has been used

MagnetoreceptionMaterial&Methods 62 before to analyze the functional mode of their magnetic compass (e.g. Burda et al. 1990; Marholdetal.1997a).Thoughmagnetiteseemsabettercandidateastheresponsiblemediator (seeaboveB1.5.2)insubterraneanmolerats,wewishedtoexcludeRPMbehaviourallywith thedescribedsetupusedsuccessfullyinbirdsby examining the molerats’ directional nest buildingpreferenceinacirculararenaundercertainoscillatingmagneticfields.Ourhypothesis was that molerat directional orientation should not be affected under oscillating magnetic fields,thushintingatamagneticsignaltransductionprincipleotherthanRPM,supposedly magnetite. 2.2.2 Studyprocedure The experimental protocol followed the standardised protocol for nesting experiments in circulararenasasdescribedinBurdaetal.(1990b)andMarholdetal.(1997a).Eightmolerat pairs( Fukomys spec .)weretransportedfromthelaboratoryinEssentotheBiologicalInstitute (PhysiologyandEcologyofBehaviour),UniversityofFrankfurtamMain,twoweekspriorto testing for habituation and avoidance of potential homing behavior. They were housed in animal housing facilities in plastic rodent cages at ambient room temperature and undera 12:12lightregime.Testingtookplaceindarknessinfourwoodenhutsinthegardenofthe Frankfurtinstitutewherethelocalgeomagneticfieldof46T,66°inclinationwasundisturbed (fig.B12).

Fig.B12 WoodenhutwithcirculararenaplusHelmholtzcoils. Woodenhutswithindoor arenasandHelmholtzcoilsinthegardenoftheDepartmentPhysiologyandEcologyofBehaviour, J.W.Goethe University,Frankfurt/Main.Localgeomagneticconditions:46T,66°inclination.(A) Woodenhu twithcoilcontrolelementsinwhiteboxplacedoutside.(B)Helmholtzcoilaround plasticarenainsidewoodenhut.(C)Arenawithrandomlyscatterednestingmaterialandfooditems beforereleasingthemolerats.

MagnetoreceptionMaterial&Methods 63

Theanimalsweretestedinpairs.Sixpairscamefromtwocoloniesconsistingofsix animals; here, tested animals were returned to their colony directly after testing. The experiments were performed in spring 2004 and 2005, using the same pairs in both years exceptforonegroupthathadtobereplaced. We exposed the molerats to a broadband high frequency field with frequencies rangingfrom0.1to10MHz(intensityof85nT)andtoa1.315MHzfieldof480nTand4800 nTintensity,bothpresentedvertically,i.e.withthehighfrequencyfieldvectorsata24°angle tothevectorofthestaticgeomagneticfield.Inpreviousstudies,thesehighfrequencyfields hadcompletelydisruptedtheorientationofbirds(Ritzetal.2004;Thalauetal.2005). Toproducethebroadbandhighfrequencyfieldandthe1.315MHzfieldof480nT, weusedtheequipmentfromthecorrespondingbirdexperiments(Ritzetal.2004;Thalauet al.2005):acoilantennaofasinglewindingofcoaxialcablewith2cmscreeningremoved oppositethefeedwasmountedhorizontallyonawoodenframesurroundingthetestarena. OscillatingcurrentsfromahighfrequencygeneratorwereamplifiedbyaHFamplifierand werefedintothecoilthrougharesistanceof51.Forthe1.315MHzfieldof4800nT,the arenawassurroundedbyadoublewindingofcoaxialcablealsowith2cmofthescreening removed.Thehighfrequencyfieldsweremeasuredbeforeeachtestsessionwithaspectrum analyzer.Fordetailsontheequipmentused,seeRitzetal. (2004).In2004,weperformeda series of control tests in the geomagnetic field before we started the tests in the high frequencyfieldsandanothercontrolseriesinterspersedwiththehighfrequencytests.Several controlswereundertaken: Apriori controlswereallperformedbeforetheparticularpairsof moleratsweretestedinthehighfrequencyfieldforthefirsttimetodocumenttheirnormal behaviour;the Intermediate controlswereinterspacedwiththetestsinthehighfrequency(HF) fields. Since there was no difference between the molerats’ behaviour, thus indicating no aftereffects,thecontroltestsin2005wereperformedbeforeandbetweenthehighfrequency tests( Alternating controls). For testing,themoleratpairsweremovedinclosed opaque plastic buckets to the roundtestarenasinthewoodenhuts.Weusedfourhutswithfourarenasduringthetrialsand randomly changed distribution of tested pairs among the huts. The plastic arenas had a diameterof80cmandawall30cmhigh,theywereplacedonwoodentables60cmhigh.A plasticbucketof17cmdiameterwasplacedinthecentertoensureanalyzablenestpositions bypreventingtheanimalsfrombuildingnestsinthearena’smiddle.Thegroundofthearena was covered with peat; a sufficient amount of strips of tissue paper was homogeneously scattered to provide nesting material,andfooditems (potatoes and carrots) were arranged radially(fordetails,seeBurdaetal.1990b).Whenthetestbegan,theanimalswereleftinthe middleofthearenaintheirtransportbucketfora30min.habituation;thentheywerereleased

MagnetoreceptionMaterial&Methods 64 intothearena.Thearenawasclosedwithanopaqueplasticlid,resultinginalightlevelofless than 0.005 mol photons ⋅ m−2 ⋅ s−1 inside the arena (measured in mW/m 2 and converted) withanOptometerP97101(GigahertzOptik,Puchheim,Germany)witharadiometricprobe (siliconphotoelement,RW37032,400800nm). Anestwasconsideredcompletewhenmost oftheavailablepaperstripsweregathered,whenanimalssleptinitorwhenthetissuepile showedsignsofhavingbeenusedforsleeping.Thepositionofthenestwasrecordedandits directionwithrespecttogeographicnorthwasdetermined.Theanimalsweretestedonceper day,inthemorningorintheafternoon,mostlywithadaybetweentests.Thetimeuntilanest was constructed varied between 30 min and about 6 h, with great differences between individualgroups,assomeanimalsregularlybuiltfasterthanothers.Theoutsidetemperature alsohadacertaininfluence,withnestbuildingusuallybeingfasteratlowtemperatures.When theanimalshadnotbuiltanestwithin6h,theywere normally removed to their housing cages;inexceptionalcases,theywereleftinthearenaandbuiltanestafterupto9h.After eachtestsession,thepeatwasremovedandthearenacleanedandwashedwith10%acetic acid.Eachgroupofanimalswastestedwithitsindividualpeat. 2.3 NarrowingdowntheReceptorSite After exclusion of biochemical processes underlying the magnetoreception transduction mechanismsinAnsell’smolerats,theseconddiscussedmechanism,magnetite,seemedmuch more likely. The responsible signal transmission has been frequently associated with magnetitebasedreceptorsinnervatedbytheophthalmicnerve,orwiththeinvolvementofthe eye,particularlytheretina.Introuts(Walkeretal.1997)andsomebirdspecies(Fleissneretal. 2003; Hanzlik et al. 2000; Williams &Wild2001;Winklhofer et al. 2001), clusters of tiny magnetitecrystals(diameter~13m)werefoundinregionsinnervatedbytheophthalmic branch of the trigeminal nerve. Physiological studies confirmed that this nerve might well carrymagneticfieldinformationtothebrain(Beason&Semm1996;Moraetal.2004).The cornea,beingadistinct,paired,andhighlymechanosensitiveocularstructureinnervatedby theophthalmicnerve,appearedpredestinedasaseatforreceptorstranslatingmagneticfield information into mechanical signals, as suggested in some models (Walker et al. 2002). Preliminaryfindingsofferrousinclusionsinitsepithelium(BurdaH.unpublished;fig.B14, following page) match its characteristics as a distinct and highly mechanosensitive ocular structurearrangedinpairsandasbeinginnervatedbytheophthalmicnerve.Wethusstudied aputativeinvolvementoftheeye,i.e.thecornea,inmoleratnestingbehaviour.Tothisend, local anaesthesia was applied to the cornea in order to affect putative respective primary magnetoreceptors.

MagnetoreceptionMaterial&Methods 65

Becauseofthelimitationsthatbehaviouralexperimentsimposeonourunderstanding ofmagnetoreceptivemechanisms,itisimportanttonarrowdownthereceptorsiteinorderto identifytheprimaryreceptorsunambiguouslybymeansofneuroanatomy.

Fig.B13Ferrousinclusionsinthemoleratcornealepithelium. Inclusionparticlesina Fukomys anselli corneaarevisualizedbyPrussianbluestainingasindicatedbyarrows(photo: HynekBurda).

Refiningthecurrentknowledgeonbothseatandcharacteroftheputativelymagnetite basedmagnetoreceptorsisacrucialprocedureinAnsell’smolerat,particularlyasmagnetite, in contrast to chemical magnetoreception, enables, next to positional information via perceiving intensity changes, gathering directional information about the field polarity (Kirschvink & Gould 1981, Ritz et al. 2000); it thus matches the compass mode of subterraneanmolerats. 2.3.1 Studyrationale Weagainusedthespontaneousnestbuildingdriveof Fukomys moleratstoexaminewhether mechanosensitivedesensitisationduetolocalanaesthesiaofthecornealregionaffectstheir magneticcompassorientation.Inourestablishedexperimentaldesign(seeabove),molerats place their nests predominantly in the southern sector of a circular arena under control conditions (cf., Burda et al. 1990b). We expected that any direct impairment of primary magnetoreceptorswouldresultinrandomnestplacementratherthanintheusualdirectional behaviour. Although the magnetic compass of these rodents has been described as light independent(Marholdetal.1997a),thepossibilitythatcornealanaesthesiaactuallydisrupteda photoreceptorbasedmagnetosensorysysteminthemolerats’eyeshadtobeexcluded.We

MagnetoreceptionMaterial&Methods 66 thus used a twoarmed maze preference test to assess the effect of the same anaesthetic treatmentontheanimals’abilitytodiscriminatelightfromdarkandtonestpreferentiallyin darkness(seeChapterA2.2&A3.1). Astheresultssuggestedthatthereceptorsinvolvedinmagnetoreceptionlieinthearea innervated by the ophthalmic nerve, we thus performed further nesting experiments in a circular arena under the normal, local geomagnetic field. This time, one study group was supposed to undergo a neurotomy of the ophthalmic nerve, and the second study group bilateralenucleation.Thehypothesiswasthattranssectingtheophthalmicnervewouldresult inabehaviouralresponse,thatwould,togetherwiththenestingresponseafterenucleation, narrowdownthestillunclearreceptorlocation:still,thefirststudydidnotshowwhetherit wasthenasalregion,theretina,theHarderianglandorthecorneaharbouringthereceptors,as the anaesthetic fluid might have anaesthetised e.g. the nose via the lacrimal duct. For visualization,thehypotheticalframeworkisgivenintab.B1. TableB1 Hypotheticalframeworktolocatethemagnetoreceptorsite. Thetablegivesthe hypothetical framework of the experiments undertaken to narrow down the receptor site of magnetoreceptioninZambianmolerats(2.4).Neurotomydenotesthetranssectionoftheophthalmic nerveinbotheyesoftheanimalsofexperimentalgroup1,enucleationdenotestheenucleationofboth eyeballsoftheanimalsofexperimentalgroup2.Experiment3comprisesenucleationofanimalsof experimentalgroup1incaseofnoneurotomyeffects.H.gland=Harderiangland. Experiment Nestingbehaviour Putativesite Resultingsite 1Neurotomy adisturbed nose,corneaorH.gland→ bundisturbed retina?→Exp.3 cornea 2Enucleation adisturbed eye→ bundisturbed anyotherside [3Enucleation] adisturbed retina retina bundisturbed anyotherside

MagnetoreceptionMaterial&Methods 67

Shouldthenestingbehaviourbedisturbedintheexperimentfollowingenucleation,it wouldbeclearthatthereceptorsarelocatedintheeye.Thecorneawouldthenbeclearly supportedasthesiteformagnetoreceptors.Should(a)nestingbehaviourofZambianmole ratsbedisturbedintheexperimentfollowingneurotomyoftheophthalmicnerve,thisresult wouldconfinethelocationofthereceptorsitetothecornea,thenose,ortheHarderiangland. However,togetherwithpossiblescatterednestingresults from the enucleation experiment, nose as well as Harderian gland could then be excluded. Should nesting behaviour be (b) undisturbedaftertranssectionoftheophthalmicnerve,thisresultwouldhintattheretina ratherthanthecorneaasthereceptorsitebecausetheafferentpathwayoftheretinaisviathe opticnerve.Afterasubsequentenucleationinthesameanimals,thenestingbehaviourshould inthiscasebedisturbed. Duetocomplicationsinthetimelypreparationofthenervetranssectionanddueto seasonal restrictions on the outside experiments following this operation, this PhD thesis presentsresultssolelyfromthecornealanaestheticandenucleationexperimentsandleavesthe stillpendingnestingafterneurotomyteststothefuture(seeOutlook). 2.3.2 Studyprocedure The experimentalprotocolappliedtothestandardised protocol for nesting experiments in circulararenasasdescribedin2.3and2.4(Burdaetal.1990b;Marholdetal.1997a). Inthetimelyprecedinganaesthesiaexperiments,werepeatedlytestedorientationinsix adultpairsofmolerats(breedingpairsorsiblingsfromlargercolonies)withfourreplications ineachcondition.Nexttothiscommonlyusedsecondorderdata,wetestedallavailablepairs of molerats from our breeding stock once per condition ( n = 40 in controls; n = 42 in treatmentswithtwomorepairsduetorecentmating)obtainingthusalargedatasetwithout replicates(Batschelet1981).Forcontrol,thecorneawastreatedwithsodiumchloridesolution usedformedicalandphysiologicalpurposes.Moleratpairsweretestedonwarmdaysinthe year2005inanopaqueplasticarena(80cmdiameter;0.5mmthick)insilentoutsidepremises oftheUniversitycampusinEssen,intheundisturbedlocalgeomagneticfield.Thearenafloor wascoveredwithathinlayerofpeat;tissuepaperstripsandcarrotpieceswerespreadradially onthesurface.Duringtesting,thearenawasclosedwithalightimperviouslidtoexclude possiblevisualorientation.Moleratscollectedthetissuepaperandbuiltanest;theexactnest positionwasthenrecordedreferringtogeographicNorth(Fig.B14,nextpage).Toexclude ordereffects,halfofthesubjectsofthesingulartestedgroup(testedoncepercondition)were testedfirstincontrolswithsodiumchloridetreatment, the otherhalffirstinthetreatment condition with corneal anaesthesia. In the repeated tested group, the molerat pairs were

MagnetoreceptionMaterial&Methods 68 testedalternatingundercontrolandcornealtreatmentconditionswithatleastadaybetween subsequenttests.Testslastedabout30minutestoanhour.Anaesthesiawasappliedrepeatedly whennonestingbehaviourhadbegunafterhalfanhour. Sodium chloride solution or 2% Xylocain ® solution (active substance: Lidocain hydrochloride;AstraGmbH,Wedel,Germany),asurfaceanaestheticusedroutinelyinmedical practice for mucous membrane anaesthesia, was gently dropped into (NaCl) or applied generouslytotheopenedeyeswithasoftbrush(viscousXylocain ®).Duringneithercontrol nor treatment application did the animals show any adverse behaviour such as teeth chattering,distressoraggressionvocalisations.Noeffortstocleantheireyeswereobserved. InfollowingtestsonapossibleeffectofXylocain®onvision,i.e.onthemolerats’ retinalperformance,moleratpairshadtomakeachoicebetweenadarkandanilluminated chamberfornestingwiththesameanaethesiatreatment;theirchoicewasrecorded.

Fig.B14 Studysetupduringnestingexperimentsincirculararenas .Nestingexperimentsin circulararenaswereperformedinoutdoorpremisesoftheDepartmentofGeneralZoology, UniversityDuisburgEssen.Localgeomagneticconditions:45T,66°inclination.(A)Application ofXylocain ®withsoftbrushduringfixationinapaperroll.(B)Preparationofthecirculararena withnestingmaterialandfooditems.Thearenawasinsertedintoanearthhole.Ontheleftside,a thermometerishangingintothearena.(C)Arenaclosedandshieldedduringexperimentswith moleratsnesting.(D)Moleratgatheringpapermaterial.(E)Nestingfinished.(F)Nestingswale.

Intheenucleationexperiments,wetestedsixadultmoleratpairs(sixfemalesandsix males)underthelocalgeomagneticfieldofEssen,Germany.Animalswereeitherbreeding pairswithoutanyoffspringorsiblingsfromalargercolony.Animalsweretestedonwarm

MagnetoreceptionMaterial&Methods 69 daysintheyear2006asdescribedabove,butina different outside location of the Essen University campus, i.e. within an unoccupied greenhouse made from plastic walls with an aluminiumframe.Eachmoleratpairunderwentfour replications under control conditions andsixreplicationsunderexperimentalconditionsafterenucleationinordertoobtainsecond order data sets. The difference in replicate numbers resulted from the circumstance that temperatureconditionswerefavourableforoutsidetestinguntilOctoberandallowedalonger testingperiodthanpreviouslyassumed.Asthedefinitenatureoftheenucleationoperations didnotallowustomixcontrolexperimentswithtreatmentexperiments,wecouldneither enlargesamplesizeincontrolsnorexcludeordereffectsbymixingcontrolsandtreatments. Enucleationhadnonegativeeffectontheanimals’healthstateoftheirbehaviourorstatus withinthecolonyafterreturn(fig.B15).

Fig.B15 Moleratsafterenucleationoperations. (A,B)Twoenucleatedmoleratssittingintheir nestsixdaysafterenucleation.Theleftanimal’slefteyeiscoveredwithapieceofsubstrate.(C) Anotherenucleatedmole ratfourdaysaftertheoperation.

Wealsoperformedfourreplicateswithsixdifferentmoleratpairsdesignatedforthe futureneurotomywithoutknowingthattheoperationswouldbepostponed.Theavailable data,however,enabledustocomparethetwocontroldatasetsandthustotestthecontrol resultsforvariabiltyand/orstabilityofthedirectionalpreference. Animalsweredeeplyanaesthetisedwithanintramuscularinjectionof0.04ml/100g ketamine/rompun (10% ketamine and 2% rompun) (PitmanMoore GmbH, Burgwedel, Germany).Bodytemperaturewasmaintainedat36°Cwithahomeothermicblanket,andheart rate(pulse)andrespirationwerecloselymonitored.Theeyeregionwascarefullyshavedwith smalltitanscissors(WorldPrecisionInstruments,Sarasota,FL,U.S.A.).Forlocalanaesthesia andamyorelaxanteffectonthemusculusretractorbulbi,0.2mlofaLidocainsolution(0.1%) wasinjectedbehindtheeyeballwitha1mlBDMicroFinesyringe(0.33mm(29G)x12mm; BDConsumerHealthcareEurope,LePontdeClaix,France).Eyeswerethenremovedwith titanium surgery instruments (World Precision Instruments, Sarasota, FL, U.S.A.) and transferredintoPFAfor30min.andthenintoPBSforstorageandlateranalysis.Thewound

MagnetoreceptionMaterial&Methods 70 was covered with Tyrosur ®antibioticpowder(activesubstance:1%Tyrothricin; Engelhard Arzneimittel, Niederdorfelden, Germany). After an injection of 0.05 ml antibiotics (9.6 mg/kg)(Borgal ®;Intervet,Unterschleißheim,Germany)and0.125mlRimadyl ®(4mg/kg)for postsurgicalpainrelief(Pfizer,Karlsruhe,Germany).Animalswereplacedonlayersoftissue paperinglasscagesunderwarminglampsuntiltheyhadfullyrecoveredandcouldbeplaced backintotheirhomecolony.Recoverylastedfromabout30min.inlargemalesto90min.in small females. After 12 hours and then daily, postoperational treatment was applied by subcutaneousinjectionsof0.05mlBorgal ®(9.6mg/kg)and0.25mlRimadyl ®(4mg/kg). Experiments, Xylocain ®treatment and enucleations conformed to the relevant regulatory standards and were approved by the authorities of the University of Duisburg EssenandtheDistrictGovernment,Düsseldorf(50.0523037/06). 2.4 MagneticOrientationisBinocular 2.4.1 Studyrationale FollowingBisazzaetal.(1998),abrainisdefinedaslateralised(orasymmetrical)ifoneside structurallydiffersfromtheother,orifitexercisesdifferentfunctions.Lateralizationmaythen beexpressedinanorganismwithonebodysidebeingstructurally,orbehaviourallydifferent fromtheotherside(Byrneetal.2004).Lateralizationofbrainfunctionsappearswidespread among vertebrates (cf., Bradshaw & Rogers 1993; Bisazza et al. 1998; Vallortigara 2000; Rogers&Andrew2002).Bysomescientists,brainlateralizationiscurrentlybeingconsidered asahomologoustraitacrossallvertebrates(Rogers&Andrew2002). InEuropeanrobins,e.g.,thevisualsystemassociatedwithmagnetoreceptionhasbeen reportedtofunctioninalateralisedway(Wiltschkoetal.2002),andthereisstrongevidence thatlateralizationalreadytakesplaceatthereceptorlevel,longbeforethebrainisinvolvedin informationprocessing(Möller2006). Regular observations of molerats running clockwise along the wall in a transport bucketorinacirculararena(Burda1987)inspiredustotakeacloserlooktowardspossible lateralisedorientationbehaviourof Fukomys molerats.Suchlateralisedbehaviourcouldshow indifferingnestingbehaviourwiththeleftandtherighteye,respectively,beingblockedfrom magneticperceptionbyanaesthetictreatment. Ouraimwastotestwhetherthereceptorsreceiving magnetic stimuli for nesting orientationmaybedistributedinalateralisedway. Should magnetoreception be lateralised, nesting directions with one (or the other) eye anaesthetised would be expected to differ sharplyfromcontroldirections.

MagnetoreceptionMaterial&Methods 71

2.4.2 Studyprocedure In the nesting experiments with the left or the right eye anaesthetised, the experimental protocolandthetreatmentfollowedcloselytheonedescribedinB2.2,theonlydifference beingthattheseexperimentstookplaceinthelocationdescribedinB2.3.Eightmoleratpairs were tested four times in control conditions in the undisturbed geomagnetic field with a sodium chloride treatment applied to the eyes. In an alternating manner, the same study animalsweretestedfourtimeswiththelefteyeanaesthetisedwithXylocain ®,andalsofour timeswiththerighteyeanaesthetisedwithXylocain ®,withatleastadaybetweensubsequent tests;thiswasdonetoexcludeordereffects. Astheexperimentaldatadidnotdiffer,wepooledthemforthetreatmentcondition into“monocularcondition”data,andcomparedittothecontroldata(”binocularcondition”). 2.5 RevealingHippocampalInvolvement 2.5.1 Studyrationale Since Nĕmec et al. (2001) showed the involvement of the superior colliculus in magnetic orientation in Fukomys molerats,therewastheneedtoexaminetheparticipating neuronal structuresfurther. OuraimwastouseimmunocytochemicalmethodstomapITFs( Inducible Transcription Factors ) (B1.6) in order to display neuronal structures involved in magnetoreception under certain manipulations of the magnetic field that should alter the neuronal response of the animals.Asachangefromafamiliarsituation(withcontinuousstimulithatarenaturalandof importancetotheanimal)towardsasituationwithoutthestimuli(e.g.darknesstolight;MFto alteredMF)mayenhancecFosexpressioninrats(Herdegen&Leah,1998),weexaminedand comparedputativecFosexpressionchangesinanimalsundercertainMFmanipulations. 2.5.2 Studyprocedure We examined neuronal activity in shifted horizontal component and increased intensity magneticfieldsin6adultmolerats(5femalesand1male)ofthespecies Fukomys anselli .Four adultanimals(1femaleand3males)servedasacontrolgroupintheundisturbedgeomagnetic field. The animals were wild captured or laboratoryborn and raised. Experiments were performedindarknessinwoodenhutsinthegardenoftheBiologicalInstituteinFrankfurt (PhysiologyandEcologyofBehaviour)(localgeomagneticfield46T;66°inclination).The experimentalandcontrolgroupswerehabituatedinstandardrodentplasticboxeswithinthe

MagnetoreceptionMaterial&Methods 72 woodenhutsforthreeconsecutivedays.Earlyonthefourthday,theywerethenplacedin transparentplasticterrariums(33cmlength;18cmwidth;19cmheight)filledwithsubstrate (horticultural peat) and supplied with nesting material (tissue strips). After the control and treatmentexperimentaltimehadrunout(tab.B2),theanimalsweredeeplyanaesthetisedwith halothane and then transcardially perfused with heparinised saline followed by paraformaldehyde(PFA,4%in0.1Mphosphatebuffer,PB,pH7.4)fixative.Animalswere decapitated,theskullswererapidlydissected,carefullyopenedatoneortwopointstoallow thefixatingliquidtopenetrateandplacedinchilledPFA. TableB2 Molerats under magnetic field manipulations prior to neuronal activity mapping. Animalsexaminedforneuronalactivityundercertainmagneticfieldmanipulationsderived from four different colonies of Ansell’s molerats. Magnetic field conditions were the natural geomagnetic field with 46 T and 66° inclination (Control), the natural geomagnetic field with the horizontal component inversed (H), and the natural geomagnetic field with intensity increased by 1000nT. Animal Colony Sex Condition Experimentaltime 1 male KAI2x(a) Control 06:0009:10 2 male 3 female CA11 Control 06:0009:50 4 male 5 female 6 KAI1 female H 09:1510:45 7 female

8 female 9 KAI3 male I+1000 09:5011:20 10 female

The skulls were transferred to the Anatomy III laboratory of the Frankfurt Johann Wolfgang Goethe University hospital (Dr. Senckenbergische Anatomie); the brains were dissected from the skulls and postfixed overnight in the same fixative. Following this, the brains were transferred into PBsucrose buffer (30%) for cryoprotection prior to cryo microtomesectioning.Beforesectioning,thebrainswereembeddedinsucrosegelatine(30% sucrose, 10% gelatine (300 bloom) in distilled water). The gelatine blocks were fixed in sucrosePFA solution (30% sucrose, 4% PFA in PB), trimmed and properly oriented for sectioning. Gelatineembedding and cryomicrotome cutting was chosen as freefloating gelatinesectionsrapidlyreturntotheiroriginalformaftercutting.Also,certaincellmembrane

MagnetoreceptionMaterial&Methods 73 antigensdonotsurviveroutinefixationandparaffinwaxembedding,themostwidelyused embeddingmedium(Beesley1993).Aftertrimming,thebrainblockswereputbackintothe PFAsucrosefor48h. Brainblocksweregluedtothemoistedmicrotome’sholdingdevicewithTissueTec ® (MilesInc.,DiagnosticsDivision,Elkhart,U.S.A.)andcooledto50°C.Freefloatingsections of60mthicknesswerecutinthecoronalplanewitharotationmicrotome(MICROM,type HM340,Heidelberg,Germany)andequallydistributedintolaboratorywellswithacontentof 5mleachandca.45sectionsperwell)forimmunocytochemistry(ICC).Thewellswerefilled withphosphatebuffer(PB)and3dropsofazideeach to prevent contamination. Sections werethentransferredtoreactionjarswithanetonthebottom.Thefollowingprocedurewas appliedtothesectionswithinthenetjarsonashaker.Allsolutionswereappliedfreshly.Net jarswereonlyusedoncepertreatmentseriesandthenrecycled. Washingprocedurepriortoprimaryantibodytreatmentwasappliedwithinthenetjars onashakerasfollows:

(a)1washwithH 2O2(30min.)toremoveendogenousperoxidase (b)3washeswithPBS(10min.each) (c)1washwith“SAPJE”(30min.) (d)1rinsewithPBS(5min.) (e)Avidinblocking(15min.)toremoveendogenousAvidin (f)1washwithPBS(max.5min.) (g)Biotinblocking(15min.)toremoveendogenousBiotin (h)3washeswithPBS(10min.each) (i)applicationofprimaryantibody(1°AB)andovernightincubation.

Secondaryantibodyapplicationandpreparationpriortolightmicroscopyanalysiswere performedasfollows: (a) 3washeswithPBS(10min.each) (b) applicationofsecondaryantibody(90min.) (c) 3washeswithPBS(10min.each) (d) applicationofABC(120min.) (e) 3washeswithPBS(10min.each) (f) preincubationinDAB. (g) reactionstop.

Thepolyclonal1°ABsforcertainITFswereappliedaccordingtotab.B3.Testedantibodies werechosenafterthosethathadbeentestedintheNĕmecetal.(2001)moleratstudy,an idealcase,asagoodantibodyforonepurposeorononepositivetissuemaynotalwayswork

MagnetoreceptionMaterial&Methods 74 withanother(Beesley1993).Fromthetested1°ABs,cFos(K25),cJun(N),Egr1(C19) andJunB(N17)wereworkingwellduringstaining.Duetotimerestrictions,onlycFos(K 25)wasusedforanalysis. The2°ABusedwas1:300biotinylatedgoatantirabbitimmunoglobuline(VectorBA 1000,VectorLaboratoriesInc.,Burlingham,U.S.A.). TableB3 PrimarypolyclonalantibodiesappliedtoITFsduringICCinmoleratbrain sections. ThetablegivesthetestedconcentrationsofprimarypolyclonalantbodiesagainstfourITFs inthemoleratbrain.IsotypeofallantibodieswasIgG(ImmunoglobulinG;rabbitpolyclonalIgG, 200g/ml),indicatingtheantibody’sclassreferringtotherespectiveheavychaintype(allantibodies: SantaCruzBiotechnology,Inc.,SantaCruz,CA,U.S.A.).EachABwastestedintheconcentrationsof 0.05 g/ml, 0.1 g/ml and 0.5 g/ml. The concentration that yielded best neuronal labelling is indicatedinthelastcolumnwiththeconcentrationusedforanalysishighlightedinbold. ITF 1°AB catalog# Goodconcentration Egr1(Krox24) 588 sc110 Egr1(Krox24) C19 sc189 0.1g/ml cFos K25 sc253 0.1g/ml cFos 4 sc52 cJun D sc44 cJun N sc45 0.05g/ml JunB N17 sc46 0.5g/ml

Control sections were incubated with normal rabbit serum or with 1° AB pre absorbedwithnativepeptide(0.1g/ml),bothofwhichpreventedallnuclearstainingfor tissuedifferentiation. EveryfourthsectionwasstainedwithcresylvioletforsubsequentNissl staining (for recipe seeAppendixAH) and used for general orientation. To determine the specificityofthe1°AB,singlesectionsfromdifferentcompartmentswereincubatedwith1) normalbovineserumalbumin(BSA)solutiononly,with2)1°ABpreabsorbedbyamultiple surplus of synthetic antigen cFos (0.1 g/ml; preadsorption test, blocking experiment; Dragunow&Robertson1987;Oelschläger&Northcutt1992). Glassslideswerecoatedwithgelatine.Afterstoppingthereaction,thesectionswere washed three times withPBandthenmountedonglass slides and dried overnight in the cabinet dryer at 37°C. Sections were then dehydrated by an ascending ethanol series, transferredintoXylolandcoverslippedforlightmicroscopywithEukitt ®(Kindler,Freiburg, Germany).

MagnetoreceptionMaterial&Methods 75

AnalysisofpositiveneuronswasperformedinPrague,CzechRepublicbyT.Burger (CharlesUniversity)usinganalySIS ®Dsoftware(Version1.10,SoftImagingSystem,Münster, Germany).TheexperimentalprocedurewasapprovedbytheDistrictGovernment,Frankfurt. A complete protocol of the perfusion, the preparation and immunohistochemical procedure,includinggelatinecoating,canbefoundintheAppendix(AF&AG).

2.6 Statisticalanalysis Fromthenestpositionsofeachanimalpair,wecalculated the mean vectors for both test conditions,withdirectionαpandlengthr p.Themeandirectionsαpofthesixrepeatedlytested pairswereaveragedingrandmeanvectorsforeachtestingcondition,withdirectionαMand lengthr M.Fromthenestingdataofthetestedpairs,wecalculatedtheoverallmeanvectorwith directionαAandlengthr A.Thegroupmeanvectorsαpaswellasthemeanvectorofthetested pairs αA were examined for significant directional preferences with the Rayleightest of uniformity(Batschelet1981)(ORIANA2.02,KovachComputing Services, Anglesey, UK); grand mean vectors αM and the two mean vectors of the tested pairs were tested for differencesindistributionbetweenthestudyconditionswiththeWatson’sU 2Test(Batschelet 1981)(ORIANA2.02) .Thevectorlengthindicatestheintergroupvariance;themediangives thevectorlengthsbasedonthedirectionsofthenestsofeachgroup,indicatingtheintra groupvarianceofthedirectionalchoices CircularfigureswerecreatedinMicrosoftExcel ®viaGhostView ®andthenarranged inpanelsinAdobePhotoshop ®. Thedatafromthetwoarmmazepreferencetestsregardingapossibleinfluenceofthe anaestheticontheanimals’retinalperformancewasanalyzedforapreferentialchoiceusing Chisquaretests(SPSS ®12.0forWindows). For comparison of mean numbers of immunoreactive neurons, a ONEWAY ANOVAwasconducted(SPSS ®12.0forWindows).

MagnetoreceptionResults 76

3 RESULTS 3.1 RulingoutBiochemicalProcesses Incontroltestsinthelocalgeomagneticfieldof46000nT,themoleratspreferredtobuild theirnestsinthesouthernpartofthearena(fig.B16A&B).Undertheoscillatingmagnetic fieldsaddedtothenaturalgeomagneticfield,themoleratscontinuedtobuildtheirnestsin thesamepartofthearena(fig.B16C).Evenincreasingtheintensityofthe1.315MHzfield tenfoldto4800nTdidnotdisrupttheirorientation:theirnestswerestillpreferablysituatedin thesouth(Fig.B16,lowerpanel).

Fig.B16 Orientationofnestsbuiltbymoleratsundervarioustestconditions. Figuresof theupperpanel(A,B,C)derivefrom2004,withAdisplayingthe A-priori Control data,Bthe Intermediate Control dataandCtheexperimentaldatawith a Broad-band High-Frequency-Field of 85nTintensityand0.110MHzfrequencyadded.Singlefiguresofthelowerpanel(D,E,F) showtheresultsfrom2005,withDdisplayingthe Alternating Control data,Etheexperimental datawithaFieldof1.315MHzand480nTadded,andFtheexperimentaldatawithaFieldof 1.315MHzand4800nTadded.Thetrianglesattheperipheryofthecirclemarksthemeansof thenestsoftheeighttestgroups;thearrowsrepresentthegrandmeanvectorsbasedontheir singlemeans,drawnproportionaltotheradiusofthecircle=1.Thetwoinnercirclesrepresent the1%(dotted)and0.1%(bold)significanceborderoftheRayleightestintheupperpanel (Batschelet1981).Inthelowerpanel,thedottedcirclegivesthe5%andtheboldcirclethe1% significanceborder.Fornumericaldata,seetable4.

MagnetoreceptionResults 77

Thevectorsoftheindividualpairsofmoleratsineachtestconditionaregivenintab. B4. There were no significant differences in the distribution of nests in the various experimentalconditions(P>0.05,Watson'sU 2test;Batschelet1981). There was no difference between the two data sets of the Apriori control and the Intermediate control,indicatingthatthetreatmentwithhighfrequencyfieldshadnoaftereffects. Overalldataaregivenintab.B5. TableB4 Mean vector data ofZambianmoleratsunderoscillatingfields. Controltests were performed in the local geomagnetic field; in the other test conditions, the respective high frequencyfieldwasadded.αp andr pgivethedirectionandlengthofthemeanvectorsofeachpair basedonthe59replications. 2004 AprioriControl IntermediateControl BroadbandHFField [85nT]

Pair αP rP αP r P αP r P

P1 148° 0.65 162° 0.50 114° 0.26 P2 181° 0.28 131° 0.26 151° 0.21 P3 165° 0.40 217° 0.34 136° 0.60 P4 187° 0.14 184° 0.72 131° 0.82 P5 187° 0.16 169° 0.95 238° 0.28 P6 186° 0.53 219° 0.12 186° 0.59 P7 115° 0.33 150° 0.03 214° 0.57 P8 173° 0.63 192° 0.69 145° 0.24 2005 AlternatingControls 1.315MHz,480nT 1.315MHz,4800nT

Pair αP r P αP r P αP r P

P1 286° 0.17 242° 0.34 131° 0.56 P2 172° 0.82 157° 0.94 161° 0.67 P3 152° 0.68 159° 0.41 127° 0.82 P4 206° 0.59 164° 0.86 158° 0.66 P5 130° 0.35 157° 0.19 268° 0.27 P6 224° 0.60 151° 0.22 180° 0.71 P7 240° 0.20 339° 0.42 224° 0.32 P9 155° 0.58 187° 0.52 205° 0.78

MagnetoreceptionResults 78

TableB5 OrientationofZambianmoleratsunderoscillatingfields. Eightmoleratpairs weretestedbetween5and9times.Thevaluesαp andr pgivethedirectionandlengthofthegrand meanvectorsbasedontheeightmeandirections,withtheasterisksindicatingthevectors’significance. “med” givesthemedianofthevectorlengthsbasedonthenestingdirectionsofeachgroup.Thelast columnindicatessignificancebetweenthedistributionsofcontrolsandtreatments.

YearTestcondition αP rP med

2004 AprioriControl 169° 0.92*** 0.37

IntermediateControl 178° 0.88*** 0.42 ns

Broadband0.110MHzfield,85nT 162° 0.77** 0.43 ns

2005 AlternatingControls 192° 0.67* 0.58

1.315MHzfield,480nTintensity 174° 0.65* 0.41 ns

1.315MHzfield,4800nTintensity 179° 0.72* 0.66 ns 3.2 NarrowingdowntheReceptorSite In the anaesthesia experiments under control conditions, the molerats stuck to their preferencefornestinginasouthernsectorofthearenabothintherepeatedtestinggroup(fig. B17A)andthesingulartestedgroup(fig.B17C).Withcornealanaesthesia,themoleratsstill builttheirnests,however,withoutanydirectionalpreferences,showingarandomdistribution (fig.B17B,D).Thisdifferencebetweencornealanaesthesiaandcontrolgroupswassignificant forboththerepeatedtestinggroup(U 2=0.206,P<0.05)andforthesingulartestedgroup (U 2=0.218,P<0.05).Dataaregivenintab.B6. In the experiment examining a possible retinal disturbance through Xylocain ®, the molerats’ behavioural response clearly showed that corneal anaesthesia did not affect photoreceptorperformance;theirabilitytoperceivelightandpreferdarknessfornestingwas undisturbed( n=11,χ 2 =7.4,P=0.007). In the neurotomy/enucleation experiments, both controls showed the usual South Easterlypreference;theydidnotdiffer(U 2 =0.16,p>0.1).Animalsafterenucleationshowed arandomnestingdistribution,buttheenucleationcontrolandtheafterenucleationdatadid notdiffer(U 2 =0.12,p>0.2;fig.B18A,B).However,takingallnestingdirectionstogetherin afirstordertest,therewasasignificantdifferencebetweendirectionsfromthecontrolgroup (N=24)andfromtheenucleationgroup( N=36)(U2 =0.27,p<0.01;fig.B18C,D).The dataaregivenintab . B7. Thefiguresandtherelatedtablesaregivenonthefollowingpages.

MagnetoreceptionResults 79

Fig.B17 Randomnestdistributionofmoleratsundercornealanaesthesia. Triangles displaymeannestingdirectionsoftherepeatedlytestedsixpairsincontrol(A)andunder anaesthesia(B),andnestingdirectionsofthesingulartestedgroupincontrol(C; n=42)and treatments(D; n=40).Thearrowsproportionaltotheoutsideradius(=1)markthegrand meanvectorbasedonthepairs’meandirections(A,B)orthemeanvectorofallsingle decisions(C,D).TheinnercirclesmarktheRayleighsignificancethresholds:5%(dashed) and1%(solid)inA,B;1%(dashed)and0.1%(solid)inC,D.TableB6givesnumerical values.

MagnetoreceptionResults 80

Fig.B18Nestdistributionofsixmoleratpairsbeforeandafterenucleation. Triangles displaymeannestingdirectionsofsixrepeatedlytestedpairsincontrols(A)andafter enucleation(B),andthesinglenestingdirectionsincontrols(C)andafterenucleation(D). Thearrowsproportionaltotheoutsideradius(=1)markthegrandmeanvectorbasedon thepairs’meandirections.TheinnercirclesmarktheRayleighsignificancethresholdswith 5%(dashed)and1%(solid)(A,B)and5%(dashed)and0.1%(solid)(C,D).TableB7 gives numericalvalues.

MagnetoreceptionResults 81

TableB6 OrientationofZambianmoleratsaftercornealanaesthesia. Theα Pandr P values indicatedirectionandlengthofthesixpairs’meanvectorsbasedonfourtrials;α Aandr Agivedirection andlengthofthemeanvectorsofallsingledirectionsinthesingulartestedgroup.Grandmeanvectors andMeanvectorsaredisplayedwithsignificancemarkedbyasterisks;medianindividualvectorlengths aregivenfortherepeatedtestingcondition.Deviationofdirectionsbetweencontrolandtreatmentis givenwithsignificanceindication. Control Cornealanaesthesia Repeatedlytestedpairs αp rp αp rp P1 143° 0.77 283° 0.48 P2 108° 0.57 279° 0.21 P3 180° 0.88 35° 0.33 P4 225° 0.86 197° 0.47 P5 163° 0.74 59° 0.22 P6 137° 0.45 94° 0.30 Grandmeanvector 158°,0.81* 14°,0.12ns Medianvectorlength 0.76 0.32 Directiondeviation 144°,P<0.05

Singulartestedpairs Meanvector 185°,0.47 *** 105°,0.07 Directiondeviation 80°,P<0.05

MagnetoreceptionResults 82

TableB7 Orientationofmoleratsafterenucleation. Theα Pandr P valuesindicatedirection andlengthofthesixpairs’meanvectorsbasedonfour(controls)andsixtrials(enucleation).Grand meanvectorsandmeanvectorsaredisplayedwithsignificancemarkedbyasterisks;medianindividual vectorlengthsaregiven.Directiondeviationsaregivenwithsignificanceindicationforthecomparison ofdirections.Dataarealsogivenforallsinglenestingdirections. ControlEnucleationGroup ControlNeurotomyGroup

Testedpairs αp rp αp rp P1 105° 0.43 189° 0.13 P2 119° 0.99 139° 0.69 P3 89° 0.68 209° 0.51 P4 182° 0.59 210° 0.36 P5 127° 0.46 174° 0.49 P6 134° 0.58 141° 0.96 Grandmeanvector 125°,0.88** 177°,0.88** Medianvectorlength 0.58 0.50 Directiondeviation 52°,ns

ControlEnucleationGroup AfterEnucleation

Testedpairs αp rp αp rp P1 105° 0.43 150° 0.31 P2 119° 0.99 106° 0.67 P3 89° 0.68 285° 0.32 P4 182° 0.59 37° 0.32 P5 127° 0.46 41° 0.38 P6 134° 0.58 250° 0.11 Grandmeanvector 125°,0.88** 68°,0.15ns Medianvectorlength 0.58 0.32 Directiondeviation 57°,ns SingleNestsControlGroup SingleNestsAfterEnucleation Grandmeanvector 124°,0.55*** 81°,0.14ns Pairstested 24 36

MagnetoreceptionResults 83

3.3 MagneticOrientationisBinocular Theeighttestedmoleratpairssignificantlyconfirmed the preferred southern direction for nestingincontrols(fig.B19A).Roughlythesamedirectionalbehaviourshowedalsointhe dataofthemoleratpairswiththelefteyeanaesthetised(fig.B19B)andwiththerighteye anaesthetised(fig.B19C).Withtherighteyeanaesthesia,however,themeandirectionwasnot significantlyexpressed,anddirectionalsignificanceofthedataafterlefteyeanaesthesiawas weak ( P=0.046).Controlsandtherighteyegroupdifferedsignificantly(U2=0.296, P < 0.01).However,thedirectionsofthelefteyeandrighteyegroupsdidnotdiffer(U2=0.074, P>0.5);neitherdidthecontrolandthelefteyegroup(U 2=0.131, P>0.1).Alldataaregiven intab.B8onthenextpage.

Fig.B19 Nestdistributionofmoleratpairsunderlateralisedcornealanaesthesia. Triangles displaymeannestingdirectionsoftherepeatedlytestedeightpairsincontrol(A),undercorneal anaesthesiaofthelefteye(B),andundercornealanaesthesiaoftherighteye(C).Thearrows proportionaltotheoutsideradius(=1)markthegrandmeanvectorbasedonthepairs’mean directions.TheinnercirclesmarktheRayleighsignificancethresholds:5%(dashed)and1%(solid) . Table8givesnumericalvalues.

MagnetoreceptionResults 84

TableB8 Orientation of molerats after monocular anaesthesia. The α P and r P values indicatedirectionandlengthoftheeightpairs’meanvectorsbasedonfourtrials;r P valuesaregiven with significance indications. Grand mean vectors and Mean vectors are also displayed with significance marked by asterisks. Median vector lengths are given (MED). Direction deviations are givenwithsignificanceindicationforthecomparisonofcontrolsandtreatments.

Control RightEyeAnaesthesia

Testedpairs αp rp αp rp P1 174° 0.49 217° 0.10 P2 189° 0.13 107° 0.76 P3 139° 0.69 90° 0.10 P4 209° 0.51 84° 0.93* P5 134° 0.46 79° 0.24 P6 210° 0.36 122° 0.43 P7 119° 0.99** 263° 0.69 P8 141° 0.96** 46° 0.71 Grandmeanvector 164°,0.84** 101°,0.50ns MED 0.50 0.56 Directiondeviation 63°, P<0.01

Control LeftEyeAnaesthesia

Testedpairs αp rp αp rp P1 174° 0.49 94° 0.32 P2 189° 0.13 108° 0.96** P3 139° 0.69 341° 0.40 P4 209° 0.51 141° 0.88* P5 134° 0.46 122° 0.92* P6 210° 0.36 206° 0.65 P7 119° 0.99 75° 0.66 P8 141° 0.96 112° 0.91* Grandmeanvector 164°,0.84** 111°,0.61* MED 0.50 0.77 Directiondeviation 53°,ns

Treatmentdeviation 10°ns

MagnetoreceptionResults 85

Poolingtogetherthenondifferingright eyeandlefteyegroupandthencomparingthis monocular treatment condition with the binocular control condition (fig. B20), a significantdifferencewasfoundbetweenthese groups(U2=0.25, P<0.01).Dataaregivenin tab.B9.

Fig.B20 Pooledexperimentaldataof nestdistributionofmoleratpairsunder lateralisedcornealanaesthesia. Triangles displaymeannestingdirectionsoftheeight repeatedlytestedpairs.Thearrows proportionaltotheoutsideradius(=1) markthegrandmeanvectorbasedonthe pairs’meandirections.Theinnercircles marktheRayleighsignificancethresholds: 5%(dashed)and1%(solid).TableB9gives numericalvalues.

TableB9 Orientationofmoleratsafterlateralisedanaesthesiawithpooleddata. Theα P andr P valuesindicatedirectionandlengthofthesixpairs’meanvectorsbasedontheeightpooled trials;r P valuesaregivenwithsignificanceindications.Grandmeanvectorsandmeanvectorsarealso displayed with significance marked by asterisks. Median vector lengths are given (MED). Direction deviationsaregivenwithsignificanceindicationforthecomparisonofcontrolsandtreatments.

Control(Binocular)data Monoculardata

Testedpairs αp rp αp rp P1 174° 0.49 111° 0.14 P2 189° 0.13 108° 0.86 P3 139° 0.69 353° 0.20 P4 209° 0.51 111° 0.80 P5 134° 0.46 114° 0.56 P6 210° 0.36 174° 0.41 P7 119° 0.99 331° 0.05 P8 141° 0.96 84° 0.68 Grandmeanvector 164°,0.84 ** 96°,0.53ns MED 0.50 0.50 Directiondeviation 68°, P<0.01

MagnetoreceptionResults 86

Results from an older study exerting a strong, short magnetic pulse on molerats (Marhold et al. 1997b), hinted at a change in magnetization of the responsible receptor (control160°: N=1540,r=0.9, P<0.001;pulse86°: N =1822,r=0.98, P<0.01),and aregivenhereforbettercomparisonandwithpermissionoftheauthor(fig.B21).Thetwo conditions differed significantly (U 2 = 0.264, P <0.05). However, the directions from the monoculardataandthepulsingdatawerenotsimilar,butshowedasignificantdifference(U 2 =0.256, P <0.05).

Fig.B21Nestdistributiondataofsixmoleratpairsbeforeandaftermagneticpulsing (Marholdetal.1997b). Trianglesdisplaymeannestingdirectionsofrepeatedlytestedpairsin controls( Nbetween18and22)(A)andafterexposuretoastrong(0.5T),short(5ms)magnetic pulse( Nbetween15and40)(B).Thearrowsproportionaltotheoutsideradius(=1)markthe grandmeanvectorbasedonthepairs’meandirections.Innercirclesmarksignificance thresholds:1%(dashed)and0.1%(solid)(Figuresbytheauthorusingoriginaldatawithkind permisssionfromS.Marhold.).

MagnetoreceptionResults 87

3.4 RevealingHippocampalInvolvement Significantneuronalactivityundermagneticfieldmanipulationscouldbefoundinregionsof thehippocampalformation. Distribution patterns of cFos immunoreactive neurons in the hippocampus are shown in fig. B22. Differences in the number of immunoreactive neurons betweenthecontrolconditionandmanipulationsofthe magnetic field were significantly displayed in the CA1 regionofthehippocampus(fig.B23C).Meannumbers differed strongly between the control group and the intensitychangegroup( P=0.003),withneuronalactivity beingstarklydepressedinthelatter.Thiseffectwasalso shown in the significant difference between the two experimental groups ( P = 0.004). In the hippocampal CA3region,thereweredifferencesbetweencontroland the experimental conditions (fig. B23D), with both experimental conditions suppressing neural activity (controlcomparedtohorizontalmanipulation: P=0.018; Fig.B22Distributionpatterns ofcFosimmunoreactive controlcomparedtointensitymanipulation: P=0.008). neuronsintheAnsell’smole rathippocampus. (A) Inthepolymorphiccelllayersofthehippocampaldental Photomicrographofasection gyrus,activeneuronnumbersdifferedextremelybetween throughthedorsalportionofthe hippocampus.Higherpower allthethreetestedgroups(fig.B23B).Thecontrolgroup photomicrographsofthedentate gyrus(B)andCA3(C).Picture showedextremelylowactivityratesanddifferedslightly takenbyT.Burgerandmodified fromtheactivitydisplayedinthehorizontalcomponent bytheauthor. group,whosenumberswerealsolow( P=0.016).Under intensity changes, neural activity increased markedly, resulting in significant differences between control and this experimental group ( P = 0.000005) and between the two experimentalgroups( P=0.0001).

MagnetoreceptionResults 88

Fig.B23Neuronsimmunoreactiveto cFosinmolerathippocampal structures. MeannumbersofcFos immunoreactiveneuronsinthegranular celllaye r(A)andthepolymorphiclayers (B)ofthedentategyrus,intheCA1(C) andCA3(D)hippocampalfieldsof moleratssubjectedtodifferent magneticconditions.Controlontheleft sideofthefigures(red/white):natural, i.e.stationaryMF;azimuthint hefigures’ middle(green):experimentalMFwith thehorizontalcomponentbeing manipulatedevery30seconds(i.e.mN shiftedfrom360 °to240 °andback); intensityontherightsideofthefigures (blue):experimentalMFwithintensity beingmanipulatedevery30seconds (±1000nT).FigurecreatedbyT. Burgerandmodifiedbytheauthor.

FigureB24canbefoundonthenextpage.Allmeanvaluesandstandarddeviations arecomprisedintab.B10,onthesecondnextpage.

MagnetoreceptionResults 89

Differencesinneuralactivityevokedbymagneticfieldmanipulationscouldalsobe foundinthedorsalsubiculum(fig.B24A).Thecomparativelyhighactivitynumbersinthe controlgroupdifferedsignificantlyfromtheintensitychangegroup( P=0.000006);andas activity in the group with the magnetic field’s horizontal component manipulated was similarly high as the controls, there was also a strong difference between the two experimentalgroups( P=0.002).

Fig.B24Neurons immunoreactivetocFosin moleratsubiculumand entorhinalcortex. Mean numbersofimmunoreactive neuronsinthedorsalpartof thesubiculum(A)andthe entorhinalcortex(B)under differentmagnetic conditions: control(abscissaC)witha natural,i.e.stationaryMF; experimentalMF(H)withthe horizontalcomponentbeing manipulatedevery30seconds (magneticNorthshiftedfrom 360 °to240 °andback); experimentalMF(I)withthe intensitybeingmanipulated every30seconds( ±1000nT). FigurecreatedbyT.Burger andmodifiedbytheauthor.

In the other brain structures examined, there were no significant differences in neural activity between control, horizontal component and intensity change group. No neural activity at all could be observed in the nucleus dorsalis tegmenti, the nucleus laterodorsalisthalamiandthenucleusanterodorsalisthalami.

MagnetoreceptionResults 90

TableB10 Mean numbers of neurons immunoreactive to cFos in diverse brain structuresofmoleratsunderMagneticFieldmanipulations. Nucleusdorsalistegmentiand the nuclei laterodorsalis and anterodorsalis thalami were without neural activity. In the group column, (C) denominates control conditions, i.e. the natural, stationary MF; (H) gives the experimental MF with the horizontal componentbeingmanipulatedevery30seconds(magnetic Northshiftedfrom360 °to240 °andback);(I)givestheexperimentalMFwiththeintensitybeing manipulated every 30 seconds ( ±1000 nT). Significance indicates differences between active neuronnumbersofthedifferentgroupsandisindicatedbyasterisks.

Structure Substructure Group mean SD Significance Hippocampus CA1 C 19.14 12.45 Cvs.I** H 18.57 16.61 Hvs.I** I 8.51 6.83 CA3 C 18.07 7.55 Cvs.H* H 12.65 8.3 Cvs.I** I 11.67 9.49 Granularcelllayer C 9.63 7.21 H 8.26 8.64 I 7.72 4.72 Polymorphiccell C 5.61 4.86 Cvs.H* layer H 12.53 14.99 Cvs.I*** I 38.53 33.64 Hvs.I*** Subiculum Dorsallayer C 39.14 15.34 Cvs.H** H 32.73 16.98 Cvs.I*** I 13.18 7.45 Ventrallayer C 31.32 16.88 H 32.05 10.12 I 29.19 36.37 Postsubiculum C 8.41 6.09 H 6.77 5.65 I 7.13 5.31 Retrosplenialcortex Agranularcelllayer C 13.35 8.7 H 10.96 6.33 I 13.65 10.56 Granularcelllayer C 37.25 20.93 H 39.81 18.39 I 47.99 22.58 Entorhinalcortex Dorsomedialcell C 79.24 37.24 Cvs.I(*) layer H 52.95 30.9 (P=0.057) I 39.06 30.34 Lateralcelllayer C 28.6 6.02 H 30 13.86 I 30.27 15.61 Perirhinalcortex C 14.19 6.56 H 19.18 12.9 I 14.48 5.95 Nucleuslateralis C 9.51 12.12 mammilaris H 3.97 3.65 I 2.79 2.46

MagnetoreceptionDiscussion 91

4 DISCUSSION

Thesecondpartofthisthesishasshedlightonsomecrucialaspectsofmagnetoreceptionin mammals. The results above introduced experiments on the nature of the underlying transductionmechanism,onthelocationandtypeoftherespectivesensoryreceptoraswellas ontheneuronalprocessingofmagneticinformation,andwillbediscussedseparatelyinthe following. RulingoutBiochemicalProcesses As expected in subterranean rodents, living and orientating in darkness, the hitherto determinedcharacteristicsofthemagneticcompassinAnsell'smoleratsareconsistentwith the magnetitebased magnetoreception model. Evidence for this kind of sensation is supported by the following, above already mentioned findings. Compass orientation of Ansell'smoleratsis:1)lightindependent(Marholdetal.1997a);2)sensitivetothemagnetic field’spolarity(Marholdetal.1997a);3)disruptedbyabriefstrongmagneticpulsedesignedto alter(remagnetize)singledomainmagnetiteortoaffectsuperparamagneticparticles(Marhold etal.1997b);4)notdisruptedbyveryweakoscillatinghighfrequencyfieldsdisturbingavian compassorientation(ChapterB2.2 &B3.1).Whilethelatterexperiment per se doesnotprove thatthemagneticcompassofmoleratsismagnetitebased,itindicatesthatitisnotbasedon RPM.Incontrasttobirds,themolerats’orientationwasnotdisruptedwhenabroadband fieldof0.1to10MHzof85nTora1.315MHzfieldof480nTwasaddedtothestatic geomagneticfield.Evenwhenincreasingtheintensityofthe1.315MHzfieldto4800nT, morethanatenthofthestaticfield,themoleratsremainedunaffectedandcontinuedtobuild theirnestsinthesouth.ThisbehaviourdiffersgreatlyfromtheresponsesofEuropeanrobins, Erithacus rubecula ,insimilarexperiments:theirorientationbehaviourwasstronglyaffectedby weakhighfrequencyfields,withamarkedeffectbeingobservedatthefrequencyof1.315 MHzthatmatchestheenergeticsplittinginducedbythelocalgeomagneticfield(Thalauetal. 2005).Theseresultsindicatethatincontrasttothemagneticcompassofbirds,thatofthe moleratsdoesnotinvolveradicalpairprocesses.Amagnetitebasedmechanismseemstobe indeed a better interpretation for their magnetic compass, since a magnetitebased sensor wouldnotbeaffectedbythehighfrequencymagneticfieldsappliedhere.Thisconclusionis in agreement with the above mentioned earlier experimental findings on the functional characteristicsofthemolerats’magneticcompass. Itisnotyetcleartowhatextentoursupportofmagnetiteasaputativetransducerin mechanoreceptioninmoleratsischaracteristicformammalsingeneral.Inbirds,amagnetic

MagnetoreceptionDiscussion 92 compasshasnowbeendemonstratedinmorethan20speciesfrom4differentorders.Sofar, theEuropeanrobinistheonlyspecieswherearadicalpairmechanismhasbeenidentified;yet theinclinationcompass,whichistobeexpectedifradicalpairprocessesareinvolved,has been found in all avian species tested for it. In mammals, a magnetic compass was first indicated in woodmice, Apodemus sylvaticus (Mather & Baker 1981); in the following years, magnetic compass orientation was reported in other species of rodents (cf., Mather 1985; Augustetal.1989;Burdaetal.1990b,1991),horses(Baker1989a)andhumans(Baker1989b). However,moleratsaretheonlyspeciessofarwherethefunctionalmodehasbeenanalyzed andwheretheunderlyingphysicalprocessesareindicated(Marholdetal.1997a,b;thisstudy). Itcannotbeexcludedthatthemolerats’magneticcompassisaspecialdevelopmentadapted totheirsubterraneanlifestyle.Ontheotherhand,manymammalianspeciesarenocturnalor liveinhabitatswithlittlelight.Thisisalsoreflectedintheirsensorysystems,withtheiroptic senseinferiortothatofdayactiveanimalslikebirds,yettheirauditorysenseandinparticular their sense of smell highly developed. In view of this, it would also seem possible that a generalmammalianmagneticcompassindependentfromlightwouldhavefavouredmammals tooccupythesubterraneanniche. NarrowingdowntheReceptorSite Ourfindingsofdisrupteddirectionalcompassorientationaftercornealanaesthesiashowthat theocularregionmightaccommodatetheprimarymagneticreceptorsinmolerats.Contrary totheassumedassociationofmagnetitebasedreceptorswiththeophthalmicnerve,Cernuda Cernudaetal.(2003)reportedfindingsofcrystalloidbodiesintheinnersegmentsofretinal photoreceptorsoftheAnsell'smolerat.Theauthorsinterpretedthesestructuresaspotential magnetite grains, suggesting the retinal photoreceptors as the respective magnetitebased structure.However,theunperturbedabilityofthemoleratstodiscriminatebetweenlightand dark (Chapters A2.2 & A3.1) under corneal anaesthesia indirectly suggests that magnetic compass orientation in Fukomys is not photoreceptorbased because the application of anaestheticsdidnotinfluencevisualperformanceordifferentialorientationbehaviour per se in ourstudy.Ourresultsratherhintataperipheralophthalmicseatofthestimulusmediatorin these mammals: our behavioural findings and their interpretation are consistent with the neuroanatomical findings of magnetoresponsive neurons in F. anselli identified within the innersublayeroftheintermediategreylayerofthesuperiorcolliculus(Němecetal.2001),i.e. inalayerdominatedbytrigeminalinputinothermammals(Huerta&Harting1984).Both approachesareconsistentwiththehypothesisthatthecorneaharbourstheputativeprimary magnetoreceptors. We further assume that in Zambian molerats, the mechanosensors mediating signals during magnetic orientation are magnetitebased. Next to the earlier

MagnetoreceptionDiscussion 93 discussed findings, which had excluded retinal chemophysical radicalpair reactions as the underlyingsignalmediatingmechanism(Marholdetal.1997b;thisstudy),ourresultssupport innervatedmagnetitebeingtheresponsiblesensorystructure,becausedesensitisationofthe corneaobviouslyaffectedmechanosensibilityandthusmagneticstimulustransmission. Furthermore, our results of impaired directional nesting orientation after bilateral enucleationprovideclearevidencefortheocular,possibly,cornealmagnetoreceptorlocation, though the impairment experiments involving specific bilateral section of the ophthalmic branchofthetrigeminalnervestillneedtobedonetocompletethepicture.Althoughour results clearly suggest a difference between control and experimental postenucleation data (see fig. B18), the statistical test refuses to support significance of the difference between controls and enucleation in the standard second order data set. The first order data set, however,comprisingalltakendata,confirmsthisdifference.Inourstudy,testingconditions seemed optimal, indicated by the similarity of both control groups, which had highly significantvectorlengths,excludinganypossibleintragroupvariablity.However,thesingle vectorlengthsofthetestedmoleratpairswerepartlyunexpectedlylow,surprisinglybothin thecontrolandenucleationgroups.However,theresultingmeanvectorsweresignificant(and thathighly)inthecontrols.Intheexperimentalenucleationgroup,thelowvectorlengthhad theeffectofresultinginarandomizedpattern.TheappliedWatson’sU 2Test comparesdata sets using their mean square deviations. If the data set samples are from populations that differ in some way, the resulting Pvalueislow.Asthisdifferencemaybeindistribution, meandirection,orotherparameters,onewouldexpectasignificantdifferencebetweentwo directionaldatasetswithonedatasetbasingonsignificant(control)andoneonrandommean directions (enucleation). Even if the resulting direction of the random mean directions resembledthecontrol,thedistributionpatternswoulddifferstarkly.Thepoorperformanceof thesinglemoleratpairsanditseffectontheweak results oftheseconddatacomparison maybebasedontestingintheherefirstlyusednewpremiseontheEssencampus.Thisnew locationmighthavebeeninfluencedbyunknownexternalfactorssuchasnoiseorodours. Magneticdisturbancescouldbe,however,ruledout(S.Mayer,personalcommunication). Ourenucleationexperimentsneverthelessruleoutthepossibilitythatourfindingsof the anaesthesia experiments resulted from the affectingofthenoseortheHarderiangland andrefinetheareaofmagnetosensorstothemolerat’seye.

MagnetoreceptionDiscussion 94

MagneticOrientationisBinocular Thehereshownshiftofnestingdirectionsinmoleratsaftermonocularanaesthesiadoesnot demonstrateanasymmetricalfunctionofthemagneticsense,atleastnotatthereceptorlevel intheeye.Bothleftandrighteyeanaesthesiaresultedinthesamedirectionalshift,indicating noasymmetricaluseoftheeyes.Ifthemagneticsensehadbeenlateralisedinmolerats,either magnetic orientation would have been disturbed with one of the eyes anaesthetised (i.e. resultinginascatterednestingpattern,suchasinEuropeanrobins(Wiltschkoetal.2002)),or the two eyes would have shown a different task, thus a different resulting direction. For demonstrating lateralization, it is sufficient to show such behavioural effects in only some testedpairs,becausethepopulation,whichtheindividualsunderstudyderivefrom,isalready regardedaslateralisedifmorethan50%ofthetestedindividualsdisplaythesamedirection (Denenberg 1981; Bisazza et al. 1998). In our study, six of eight pairs (75%) showed a directionalshiftandwouldthusfulfilthecriterionoflateralizationonthepopulationlevel. Thisshift,however,didnotdiffer,i.e.wasnotdisplayedinanasymmetricalway,betweenthe leftandtherighteye,indicatingnofunctionaldivisioninmagnetoreception. The effect of monocular anaesthesia is, however, surprising. The eastward shift of nestingdirections,bothunderleftandrighteyeanaesthesia,suggeststhatforunambiguous position determination, incoming magnetic information from both eyes is needed. One explanation may be that the signal is simply weaker with only one eye in charge. This explanation does, however, not make clear why in both conditions, nesting direction is obviously shifted to the East; random nesting distribution due to the animals’ uncertainty basing on a weak signal would rather be expected. One other explanation may be that monocularanaesthesia,e.g.viathelacrimalduct,alsoinfluencedthesecondeye,resultingin an even weaker stimulus. Interestingly, the shift of nesting directions from binocular (southern)tomonocular(eastern)conditionstronglyresembledthenestingdirectionchanges resultingfromastrong,shortmagneticpulse(0.5T,5ms)(Marholdetal.1997b).Afterthe pulse,nestingdirectionswerealsoshiftedtotheEastandthatonlongterm.Thiseffectwas explainedbyachangeofmagnetizationofmagnetiteasthesubstanceassumedlyunderlying themagnetoreceptors.WhethertheshifttotheEastundermonocularconditionsandunder magnetizationchangescanbecomparedand/orexplainedbymorethanincidence,needsto bediscussed. Firstly,itisnecessarytohaveacloserlookat the monocular directional shift that mightbeexplainedbythefollowingmodel(introducedbyH.Burda):intherestingsituation, botheyesareorientedinthesamedirectionwithoutanydifferenceinstrainorrelaxationof themusculusrectusmedialisorintheexcitationoftheoculomotornerve,bothofwhichare responsible for signaldependent eye movement orientation. The importance of the eye

MagnetoreceptionDiscussion 95 moving structures is pictured by the welldeveloped and also large oculomotor nucleus in Fukomys anselli (Němecetal.,2004) 5.TheoculomotornerveisdiscussedtoinnervatetheM. retractorbulbi,amuscleresponsibleforretractingtheeyeball.Simpleeyeballretractingwould howevernotneedtheapparentcomplexneuronalprocessing.Onemightspeculatethatthe putative mechanoreceptors in the molerat’s cornea, innervated by the ophthalmic nerve, reporttheincomingsignalandenticetheoculomotornervetorotatetheanimal’sheaduntil thesignalisstrongestorfades.Onemightcallthisprocedure,comparingittothehuman foveal orientation towards points of interest, a magnetic fovea orientation. Given magnetite particleslocatedonthecorneaactingastransducersduringmagneticsignaltransduction,the molerat would be able to virtually detect the orientation of the magnetite relative to an imaginaryNorthSouthandEastWestaxis.Itwouldbepossiblefortheanimaltodetectthe NorthSouthaxishorizontallyandtheEastWestaxisvertically.Theareaofmagneticparticles (one might call it a “Macula magnetica”) activity would be, in the resting state, directed symmetricallyfrontwards. Assumethatthemagneticstimulusisdirectlyinfrontoftheanimal.Whentheanimal movesandthus“shifts”thedirectionitfacestoe.g.itsleftside,bothmuscleandnervewould undergoastrongerexcitationintherightandalesserexcitationinthelefteye;withtheanimal turningandthus“shifting”thefaceddirectiontoitsrightside,bothmuscleandnervewould undergoalesserexcitationintherightandastrongerexcitationinthelefteye.Thismodel wouldexplainwhythemoleratsdetecttheNorthSouthaxissolelywithbotheyes,i.e.ina binocular way, implying a necessary parallel signal inhibition from one eye and a signal enhancementfromtheothereyeforunequivocaldirectiondetermination.Withoneeyebeing anaethetized,i.e.withmonocularsignalincomeonly,theanimalcannotreactinadirectional way,asitisimpossiblefortheanimaltodetecttheNorthSouthaxis.Itinsteadreactstothe continuouslypresent,verticalEastWestaxis,whichisthesameinbotheyes,explainingthe similaroutcomewitheithertherightorthelefteyeanaethetized.Thereasonforthenesting preferenceintheeasterndirectionmaybebasedonsomeyetunclearcharacteristicsofthe nervous processing or of the sensor, as does probablyalsotheyetnotunderstoodsouth easternpreferenceontheNorthSouthaxiswithbotheyesactive. Bridgingtotheabovementionedcoincidencewiththeshiftinnestingdirectionsof moleratsafterpulseremagnetizationtowardsEast(Marholdetal.1997b)andthemonocular experimentaldata,thismodelmightalsosupplyanexplanationandabaseforcomparison. Thoughithasbeensuggestedthattheveryshortpulse(5ms)of0.5Tmayhaveshifted magnetizationofthemagneticparticles,theherepresentedmodelcanexplaintheresultalso

5»Thelargeoculomotornucleusisperplexing.«(Němecetal.,2004)

MagnetoreceptionDiscussion 96 by the idea that the pulse may have evoked a demagnetization of the corneal magnetite resultinginalonglastingfunctionallossoftheanimals’ocularabilitytodetecttheirvirtual horizontal NorthSouthaxis (such as was initiated by the local anaesthesia). The resulting directionsneednotresemble,aswasthecasehere(significantdirectiondeviationof25°).The moleratswouldhavethusbeenforcedtorelyontheinformationfromtheirvirtualvertical EastWestaxis. Both directional preferences afterpulsingandundermonocularanaesthesia would then be based on the same underlying mechanism, yielding not as correct measurementsasthebinocularmethod.Thisweakermeasuringabilitycouldalsoexplainthe insignificantvectorlengthsoftherighteyegroupandthepooledgroup,which,despitethe obviousdirectionalshift,indicateahighdirectionalvariance,possiblyevokedbytheanimals’ directionaluncertainty. RevealingHippocampalInvolvement Here, we follow Witter & Amaral (2004) where the hippocampal region is described to comprisetwosetsofcorticalstructures,thehippocampalformation,andtheparahippocampal region.Thesetworegionsdiffermainlybytheirnumberofcorticallayersandtheiroverall connectivity. The hippocampal formation includes three regions which are cytoarchitectonically distinct, but comparable in their threelayered appearance and their largelyunidirectionalconnectivity:thedentategyrus,thehippocampus(proper)withitsthree fieldsCA3,CA2andCA1,andthesubiculum.Theparahippocampal(orretrohippocampal) regioncomprisestheentorhinalcortex,theperirhinalcortex,andthepostrhinalcortex;these areashavemorethanthreelayersandshowreciprocalconnectivity.Foranoverviewofthese structuresintheratbrain,pleaseseeAppendixAE. Following this definition, our study shows that the areas apparently containing neuronsthatareresponsivetomagneticstimuliareallofhippocampalcharacter.Thisisof interest,asthehippocampusisgenerallyconsideredtobethesiteofthecognitivemapofthe animal’senvironment(cf.,O’KeefeandNadel1978;Sharp2002;Jeffery2003). Theprofoundneoplasmicactivitysticksclosetotheacquisitionofnewmemories(cf., Eichenbaum 2000). The pyramidal neurons of the hippocampus proper regions CA1 and CA3,wherebothintensityandhorizontalcomponentchangesofthemagneticfieldevoked neuronalactivitypatternssignificantlydifferentfromthecontrolsituation,serveas place cells , i.e.neuronsthatfirewhentheanimaloccupiesaspecificlocationinaparticularenvironment (reviewedine.g.Muller1996).Achangeinplacecellactivityshouldparticularlybecomeclear underintensitychangemanipulation,asitsuppliestheanimalwithfalseinformationonits currentposition.

MagnetoreceptionDiscussion 97

Ourstudyshowsthatsuchchangesinplacecellactivityunderintensitychangesoccur predominantlyinCA3andinthedentategyrus,andinasmallamountalsoinCA1.BothCA1 andCA3thusseemtoplayrolesduringlocationrecognition,e.g.whentryingtoorient(and locateknownplaces)inamagneticfielddifferentfromthestatic,familiarone.Cellswithplace correlatesliealsointhedentategyrus(Jungetal.1994),where,atleastinthepolymorphic layer,neuronalactivitywasincreasedunderincreasedmagneticfieldintensity. Regardingthelearningofknownplacesasaprerequisiteoftheirrecognitionbyplace cellfiring,particularlytheconnectionbetweenCA1andCA3areas(the Schaffer collateral )seems predestinedforharbouringtherespectivemolecularprocess,ashere,coincidentreleaseofthe neurotransmitter glutamate and the strong depolarization of the postsynaptic membrane participate in longtime potentiation, LTP, a mechanism of prolonged excitatory synaptic potentation,inevitablyconnectedwiththestorageofmemorycontents(Bear1996;Kandelet al.1995).However,theparahippocampalregionisalsoofvitalimportancetothehippocampal memory system: it serves as a convergence site for cortical inputs and mediates the distributionofthecorticalafferentsfurtherontothehippocampus.Theconnectionsinthe hippocampusitselfcouldrepresentthebaseforalarge network of associations, andthese connectionssupportplasticitymechanismsthatcouldparticipateintherapidcodingofnew information conjunctions (reviewed in Eichenbaum 2000), e.g. information on new or unknownlocations. Besidesplacecells,thehippocampalstructuresdemonstratedinthisstudytoharbour magnetoresponsiveneurons,suchasthedentategyrusandCA1andCA3,alsocomprise head direction cells .Complementarytoplacecellactivity,headdirectioncellsfirewhentheanimal’s headfacesaparticulardirection(reviewedine.g.Taube1998;Sharpetal.2001).Achangein headdirectioncellactivityshouldthusparticularlybecomeclearunderhorizontalcomponent changemanipulation,asitsuppliestheanimalwithfalseinformationonthedirectionthatit faces,i.e.inthisstudywithpermanentlychangingdirectionalinformation. Significant increase in neuronal activity under such a permanent change of the horizontalcomponentcouldbefoundinCA1andinthedentategyrus,andalso,inalesser amount, in CA3.These structureswith the most frequentpyramidalcelltypethusseemto participate in the interpretation of an animal’s direction. Also in the subiculum with its demonstratedincreasedactivityunderhorizontalcomponentchangesofthemagneticfield, pyramidal cells make up for the principal cell layer. The major input that the subiculum receivesfromCA1,underlinesitsinvolvementindirectiondetermination(Witter&Amaral 2004). Tosumup,placecellsarethekeystoneoftheneuralmachinerygeneratinganabstract representation of the animal’s spatial surroundings (a map), while head direction cells are

MagnetoreceptionDiscussion 98 involved in the momentbymoment representation of the animal’s current heading (a compass). Our results of neuronal activity in the respective brain structures indicate that subterranean molerats may not only have a magnetic compass that derives directional information,ashasbeenhithertodemonstratedbybehaviouralexperiments,butthattheyalso usemagneticcuestoacquiremagneticmapinformation. Despite these highly interesting results, our knowledge about mammalian magnetoreception, i.e., what happens where in the rodent neuronal circuits, remains fragmentaryandisfarfromcomplete.

MagnetoreceptionRésumé&Outlook 99

IV RÉSUMÉ&OUTLOOK Thisdissertationthesishascontributedtoabetterunderstandingofbothlightandmagnetic receptioninsubterraneanmoleratsofthegenus Fukomys .Still,manyopenquestionsremain andmightbetheimpulsionforfuturestudies,someofwhichwillnowbeshortlysuggested. Notethattheavailablenumberofmoleratsisalwayslimited.Somestandardprocedures,e.g. usinghighnumbersofsacrificedanimals,arethusdifficulttoperform. Alreadytoday, Fukomys moleratscannotbeviewedasfullyblindanymore.Visionin these subterranean rodents probably contributes more than marginally to optimising the crucial processes of temporal and spatial orientation underground. To provide further behaviouralcorrelatesforthepresentmorphologicaldataandtoenlightenthebiologicalsense ofvisionin Fukomys ,retinoandneurophysiologicalstudieswouldbesurelyofavail. Furthermore, the surprisingly high cone share compared to the rod density, and particularlytherelativelyhighproportionofconesreactingtotheshortwavelengthspectrum ofthelighthavegivenrisetothequestionwhetherZambianmoleratshavecolourvision.It will be certainly interesting to examine the spectral tuning of their photoreceptors. As the single cell recordings turned outtobedifficultto perform and were scarce in results, the ultimateexpressionofthephotoncatchbythemolerats’retinamightbeunderstoodthrough future,visuallymediatedbehaviourstudiesusingoperantcolourlightexperiments.Tobetter understand the origin and function of the involved opsins, they should be molecularly characterized,andtheir in vitro expressionshouldbestudied. Visionandmagnetoreceptionareinterconnectedandshareaclosecoevolution;this viewhasforinstancebeensupportedinarecentstudy,whichsuggestedthatmagneticinput originatinginthephotoreceptorsofthebird’sretinapossiblysharesneuronalpathwayswith thevisualsystem(Möller2006). Thisclosevicinityis,inmolerats,expressedanatomically by the receptors of both senses,visionandmagnetoreception,beinglocatedintheeye.Torefinethepicturethatwe haveofmammalianmagnetoreception,firstly,theneurotomystudyshouldbeperformedto pindownthecorneaasthereceptiveseat.Themoleratcorneahasfurthertobethoroughly histologically,histochemically,andultramicroscopicallyexamined.Here,stainingmethodsfor ironcontainingparticles,suchasthePrussianBluemethod,wouldbeasadvantageousasthe newapproachtovisualizemagneticparticlesviasocalledferrofluids.Anexaminationofthe putativemagnetitecrystals in situ inthecorneawithtransmissionelectronmicroscopy(TEM) couldgiveadetailedimpressiononthelocationandcrystalloidcharacteristicsofmagnetitein thetissueandparticularlyonitsrelationtothesurroundingcells,aswellasonitsinnervation pattern.Anotherapproachtolocatesmallmagnetiteclustersinanimalshasbeensuggestedby

MagnetoreceptionRésumé&Outlook 100

Johnsen&Lohmann(2005).Theauthorsrecommendsearchingvertebrategenomiclibraries for gene sequences involved in magnetite production. Such sequences might have been conserved during evolution. The approach might be successful, as magnetroreceptive magnetitecrystalsareprobablyformedthroughpathwaysinvolvingmolecularenzymesand transporters. These processes have been extensively studied in magnetotactic bacteria, and bothtransportesandchelatorsinvolvedhavebeensequenced(Bazylinski&Frankel2004). Searchingformagnetitecrystalsmight,however,alsobepromisingintheoculomotor muscles.Asspeculatedabove,magneticorientationcouldbeconnectedwitheyemovement. Anaesthesiaoftheophthalmicnerve,whichresultedindisturbedorientation,mayhavewell also affected the oculomotor nerve and thus controlled eye movement. Assuming that magnetitemaybelocatedinmusclestretchreceptors,itcouldbethestretchreceptorsofthe oculomotormusclesthatpossessthemagnetitecrystals.Giventheaccessibilityofthecornea, thesestudiesmayopennewvistasforafurtherunderstanding of the primary transduction mechanismsofmagnetitebasedmagnetoreceptioninmammals. Using magnetic resonance tomography (MRT), the molerat brain could be systematically screened for neuronal activity under certain magnetic stimuli; the neuronal processingofmagneticinformationcouldbethusnearlyoptimallyvisualized,bothspatially andtemporally. Thisdissertationthesishas,however,nottouchedtheonecrucialquestionarisingin thesecondfieldofresearchpresentedhere:thequestionofthebiologicalsenseand/orthe adaptive meaning of magnetoreception. The following questions still need to be answered: WhatisthemeaningoftheuseofmagneticinformationderivedfromtheEarth’smagnetic field? Why do these rodents prefer to build their nests in the South under laboratory conditions?Dotheanimalsdisplaythesamepreferencealsointhefield?Aretheirburrows oriented in a certain direction, and if so, why? What use do the animals have from their magneticcompass?Oneexplanationwouldbethatmaintaining a shallow inclination angle whendiggingrequireslessenergythandiggingsteepertunnels,ashasbeenshownrecentlyin the tucotuco, Ctenomys talarum (Luna & Antinuchi 2007). Measuring the inclination angle wouldthenbeofhelpforadigginganimal,butapolaritycompassisofnouseforreceiving inclinationinformation.Magneticcuescouldbe,however,usedforpathintegrationwithinthe burrowsystem,ashasbeenshownin Spalax ehrenbergi (Kimchietal.2004). Inanycase,conclusionsonthelightindependentmagneticcompassinmoleratsasa representativeofthemammalianmagneticcompassmustbedrawncautiously.Themagnetite basedlightindependentcompassinmoleratsmayalternativelydisplay,alongwiththevisual system,anadaptationtothedarksubterraneanenvironment.Aninterestingparallelmaybe drawnwithblindsalamandersinhabitingaphoticcaves:theyarenotexpectedtohavealight

MagnetoreceptionRésumé&Outlook 101 dependent magnetic compass although this type of mechanisms occurs in terrestrial salamandersliketheeasternredspottednewt(Phillipspers.comm.).Itwillbethusofhigh interesttostudythemechanismsofmagnetoreceptionalsoinsurfacedwellingrodents.

References 102

V REFERENCES

Arendt D,TessmarRaibleK,SnymanH,DorresteijnAW&WittbrodtJ(2004)Ciliary photoreceptorswithavertebratetypeopsininaninvertebratebrain. Science 306:869871. August PV,AyvazianSG&AndersonJTG(1989)Magneticorientationinasmallmammal, Peromyscus leucopus . J Mammal 70:19. Bailey MJ,ChongNW,XiongJ&CassoneVM(2002)Chicken’sCry2:molecularanalysisof anaviancryptochromeinretinalandpinealphotoreceptors. FEBS Letters 513:169174. Baker RR(1989a)Navigationandmagnetoreceptionbyhorsesandothernonhumanland mammals.In: Orientation and Navigation - Birds, Humans and other Animals .(RoyalInstituteof Navigation,Cardiff),paper12. Baker RR(1989b)Humannavigationandmagnetoreception.ManchesterUniversityPress, Manchester. Banerjee SK&MoskowitzBM(1985)FerrimagneticpropertiesofMagnetite.In:Kirschvink JL,JonesDS,MacFaddenBJ,MagnetiteBiomineralizationandMagnetoreceptionin Organisms.Pp.1741,PlenumPress,NewYork. Batschelet E(1981)CircularStatisticsinBiology.AcademicPress,London. Bazylinski DA&FrankelRB(2004)Magnetosomeformationinprokaryotes. Nat Rev Microbiol 2:217–230. Bear MF(1996)Asynapticbasisformemorystrorageinthecerebralcortex. PNAS USA 93: 1345313459. Beason RC&SemmP(1987)Magneticresponsesofthetrigeminalnervesystemofthe bobolink, Dolichonyx oryzivorus . Neurosci Lett 80:229234. Beason RC&SemmP(1996)Doestheavianophthalmicnervecarrymagneticnavigational information? J Exp Biol 199:12411244.

References 103

Beason RC,DussourdN&DeutschlanderME(1995)Behaviouralevidencefortheuseof magneticmaterialinmagnetoreceptionbyamigratorybird. J Exp Biol 198:141146. Beesley JE(1993)Immunocytochemistry.OxfordUniversityPress,Oxford. Begall S,SchleichC&BurdaH(2007a).Sensoryecology.In:BegallS,BurdaH&Schleich CE(eds),Subterraneanrodents:Newsfromunderground.Inpress.SpringerVerlag, Heidelberg. Begall S,LangeS,SchleichC&BurdaH(2007b).Acoustics,audition,andauditorysystem. In:BegallS,BurdaH&SchleichCE(eds),Subterraneanrodents:Newsfromunderground.In press.SpringerVerlag,Heidelberg. Benhamou S,SauvéJP&BovetP(1990)Spatialmemoryinlargescalemovements– efficiencyandlimitationsoftheegocentriccodingprocess. J Theor Biol145:112. Berthold P(1990)Vogelzug:Einekurze,aktuelleGesamtübersicht.Wissenschaftliche Buchgesellschaft,Darmstadt. Bingman VP&ChengK(2005)Mechanismsofanimalglobalnavigation:comparative perspectivesandenduringchallenges. Ethol Ecol Evol 17:295318. Bisazza A,RogersLJ&VallortigaraG(1998)Theoriginofcerebralasymmetry:areviewof evidenceofbehavioralbrainlateralizationinfishes,reptiles,andamphibians. Neurosci Behav Rev 22:411426. Boles LC&LohmannKJ(2003)Truenavigationandmagneticmapsinspinylobsters. Nature 412:6063. Bradshaw J&RogersLJ(1993)Theevolutionoflateralasymmetries,language,tooluseand intellect.AcademicPress,SanDiego,California. Brassart J,KirschvinkJL,PhillipsJB&BorlandSC(1999)Amagnetitebasedmap componentofhomingintheeasternredspottednewt. J Exp Biol 202:31553160.

References 104

Brett RA(1991)Theecologyofnakedmoleratcolonies:burrowing,foodandlimiting factors.In:ShermanPW,JarvisJUM&AlexanderRD(eds),Thebiologyofthenakedmole rat.Pp.137184.PrincetonUniversityPress,Princeton. Burda H(1987)MagnetischeNavigationbeidenGraumullen, Cryptomys hottentotus (Bathyergidae)? Z Säugetierk Suppl 61:12. Burda H(1989)Reproductivebiology(behaviour,breeding,andpostnataldevelopment)in subterraneanmolerats, Cryptomys hottentotus (Bathyergidae). Z Säugetierk 54:360376. Burda H(1990)Constraintsofpregnancyandevolutionofsocialityinmolerats.Withspecial referencetoreproductiveandsocialpatternsin Cryptomys hottentotus (Bathyergidae,Rodentia). Z Zool System Evol 28:2639. Burda H&BegallS(2002)SinnesökologiesubterranerSäugetiere. PdN – Biologie 1(51):16 20. Burda H,BrunsV&MüllerM(1990a)Sensoryadaptationsinsubterraneanmammals.In: NevoE&ReigO(eds.),Evolutionsubterraneanmammalsattheorganismalandmolecular levels.Pp.269293,AlanR.Liss,NewYork. Burda H,MarholdS,WestenbergerT,WiltschkoR&WiltschkoW(1990b)Magnetic compassorientationinthesubterraneanrodent Cryptomys hottentotus(Bathyergidae). Experientia 46:528530. Burda H,BeilesA,MarholdS,SimsonS,NevoE&WiltschkoW(1991)Magnetic orientationinsubterraneanmoleratsofthesuperspecies Spalax ehrenbergi :experiments, patternsandmemory. Isr J Zool 37:182183. Burda H,HoneycuttRL,BegallS,GrütjenO&ScharffA(2000)Arenakedandcommon moleratseusocialandifso,why? Behav Ecol Sociobiol 47(5):293303. Burda H,SumberaR&BegallS(2007)Microclimateofsubterraneanburrows–revisited.In: BegallS,BurdaH&SchleichCE(eds),Subterraneanrodents:Newsfromunderground.In press.SpringerVerlag,Heidelberg.

References 105

Byrne RA,KubaMJ&MeiselDV(2004)LateralisedeyeuseinOctopusvulgarisshows antisymmetricaldistribution. Anim Behav 68:11071114. Cain SD,BolesLC,WangJH&LohmannKJ(2005)Magneticorientationandnavigationin marineturtles,lobsters,andmolluscs:conceptsandconundrums. Integr Comp Biol 45:539546. Cashmore A,JarilloJA,WuYJ,LiuD(1999)Cryptochromes:BluelightreceptorsforPlants andAnimals. Science 284:760765. CernudaCernuda R,DeGripWJ,CooperHM,NevoE&GarciaFernandezJM(2002)The retinaof Spalax ehrenbergi :novelhistologicfeaturessupportiveofamodifiedphotosensory role. Invest Ophthalmol Vis Sci 43(7):23742383. CernudaCernuda R,GarciaFernandezJM,GordijnMCM,BoveeGeurtsPHM&DeGrip WJ(2003)Theeyeoftheafricanmolerat Cryptomys anselli :toseeornottosee? Europ J Neurosci 17:709720. Chávez AE,BozinovicF,PeichlL&PalaciosAG(2003)Retinalspectralsensitivity,fur coloration,adurinereflectanceinthegenus Octodon (Rodentia):implicationsforvisual ecology. Invest Ophthalmol Vis Sci 44(5):22902296. Cooper HM,HerbinM&NevoE(1993)Ocularregressionconcealsadaptiveprogressionof thevisualsysteminablindsubterraneanmammal. Nature 361:156159. Credle VR(1988)Magnetiteandmagnetoreceptioninstrandeddwarfandpygmysperm whales,KogiasimusandKogiabreviceps.Masterthesis,UniversityofMiami. Czihak G,LangerH&ZieglerH(1990)Biologie.4teAuflage.SpringerVerlagBerlin, Heidelberg,NewYork. Davila AF,FleissnerG,WinklhoferM&PetersenN(2003)Anewmodelfora magnetoreceptorinhomingpigeonsbasedoninteractingclustersofsuperparamagnetic magnetite. Phys Chem Earth 28:647652.

References 106

DavidGray ZK,BellinghamJ,MunozM,AviviA,NevoE&FosterRG(2002)Adaptive lossofultravioletsensitive/violetsensitive(UVS/VS)coneopsinintheblindmolerat( Spalax ehrenbergi ). Europ J Neurosci 16:11861194. Denenberg VH(1981)Hemisphericlateralityinanimalsandtheeffectsofearlyexperience. Behav Brain Sci 4:149. Deutschlander ME,BorlandSC&PhillipsJB(1999a)Extraocularmagneticcompassin newts. Nature 400:324325. Deutschlander ME,PhillipsJB,BorlandSC(1999b)Thecaseforalightdependent magnetoreceptionmechanisminanimals. J Exp Biol 202:891908. Deutschlander ME,FreakeMJ,BorlandSC,PhillipsJB,AndersonLE&WilsonBW(2003) LearnedmagneticcompassorientationbytheSiberianhamster, Phodopus sungorus . Anim Behav 65:779786. Diebel CE,ProkschR,GreenCR,NeilsonP&WalkerMM(2000)Magnetitedefinesa vertebratemagnetoreceptor. Nature 406:299–302. Dragunow M&RobertsonHA(1987)Kindlingstimulationinducescfosprotein(s)in granulecellsoftheratdentategyrus. Nature 329:441442. Dusenbery DB(1992)Sensoryecology:howorganismsacquireandrespondtoinformation. W.H.FreemanandCo.Publishers,NewYork. Eichenbaum H(2000)Acorticalhippocampalsystemfordeclarativememory. Nat Rev Neurosci 1:4150. Eloff G(1951)Orientationinthemolrat Cryptomys . Brit J Psychol 42:134145. Eloff G(1958)ThefunctionalandstructuraldegenerationoftheeyeoftheSouthAfrican rodentmoles, Cryptomys bigalkei and Bathyergus maritimus . S Afr J Sci 54:293302. Etienne AS&JefferyKJ(2004)PathIntegrationinmammals. Hippocampus 14:180192.

References 107

Etienne AS,MaurerR&SaucyF(1988)Limitationsintheassessmentofpathdependant information. Behaviour 106:81111. Ewert JP(1973)FortschrittederZoologie,Band21.FischerVerlag,Jena. Faulkes CG,VerheyenE,VerheyenW,JarvisJUM&BennettNC(2004)Phylogeographic patternsofspeciationandgeneticdivergenceinAfricanmolerats(FamilyBathyergidae). Mol Ecol 13:613629. Fischer JH,FreakeMJ,BorlandSC&PhillipsJB(2001)Evidencefortheuseofmagnetic mapinformationbyamphibian. Anim Behav 62:1–10. Fleissner G,HoltkampRötzlerE.,Hanzlik,M,WinklhoferM,FleissnerGü,PetersenN& WiltschkoW(2003)Ultrastructuralanalysisofaputativemagnetoreceptorinthebeakof homingpigeons. J Comp Neurol 458:350360. Francescoli G(2000)Sensorycapabilitiesandcommunicationinsubterraneanmammals.In: LaceyEA,PattonJL&CameronGN(eds),Lifeunderground,thebiologyofsubterranean rodents.Pp111144,UniversityChicagoPress,Chicago. Giovani B,ByrdinM,AhmadM&BrettelK(2003)Lightinducedelectrontransferina cryptochromebluelightphotoreceptor. Nat Struct Biol 6:489490. Hanzlik M,HeunemannC,HoltkampRötzlerE,WinkelhoferM,PetersenN&FleissnerG (2000)Superparamagneticmagnetiteintheupperbeaktissueofhomingpigeons. BioMetals 13: 325–331. Haque R,ChaurasiaSS,WesselJH,IuvonePM(2002)Dualregulationofcryptochrome1 mRNAexpressioninchickenretinabylightandcircadianoscillators. NeuroReport 13:2247 2251. Hecht E(2001)Optics.4 th edition.PearsonEducation,UpperSaddleRiver,NJ. Herdegen T&LeahJD(1998)Inducibleandconstitutivetranscriptionfactorsinthe mammaliannervoussystem:controlofgeneexpressionbyJun,FosandKrox,and CREB/ATFproteins. Brain Res Rev 28:370490.

References 108

Heth G,NevoE&BeilesA(1987)Adaptiveexploratorybehaviour:Differentialpatternsin speciesandsexesofsubterraneanmolerats. Mammalia 51:2737. Heth G,TodrankJ,BegallS,BraudeS,KochR,ZilbigerY,NevoE&BurdaH(2002) Odourguidedforaging:“Blind”subterraneanrodentsdonotsearch“blindly ”. Behav Ecol Sociobiol 52:5358. Heth G&TodrankJ(2007)Usingodorsunderground.In:BegallS,BurdaH&SchleichCE (eds),Subterraneanrodents:Newsfromunderground.Inpress.SpringerVerlag,Heidelberg. Hickman GC(1979)BurrowsystemstructureoftheBathyergid Cryptomys hottentotus inNatal, SouthAfrica. Z Säugetierk 44:153162. Holland RA,ThorupK,VonhofMJ,CochranWW&WikelskiM(2006)Batorientation usingEarth’smagneticfield. Nature 444:702. Huerta MF&HartingJK(1984)Connectionalorganizationofthesuperiorcolliculus. TINS 7:286289. Hunt DM,WilkieSE,BowmakerJK&PoopalasundaramS(2001)Visionintheultraviolet. Cell Mol Lif Sci 58:15831598. Ingram CM,BurdaH&HoneycuttRL(2004)Molecularphylogeneticsandofthe Africanmolerats,genus Cryptomys andthenewgenus Coetomys Gray,1864. Mol Phyl Evol 31: 9971014. Jacobs GH(1993)Thedistributionandnatureofcolourvisionamongthemammals. Biol Rev 68:413471. Jacobs GH,NeitzJ&DeeganJF(1991)Retinalreceptorsinrodentsmaximallysensitiveto ultravioletlight. Nature 353:655656. Jeffery KJ(2003)Theneurobiologyofspatialbehaviour.OxfordUniversityPress,Oxford. JohannessonGross K(1988)LernversucheineinerZweifachwahlapparaturzumHell DunkelSehendesMaulwurfs( Talpa europaea L.). Z Säugetierk 53:193201.

References 109

Johnsen S&LohmannKJ(2005)Thephysicsandneurobiologyofmagnetoreception. Nat Neurosci Rev 6:703712. Jung M,WienerSI&McNaughtonBL(1994)Comparisonofspatialfiringcharacteristicsof unitsindorsalandventralhippocampusoftherat. J Neurosci 14:73477356. Kaernbach C&ScheibelhoferG(2006)EinretinalesPhänomenbeimBetrachteneines Lichtpunkts.Posterpresentedatthe9 th Wahrnehmungskonferenz,Tübingen. Kalmijn AJ(1978)Electricandmagneticsensoryworldofsharks,skatesandrays.In: HodgsonFS&MathewsonRF(eds),Sensorybiologyofsharks,skatesandrays.Pp507528, OfficeNavalRes.,Arlington,VA. Kandel ER,SchwartzJH&JessellTM(1995)Neurowissenschaften:eineEinführung. KandelER,SchwartzJH&JessellTM(eds).SpektrumAkademischerVerlag,Heidelberg, Berlin,Oxford. Keeton WT(1971)Magnetsinterferewithpigeonhoming. PNAS USA 68:102106. Kelber A&RothLSV(2006)Nocturnalcolourvision–notasrareaswemightthink. J Exp Biol 209:781788. Kellie A,DainSJ&BanksPB(2004)UltravioletpropertiesofAustralianmammalurine. J Comp Physiol A 190:429435. Kimchi T&TerkelJ(1999)Magneticorientationbyblindmoleratsinalabyrinth. Isr J Zool 45:318. Kimchi T&TerkelJ(2001)Magneticcompassorientationintheblindmolerat Spalax ehrenbergi . J Exp Biol 204:751758. Kimchi T,EtienneAS&TerkelJ(2004)Asubterraneanmammalusesthemagneticcompass forpathintegration. PNAS USA 101:11051109. Kirschvink JL(1983)Biogenicferrimagnetism:anewbiomagnetism.In:WilliamsonSJ (ed),Biomagnetism.Pp501531.PlenumPress,NewYork.

References 110

Kirschvink JL&GouldJL(1981)Biogenicmagnetiteasabasisformagneticfielddetection inanimals. BioSystems 13:181201. Kirschvink JL,JonesDS&MacFaddenBJ,eds.(1985)MagnetiteBiomineralizationand MagnetoreceptioninOrganisms.PlenumPress,NewYork. Kirschvink JL,WalkerMM&DiebelCE(2001)Magnetitebasedmagnetoreception. Curr Op Neurobiol 11:462467. Klinowska M(1988)Cataceannavigationandgeomagneticfields. J Navigation 41:5271. Kock D,IngramCM,FrabottaLJ,HoneycuttRL&BurdaH(2006)Onthenomenclatureof Bathyergidaeand Fukomys n.gen.(Mammalia:Rodentia). Zootaxa1142:5155. Koivula M,KoskelaE&ViitalaJ(1999)Sexandagespecificdifferencesinultraviolet reflectanceofscentmarksofbankvoles( Clethrionomys glareolus ). J Comp Physiol A 185:561564. Lanza R&MeloniA(2006)TheEarth’smagnetism.Anintroductionforgeologists.Springer, Berlin,Heidelberg,NewYork. Leask M(1977)Aphysicochemicalmechanismformagneticfielddetectionbymigratory birdsandhomingpigeons. Nature 267:144145. Leask MJM(1978)Primitivemodelsofmagnetoreception.In:SchmidtKoenigK,Keeton WT(eds),Animalmigration,navigationandhoming.Pp318322,SpringerVerlag,Berlin, Heidelberg,NewYork. Light P,SalmonM&LohmannKJ(1993)Geomagneticorientationofloggerheadturtles: evidenceforaaninclinationcompass. J Exp Biol 182:110. Lipson SG,LipsonHS&TannhauserDS(1997)Optik.SpringerVerlag,Berlin,Heidelberg. Lohmann KJ&JohnsenS(2000)Theneurobiologyofmagnetoreceptioninvertebrate animals. TINS 23(4):153159.

References 111

Lohmann KJ&LohmannCMF(1992)Orientationtooceanicwavesbygreenturtle hatchlings. J Exp Biol 171:113. Lohmann KJ&LohmannCMF(1996)Orientationandopenseanavigationinseaturtles. J Exp Biol 199:7381. Lohmann KJ&LohmannCMF(2006)Seaturtles,lobsters,andoceanicmagneticmaps. Mar Fresh Behav Physiol 39:49–64. Lovegrove BG,KörtnerGü&KörtnerGe(1992)Themagneticcompassorientationofthe burrowsoftheDamaramolerat Cryptomys damarensis (Bathyergidae). J Zool Lond 226:631633. Lowenstam HA(1962)Magnetiteindenticlecappinginrecentchitons(Polyplacophora). Geol Soc Am Bull 73:435438. Luna F&AntinuchiCD(2007)Effectoftunnelinclinationondiggingenergeticsinthetuco tuco,Ctenomystalarum(Rodentia:Ctenomyidae). Naturwiss 94:100106. Madden RM&PhillipsJB(1987)Failuretodemonstratemagneticfieldsensitivityintwo speciesofsmallmammal. Anim Learn Behav 15:130134. Marhold S,WiltschkoW&BurdaH(1997a)Amagneticpolaritycompassfordirection findinginasubterraneanmammal. Naturwiss 84:421423. Marhold S,BurdaH,KreilosI&WiltschkoW(1997b)Magneticorientationincommon moleratsfromZambia.In:OrientationandNavigation:Birds,HumansandOtherAnimals. PaperNo5.RoyalInstituteofNavigation,Oxford. Mason MJ&NarinsPM(2001)Seismicsignalbyfossorialmammals. Am Zool 41:11711184. Mather JG(1985)Magnetoreceptionandthesearchformagneticmaterialinrodents.In: KirschvinkJL,JonesDS&MacFaddenBJ(eds),MagnetiteBiomineralizationand MagnetoreceptioninOrganisms.Pp.509533,PlenumPress,NewYork,London. Mather JG&BakerRR(1981)Magneticsenseofdirectioninwoodmiceforroutebased navigation. Nature 291:152155.

References 112

Mattis DC(1965)Thetheoryofmagnetism.AnIntroductiontothestudyofcooperative phenomena.Harper&RowPublishers,NewYork. McCree KJ(1981)Photosyntheticallyactiveradiation.In:LangeOL,NobelPS,OsmondCB &ZieglerH(eds.),EncyclopediaofPlantPhysiology,Vol.12A.Pp.4155.Springer,Berlin. Merkel FW(1980)OrientierungimTierreich.GrundbegriffedermodernenBiologie,Bd.15. Fischer,Stuttgart,NewYork. Meyer CG,HollandKN&PapastamatiouYP(2005)Sharkscandetectchangesinthe geomagneticfield. J R Soc Interface 2:129130. Miyamoto Y&SancarA(1998)VitaminB2basedbluelightphotoreceptorsinthe retinohypothalamictractasthephotoactivepigmentsforsettingthecircadianclockin mammals. PNAS USA 95:60976102. Middendorf Avon(1859)DieIsepiptesenRusslands.GrundlagenzurErforschungder ZugzeitenundZugrichtungenderVögelRusslands. Mémoires de l’Académie Impériale des Sciences de Saint-Pétersbourg 6ème série;SciencesMathématiques,PhysiquesetNaturelles,TomeXet Dernier,2 nde partie:SciencesNaturelles,TomeVIIIetdernier:1143. Möller A(2006)CryptochromalspotentiellesRezeptormolekülfürdielichtabhängige MagnetkompassorientierungvonZugvögeln.DissertationsschriftimFachbereich Biowissenschaften,JohannWolfgangGoetheUniversität,FrankfurtamMain. Möller A,SagasserS,WiltschkoW&SchierwaterB(2004)Retinalcryptochromeina migratorypasserinebird:apossibletransducerfortheavianmagneticcompass. Naturwiss 91: 585588. Mora CV,DavisonM,WildJM&WalkerMM(2004)Magnetoreceptionanditstrigeminal mediationinthehomingpigeon. Nature 432:508511. Mouritsen H,JanssenBienholdU,LiedvogelM,FeendersG,StalleickenJ,DirksP&Weiler R(2004)Cryptochromesandneuronalactivitymarkerscolocalizeintheretinaofmigratory birdsduringmagneticorientation. PNAS USA 101:142941429.

References 113

Muheim R,EdgarNM,SloanKA&PhillipsJB(2006)Magneticcompassorientationin C57BL/6mice. Learn Behav 34(4):366373. Muller R(1996)Aquarterofacenturyofplacecells. Neuron 17:813822 Munro U,MunroJA,PhillipsJB,WiltschkoR&WiltschkoW(1997a)Evidencefora magnetitebasednavigational‘map’inbirds. Naturwiss 84:2628. Munro U,MunroJA,PhillipsJB&WiltschkoW(1997b)Effectofwavelengthoflightand pulsemagnetizationondifferentmagnetoreceptionsystemsinamigratorybird. Austr J Zool 45:189198. Narins PM,LewisER,JarvisJUM&O’RiainJ(1997)Theuseofseismicsignalsbyfossorial southernAfricanmammals:Aneuroethologicalgoldmine. Brain Res Bull 44:641646. Němec P,AltmannJ,MarholdS,BurdaH&OelschlägerHA(2001)Magnetotopic organizationinthesuperiorcolliculus:involvementofabrainstructureinmagnetoreception. Science 294:366368. Němec P,BurdaH&PeichlL(2004)SubcorticalvisualsystemoftheAfricanmolerat Cryptomys anselli :toseeornottosee? Europ J Neurosci 20:757768. Němec P,BurdaH&OelschlägerHA(2005)Towardstheneuralnatureof magnetoreception:Aneuroanatomicalapproach. Naturwiss 92:151157. Němec P,CvekováP,BurdaH,BenadaO&PeichlL(2007).VisualSystemsandtheroleof visioninsubterraneanrodents:Diversityofretinalpropertiesandvisualsystemdesigns In: BegallS,BurdaH&SchleichCE(eds),Subterraneanrodents:Newsfromunderground.In press.SpringerVerlag,Heidelberg. Nevo E(1999)Mosaicevolutionofsubterraneanmammals:regression,progression,and globalconvergence.OxfordUniversityPress,Oxford. Oakley TH(2003)Theeyeasareplicatinganddiverging,modulardevelopmentalunit. TREE 18(12):623627.

References 114

Oelschläger HA&NorthcuttRG(1992)ImmunocytochemicallocalizationofLuteinizing HormoneReleasingHormone(LHRH)inthenervusterminalisandbrainofthebigbrown bat, Eptesicus fuscus . J Comp Neurol 315:344363.

Oelschläger HHA,NakamuraM,HerzogM&BurdaH(2000)Visualsystemlabeledbyc Fosimmunohistochemistryafterlightexposureinthe‚blind’subterraneanZambianmolerat (Cryptomys anselli ). Brain Behav Evol 55:209220. O’Keefe J&NadelL(1978)Thehippocampusasacognitivemap.OxfordUniversityPress, Oxford. Olcese J,ReussJ&VollrathL(1985)Evidencefortheinvolvementofthevisualsystemin mediatingmagneticfieldeffectsonpinealmelatoninsynthesisintherat. Brain Res 333:382 384. Olcese J,ReussS,StehleJ,SteinlechnerS&VollrathL(1988)Responsesofthemammalian retinatoexperimentalalterationoftheambientmagneticfield. Brain Res 448:325330. Park TJ,CataniaKC,SamaanD&ComerCM(2007).Convergentnotesfromthe underground:Somatosensoryorganizationofnakedmolerats(andthosesimilarlychallenged) emphasizestheadaptabilityofbrainandbehavior.In:BegallS,BurdaH&SchleichCE(eds), Subterraneanrodents:Newsfromunderground.Inpress.SpringerVerlag,Heidelberg. Paxinos G&WatsonC(1998)Theratbraininstereotaxiscoordinates.4 th edition.Academic Press,SanDiego. Pedrotti FL&PedrottiLS(1993)Introductiontooptics.2 nd edition.PrenticeHall InternationalLimited,London. Peichl L(2005)Diversityofmammalianphotoreceptorproperties:adaptationstohabitatand lifestyle?Anatom Rec A 287:10011012. Peichl L,NěmecP&BurdaH(2004)Unusualconeandrodpropertiesinsubterranean Africanmolerats(Rodentia,Bathyergidae). Europ J Neurosci 19:15451558.

References 115

Phillips JB(1986)Twomagnetoreceptionpathwaysinamigratorysalamander. Science 233: 765767. Phillips JB&BorlandSC(1992a)Behavioralevidencefortheuseofalightdependent magnetoreceptionmechanismbyavertebrate.Nature 359:142144. Phillips JB&BorlandSC(1992b)Magneticcompassorientationiseliminatedundernear infraredlightintheeasternredspottednewt Notophthalmus viridescens . Anim Behav 44:796797. Phillips JB&BorlandSC(1992c)Wavelengthspecificeffectsoflightonmagneticcompass orientationoftheeasternredspottednewt Notophthalmus viridescens . Ethol Ecol Evol 4:3342. Phillips JB,DeutschlanderME,FreakeMJ&BorlandSC(2001)Theroleofextraocular photoreceptorsinnewtmagneticcompassorientation:evidenceforparallelsbetweenlight dependentmagnetoreceptionandpolarizedlightdetectioninvertebrates. J Exp Biol 204: 25432552. Phillips JB,FreakeMJ,FischerJH&BorlandSC(2002)Behavioraltitrationofamagnetic mapcoordinate. J Comp Physiol A 188:157160. Phillips JB,SchmidtKoenigK&MuheimR(2006)TrueNavigation:SensoryBasisof GradientMaps.In:BrownMF&CookRG(eds),AnimalSpatialCognition:Comparative, NeuralandComputationalApproaches.[Online].Available: www.pigeon.psy.tufts.edu/asc/phillips/. Poduschka W(1978)ZurFragederWahrnehmungvonLichtreizendurchdieMullratte, Cryptomys hottentotus (Lesson,1826). Säugetierk Mitt 26:269274. Press F&SieverR(2003)AllgemeineGeologie.3rdedition.SpektrumAkademischer Verlag,Heidelberg,Berlin,Oxford. Presti D&PettigrewJD(1980)Ferromagneticcouplingtomusclereceptorsasabasisfor geomagneticfieldsensitivityinanimals. Nature 285:99101. Quinn TP,MerrillRT&BrannonEL(1981)Magneticfielddetectioninsockeyesalmon. J Exp Zool 217:137142.

References 116

Rado R,TerkelJ&WollbergZ(1998)Seismiccommunicationsignalsintheblindmolerat (Spalax ehrenbergi ):electrophysiologicalandbehaviouralevidencefortheirprocessingbythe auditorysystem. J Comp Physiol A 183:503511. Reuss S,SemmP&VollrathL(1983)Differenttypesofmagneticallysensitivecellsintherat pinealgland. Neurosci Lett 40:2326. Reuss S&OlceseJ(1986)Magneticfieldeffectsonratpinealgland:roleofretinalactivation bylight. Neurosci Lett 64:97101. Riccio AP&GoldmanBD(2000a)Circadianrhythmsoflocomotoractivityinnakedmole rats( Heterocephalus glaber ). Physiol Behav 71:113. Riccio AP&GoldmanBD(2000b)Circadianrhythmsofbodytemperatureandmetabolic rateinnakedmolerats. Physiol Behav 71:1522. Ritz T,Adem,S&SchultenK(2000)Amodelforphotoreceptorbasedmagnetoreceptionin birds. Biophys J 78:707718. Ritz T,PhillipsJB&DommerDH(2002)Sheddinglightonvertebratemagnetoreception. Neuron 34:503506. Ritz T,ThalauP,PhillipsJ,WiltschkoR&WiltschkoW(2004)Resonanceeffectsindicatea radicalpairmechanismforavianmagneticcompass.Nature 429:177180. Rogers L&AndrewRJ(2002)ComparativeVertebrateLateralization.RogersL&Andrew RJ(eds).CambridgeUniversityPress,Cambridge. Sancar A(1994)StructureandfunctionofDNAphotolyase. Biochemistry 33:29. Sancar A(2003)StructureandFunctionofDNAPhotolyaseundCryptochromeBlueLight Photoreceptors. Chem Rev 103:22032337. Sanyal S,JansenHG,DeGripWJ,NevoE&DeJongWW(1990)Theeyeoftheblindmole rat, Spalax ehrenbergi :rudimentwithhiddenfunction? Invest Ophthalmol Vis Sci 31:1398–1404.

References 117

Sauvé JP(1988)Analysedel'orientationinitialedansuneexpériencederetouraugîtechezle mulot, Apodemus sylvaticus . Sci Tech Anim Lab 13:991. Scharff A&GrütjenO(1997)EvidenceforabovegroundactivityofZambianmolerats (Cryptomys ,Bathyergidae,Rodentia). Z Säugetierk 62:253254. Scharff A,LockerGrütjenO,KawalikaM&BurdaH(2001)Naturalhistoryofthegiant molerat, Cryptomys mechowi (Rodentia:Bathyergidae),fromZambia. J Mammal 82:10031015. Schleich C&AntinuchiCD(2004)TestingMagneticOrientationinaSolitarySubterranean Rodent Ctenomys talarum (Rodentia:Octodontidae). Ethology 110:485495. Schulten K&WindemuthA(1986)Modelforaphysiologicalmagneticcompass.In:Maret G,BoccaraN&KiepenheuerJ(eds),Biophysicaleffectsofsteadymagneticfields.Pp99106, SpringerVerlag,Berlin,Heidelberg,NewYork. Schwartz J&BegleyS(2003)TheMindandtheBrain:NeuroplasticityandthePowerof MentalForce.ReganBooksfromHarperCollinsPublishers,NewYork. Semm P,SchneiderT&VollrathL(1980)Effectsofanearthstrengthmagneticfieldon electricalactivityinpinealcells. Nature 288:607608. Semm P&DemaineC(1986)Neurophysiologicalpropertiesofmagneticcellsinthepigeon’s visualsystem. J Comp Physiol A 159:619625. Semm P,NohrD,DemaineC&WiltschkoW(1984)Neuralbasisofthemagneticcompass: interactionofvisual,magneticandvetsibularinputsinthepigeonsbrain. J Comp Physiol A 155: 283288. Semm P&BeasonC(1990)Responsestosmallmagneticvariationsbythetrigeminalsystem ofthebobolink. Brain Res Bull 25:735740. Sharp PE(2002)Theneuralbasisofnavigation.Evidencefromsinglecellrecording.Kluver AcademicPublishers,Boston.

References 118

Sharp PE,BlairHT&ChoJW(2001)Theanatomicalandcomputationalbasisoftherat headdirectioncellsignal. TINS 24:289294. Shcherbakov VP&WinklhoferM(1999)Theosmoticmagnetometer:anewmodelfor magnetitebasedmagnetoreceptorsinanimals. Eur Biophys J 28:380–392. Skiles DD(1985)Thegeomagneticfield:itsnature,history,andbiologicalrelevance.In: KirschvinkJL,JonesDS&MacFaddenBJ(eds),MagnetiteBiomineralizationand MagnetoreceptioninOrganisms.Pp43102,PlenumPress,NewYork,London. Stehle J,ReussS,SchroederH,HenschelM&VollrathL(1988)Magneticfieldeffectson pinealNacetyltransferaseactivityandmelatonincontentinthegerbil—theroleof pigmentationandsex. Physiol Behav 44:9194. Šumbera R,BurdaH,ChitaukaliWN&KubovaJ(2003)Howadaptiveisthepatternof burrowinginsubterraneanrodents?Thecaseofthesolitarysilverymolerat Heliophobius argenteocinereus ,Bathyergidae. Naturwiss 90:370373. Šumbera R,ChitaukaliWN&BurdaH(2007)Biologyofthesilverymolerat( Heliophobius argenteocinereus ).Whystudyaneglectedsubterraneanrodentspecies?In:BegallS,BurdaH& SchleichCE(eds),Subterraneanrodents:Newsfromunderground.Inpress.SpringerVerlag, Heidelberg. Sun Q,YodaK,SuzukiM&SuzukiH(2003)Vasculartissueinthestemandrootsofwoody plantscanconductlight. J Exp Bot 54(387):16271635. Szél Á,LukátsÁ,FeketeT,SzepessyZ&RöhlichP(2000)Photoreceptordistributioninthe retinasofsubprimatemammals. J Opt Soc Am A 17:568579. Taube JS(1998)Headdirectioncellsandtheneurophysiologicalbasisforasenseofdirection. Progr Neurobiol 55:225256. Thalau P,RitzT,StapputK,WiltschkoR&WiltschkoW(2005)Magneticcompass orientationofmigratorybirdsinthepresenceofa1.315MHzoscillatingfield. Naturwiss 92: 8690.

References 119

Tipler P(2004)PhysicsforScientistsandEngineers:Electricity,Magnetism,Light,and ElementaryModernPhysics.5 th edition.W.H.FreemanandCo.Publishers,NewYork. Vallortigara G(2000)Comparativeneuropsychologyofthedualbrain:astrollthrough animals’leftandrightperceptualworlds. Brain Lang 73:189–219. VanDaele PAAG,DammannP,KawalikaM,MeierJL,VanDeWoestijneC&BurdaH (2004)Cromosomaldiversityin Cryptomys molerats(Rodentia:Bathyergidae)inZambiawith thedescriptionofnewkaryotypes. J Zool Lond 264:317326. Vasicek CA,MalpauxB,FlemingTA&BennettNC(2005)Melatoninsecretioninthe Mashonamolerat, Cryptomys darlingi –influenceoflightonrhythmicity. Physiol Behav 83,689 697. Viguier C(1882)Lesensdel’orientationetsesorganschezlesanimauxetchezl’homme. Rev Phil France et Etranger 14:136. Viitala J,KorpimäkiE,PalokangasP&KolvulaM(1995)Attractionofkestrelstovolescent marksvisibleinultravioletlight. Nature 373:425427. Walcott CF,GouldJL&KirschvinkJL(1979)Pigeonshavemagnets. Science 205:10271029. Walker MM,DiebelCE,HaughCV,PankhurstPM,MontogomeryJC&GreenCR(1997) Structureandfunctionofthevertebratemagneticsense. Nature 390:371376. Walker MM,DennisTE&KirschvinkJL(2002)Themagneticsenseanditsuseinlong distancenavigationbyanimals. Curr Op Neurobiol 12:735744. Welker H,SemmP,WilligR,CommentzJ,WiltschkoW&VollrathL(1983)Effectsofan artificialmagneticfieldonserotoninNacetyltranferaseactivityandmelatonincontentofthe ratpinealgland. Exp Brain Res 50:426432. Werner SJ,NolteDL&ProvenzaFD(2005)Proximalcuesofpocketgopherburrow pluggingbehavior:Influenceoflight,burrowopenings,andtemperature. Physiol Behav 85,340 345.doi:10.1016/j.physbeh.2005.04.024.

References 120

Williams MN&WildJM(2001)Trigeminallyinnervatedironcontainingstructuresin the beakofhomingpigeonsandotherbirds. Brain Res 889:243–246. Wiltschko R&WiltschkoW(1995)MagneticOrientationinAnimals.Springer,Berlin, Heidelberg,NewYork. Wiltschko R&WiltschkoW(2006)Magnetoreception. BioEssays 28:157–168. Wiltschko R,RitzT,StapputK,ThalauP&WiltschkoW(2005)Twodifferenttypesoflight dependentresponsestomagneticfieldsinbirds. Curr Biol 15:15181523. Wiltschko W&GwinnerE(1974)EvidenceforaninnatemagneticcompassinGarden Warblers. Naturwiss 61:406. Wiltschko W&MerkelFW(1966)OrientierungzugunruhigerRotkehlchenimstatischen Magnetfeld. Verhandl Dtsch Zool Ges 59:362367. Wiltschko W&WiltschkoR(1972)MagneticcompassofEuropeanRobins. Science 176:62 64. Wiltschko W&WiltschkoR(1995)MigratoryorientationofEuropeanRobinsisaffectedby thewavelengthoflightaswellasbyamagneticpulse. J Comp Physiol A 177:363369. Wiltschko W&WiltschkoR(2001)Lightdependentmagnetoreceptioninbirds:thebehavior ofEuropeanrobins, Erithacus rubecula ,undermonochromaticlightofvariouswavelengths. J Exp Biol 204:32953302. Wiltschko W&WiltschkoR(2002)Magneticcompassorientationonbirdsandits physiologicalbasis. Naturwiss 89:445452. Wiltschko W&WiltschkoR(2005)Magneticorientationandmagnetoreceptioninbirdsand otheranimals. J Comp Physiol A 191:675693. Wiltschko W,MunroU,FordH&WiltschkoR(1993)Magneticinclinationcompass:Abasis forthemigratoryorientationofbirdsinthenorthernandsouthernhemisphere. Experientia 49: 167170.

References 121

Wiltschko W,TraudtJ,GüntürkünO,PriorH&WiltschkoR.(2002)Lateralizationof magneticcompassorientationinamigratorybird. Nature 419:467470. Wiltschko W,MunroU,FordH&WiltschkoR(2003)Lateralisationofmagneticcompass orientationinsilvereyes, Zosterops lateralis . Austr J Zool 51:597602. Winklhofer M,HoltkampRötzlerE,HanzlikM,FleissnerG&PetersenN(2001)Clustersof superparamagneticparticlesintheupperbeakskinofhomingpigeons:evidenceofa magnetoreceptor? Eur J Mineral 13:659669. Winter Y,LópezJ&vonHerlversenO(2003)Ultravioletvisioninabat. Nature 425:612 614. Witter MP&AmaralDG(2004)Hippocampalformation.In:PaxinosG(ed), TheRat NervousSystem,3 rd edition.Pp443493.AcademicPress,NewYork. Yorke E(1979)Apossiblemagnetictransducerinbirds.J Theor Biol 77:101105. Zeki SM(1994)DasgeistigeAbbildderWelt.In:PhysiologiederSinne.Pp104113. SpektrumAkademischerVerlag,Heidelberg,berlin. Zwahr A(1993):DerBrockhaus,F.A.Brockhaus,Mannheim. Zhu H&GreenCB(2001)Threecryptochromesarerhythmicallyexpressedin Xenopus laevis retinalphotoreceptors. Mol Vis 7:210215.

Appendix 122

VI APPENDIX A Abbreviations Physics&Mathematics Statistics nm nanometre X2 Chisquarevalue cm centimetre P Pvalueofprobabilityoferror m metre * P<0.05, probability of error nT nanotesla lowerthan5% T microtesla ** P<0.01, probability of error T tesla lowerthan1% s second *** P<0.001, probability of error h hour lowerthan0.1% ml millilitre med. median mol micromol ns not significant; P>0.05, ° degree probability of error higher °C degreeCelsius than5% λ wavelengthinnanometre t tvalueforpaired ttest

deviation/difference rA lengthofmeanvectorof % percentage meandirectionofalltested > biggerthan moleratpairsafterone < smallerthan experiment

= equals αA meandirectionofalltested E East moleratpairsafterone F MFvector=MFdirection experiment

H MagneticField αP meandirectionofsixtested

Ji inducedMagnetization moleratpairsafterfour

Jr resultingMagnetization experiments

N North rP lengthofmeanvectorof S South meandirectionofsixtested W West moleratpairsafterfour experiments

Appendix 123

ICC Others AB antibody C control 1°AB primaryantibody(analogous: e.g. exempli gratia (forinstance) 2°,3°AB) EM electromagnetic ABC Avidinbiotincomplex fig. figure BSA Bovineserumalbumin i.e. id est (thatis) cfos animmediateearlygene, IR infrared(Light) secondmessenger Lcone conewithvisualpigment DAB 3,3diaminobenzidine (opsin)sensitivetolong tetrahydrochloride wavelengths Fos antigene/productofthegene Lopsin visualpigmentsensitiveto cfos;itsexpressioncanbe longwavelengths visualizedby MF magneticfield applicationoftheright MHz megahertz antibody MSP MicroSpectroPhotometry H2O2 hydrogenperoxide (MSP) ICC immunocytochemistry N numberoftestedanimals (Immunohistochemistry) NRM NaturalRemanent IEG immediateearlygene,e.g.cfos Magnetization ITF InducibleTranscription PNA peanutagglutinin;acone Factor specificmarker PB phosphatebuffer TF transcriptionfactor PBS phosphatebufferedsaline RPM RadicalPairModel solution SD singledomain PFA paraformaldehyde:4% Scone Conewithvisualpigment paraformaldehydein0.1M (opsin)sensitivetoshort PB,pH7.4 wavelengths “SAPJE” PBSwith0.1%BSAand0.5% Sopsin visualpigmentsensitiveto Triton shortwavelengths SP superparamagnetic tab. table TM transductionmechanism

Figurelegend 124

B Figurelegends Fig.1 Themolerats’Zambianhabitat—4 Fig.A1 Theelectromagneticspectrum—7 Fig.A2 Visiblewavelengthsintheelectromagneticspectrum—8 Fig.A3 Themolerateye—11 Fig.A4 Mazesforlightperceptionstudies.—15 Fig.A5 Tmazeforthestudyoflightperceptionthresholdsinmolerats(topview)—18 Fig.A6 Tmazeformeasurementsoflightpropagationinatunnel—21 Fig.A7 Nestingchoicesofsightedandenucleatedmoleratsunderdifferentlightregimes —23 Fig.A8 Singlenestingchoicesofenucleatedmoleratpairsbetweendarknessandwhite light—24 Fig.A9 Learningcurvesoffivemoleratstrainedtoawhitelightstimuluswithastrong

−2 −1 intensityof23mol photons ⋅ m ⋅ s —27 Fig.A10 Learningcurvesoffivemoleratstrainedtoawhitelightstimuluswithalow

−2 −1 intensityof7mol photons ⋅ m ⋅ s —27 Fig.A11 Wavelengthspectraofwhitelightinatunnelopeningunderlowandstrong illumination—30 Fig.A12 Spectralattenuationofwhitelightinatunnel—32 Fig.B1 SchematicalviewoftheEarth’smagneticfieldlines—41 Fig.B2 TheschematicalEarth’smagneticfield—42 Fig.B3 Reactionschemeoftheradicalpairmechanism—49 Fig.B4 Ferromagneticgrainsinarock—51 Fig.B5 Magneticdomains—53 Fig.B6 Magnetitegrainsizesandshapes—53 Fig.B7 Propertiesofmagneticdomains—54 Fig.B8 PossiblemagnetitebasedreceptormodelsforSDcrystals—55 Fig.B9 ApossiblemagnetitebasedreceptormodelforSPcrystals—55 Fig.B10 Apossiblemagnetitebasedreceptortype—56 Fig.B11 Avidinbiotincomplex(ABC)immunolabellingmethod—59 Fig.B12 WoodenhutwithcirculararenaplusHelmholtzcoils—62 Fig.B13 Ferrousinclusionsinthemoleratcornealepithelium—65 Fig.B14 Studysetupduringnestingexperimentsincirculararenas—68 Fig.B15 Moleratsafterenucleationoperations—69 Fig.B16 Orientationofnestsbuiltbymoleratsundervarioustestconditions—76 Fig.B17 Randomnestdistributionofmoleratsundercornealanaesthesia—79 Fig.B18 Nestdistributionofsixmoleratpairsbeforeandafterenucleation—80

Figurelegend 125

Fig.B19 Nestdistributionofmoleratpairsunderlateralisedcornealanaesthesia—83 Fig.B20 Pooledexperimentaldataofnestdistributionofmoleratpairsunderlateralised cornealanaesthesia—85 Fig.B21 Nestdistributiondataofsixmoleratpairsbeforeandaftermagneticpulsing (Marholdetal.1997b)—86 Fig.B22 DistributionpatternsofcFosimmunoreactiveneuronsintheAnsell’smolerat hippocampus —87 Fig.B23 NeuronsimmunoreactivetocFosinmolerathippocampalstructures—88 Fig.B24 NeuronsimmunoreactivetocFosinmoleratsubiculumandentorhinalcortex— 89 Fig.D1 Wavelengthspectrumofwhitelightinatunnelopening(lampheight60cm)— 127 Fig.D2 Wavelengthspectrumofwhitelightinatunnelopening(lampheight40cm)— 127 Fig.D3 Wavelengthspectrumofwhitelightinatunnelopening(lampheight20cm)— 128 Fig.D4 Spectralattenuationofwhitelightinatunnel(10cmdistance)—128 Fig.D5 Spectralattenuationofwhitelightinatunnel(20cmdistance)—129 Fig.D6 Spectralattenuationofwhitelightinatunnel(50cmdistance)—129 Fig.D7 Spectralattenuationofwhitelightinatunnel(60cmdistance)—130 Fig.D8 Spectralattenuationofwhitelightinatunnel(65cmdistance)—130 Fig.D9 Spectralattenuationofwhitelightinatunnel(70cmdistance)—131 Fig.E1 Theratbrainhippocampus—132

Tablelegend 126

C Tablelegends TableA1 Lightperceptionlearningexperiments—26 TableA2 Lightperceptionthresholdexperiments—26 TableA3 Lightintensitymeasurements—28 TableA4 Lightpropagationmeasurements—31 TableB1 Hypotheticalframeworktolocatethemagnetoreceptorsite—66 TableB2 Moleratsundermagneticfieldmanipulationspriortoneuronalactivitymapping —72 TableB3 Primary polyclonal antibodies applied to ITFs during ICC in molerat brain sections—74 TableB4 MeanvectordataofZambianmoleratsunderoscillatingfields—77 TableB5 OrientationofZambianmoleratsunderoscillatingfields—78 TableB6 OrientationofZambianmoleratsaftercornealanaesthesia—81 TableB7 Orientationofmoleratsafterenucleation—82 TableB8 Orientationofmoleratsaftermonocularanaesthesia—84 TableB9 Orientationofmoleratsafterlateralisedanaesthesiawithpooleddata—85 TableB10 MeannumbersofneuronsimmunoreactivetocFosindiversebrainstructuresof moleratsunderMagneticFieldmanipulations—90

Wavelengthspectra 127

D Wavelengthspectra

Fig.D1Wavelengthspectrumofwhitelightinatunnelopening(lampheight60cm).

Fig.D2 Wavelengthspectrumofwhitelightinatunnelopening(lampheight40cm).

Wavelengthspectra 128

Fig.D3 Wavelengthspectrumofwhitelightinatunnelopening(lampheight20cm).

Fig.D4 Spectralattenuationofwhitelightinatunnel(10cmdistance).

Wavelengthspectra 129

Fig.D5 Spectralattenuationofwhitelightinatunnel(20cmdistance).

Fig.D6 Spectralattenuationofwhitelightinatunnel(50cmdistance).

Wavelengthspectra 130

Fig.D7 Spectralattenuationofwhitelightinatunnel(60cmdistance).

Fig.D8 Spectralattenuationofwhitelightinatunnel(65cmdistance).

Wavelengthspectra 131

Fig.D9 Spectralattenuationofwhitelightinatunnel(70cmdistance).

Theratbrainhippocampus 132

E Theratbrainhippocampus

Fig.E1 Theratbrainhippocampus. Theupperpanelpartshowsasagittalsectionoftherat braincutinasagittalplane0.4mmlateraltothemidline.Thehippocampusislocatedbetween corpuscallosumand thalamus.Thelowerpanelpartshowsacoronalsectionoftheratbraincut inacoronalplane4.84mminterauraltothemidline.ThehippocampalareasCA1toCA3are indicatedaswellasdentategyrus(DG)andpolymorphlayerofthedentategyrus(PoDG). Note thesmallboxintheleftuppercornerofthisfigurethatshowspositionandplaneofthecut (fromPaxinos&Watson1998;reprintedwithpermissionfromElsevierpublishers).

ICCprotocol 133

F ICCprotocol A)PERFUSION i)PREPARATION a)phosphatebuffersaline(PBS) b)paraformaldehydephosphatebuffer(PFA) Recipefor2lphosphatebuffer(PB):

2ldH 2O+4.32gKH 2PO 4(RiedeldeHaen,Seelze,Netherlands)+23.12g Na HPO (Merck,Darmstadt,Germany). 2 4

1. StirdH 2O. 2. Addsalts. 3. Letdissolvecompletely;storeinfridge(4°C);pH=7.3 Recipefor2lphosphatebuffersaline(0.9%)(PBS): Dito;add18gNaCl. Recipeforphosphatebuffer/paraformaldehydesolution(PB/PFA–fixative forperfusions): 1l HOT PB(0.1M)+40gparaformaldehyde(0.1M;Serva,Heidelberg,Germany)); filtratefreshly,storeat4°C.

c)Workatstereomicroscope/binocular.2perfusionfacilities(chargewithPBSandPFAin advance);additionalbottlewithsparebufferandsparePFA;PBS+0.5mlheparin≈2500 IU heparin; tripod; large hook; trays (large and small); folding boxes; gloves (thick and thin); jar for blood & syringe for extraction by suction; catgut; jar with instruments (scissors,tweezers,tweezerscissors,clamps);canulas(needles)inseveralsizes(bluntand sharp);PBbottleforrinsing;adhesivetapeforanimalfixation;anaesthetic(ether);jarsfor headandbody;garbagebags;jarforlethaletherdose;firstaidbox. ii)IMPLEMENTATION a)Installperfusionequipment;rinsesystemwithPB. b)Thoracotomy/laparotomy;taxidermyof Aorta ascendens ;broachtheleftventricle(cardiac apex)withsharpcanulaoftheappropriatesize,protrudeuntilmarking,theninsertblunt identical canula (drippy at endofhose)untilinAorta ascendes. Open up right atrium. Attachcanulawithclamp,pinandtapedown. c)Openhoseclip→rinse(possibleindicators:eye,tongue,nose) d)AddPFAdirectlyafterrinsing. CaveBubbles! e)Finishlatestaftermusclesatneckbecomeinflexible(lowerjawfixed?) f)Closehoseclip,removecanula. iii)OPENSKULLROOF insitu Decapitation;storebody(PFA).Totalremovalofmeninges(imperativeforgelatine embedding!)andadvisablyofbone(preventsfromadd.decalcification). (iv)POSTFIXATION:~12HINFRIDGEOVERNIGHT

ICCprotocol 134

B)GELATINEEMBEDDING i)DECALCIFICATION/SKULLREMOVAL In decal . Alternative:removebraincarefullyfromskullbybreakingoffsmallpiecesofskullbone. ii)TRANSFER TransferbrainintoPB(exchangetwice),thenintoPBsucroseuntilsubsiding. Recipe :Dissolve30gsucrose(Merck,Darmstadt,Germany)in100mlPB;add

100lNaN 3(1%stocksolution;Ferak,Berlin,Germany).=AZIDE

iii)MARKING Forsubsequentorientationofsections,markbrainbysmallcut. Transversalseries :longitudinalnotchintobulb,hemisphere&cerebellum(1side!). Sagittal/horizontalseries :cutincortexofonehemispherefrom sulcus interhemisphaericus to baseoftemporallobe(transversalnotch). iv)GELATINEEMBEDDING Iced bath, spoon spatula for transfer, paraffine mould (shape and size according to sample),sucrosegelatine(300bloom). Putmouldintoicedbath,heatgelatineinmicrowaveforabout1min.Drysamplewellon cellulosetissue.Fillmouldbottomwithgelatine(letcooldown,thenfillup).Insertsample, positionwithtweezers,wait,untilpositionisfixed;letharden.

Recipefor200mlsucrosegelatine:

200mldH 2O+20ggelatine(TypeA,300bloom;Lot21H0580;Sigma,St.Louis, U.S.A.). Intersperse into cold Aqua bidest. , let well until subsiding, heat, stir until

clearlydissolved.Thenadd60gsucrose(saccharose),stir;add200lazide(NaN 3– 1%stocksolutionfridge).Storesucrosegelatineinfridge. Fixative solution PFASucrose :Add4gPFAand30gsucroseto100mlhot PB (alwayspreparefreshly).

v)FIXINGTHEBLOCK PFAsucrosefor1224h(Blocksubsided?) NOTABENE:QualityofgelatineappearsMUCHbetter,iftissueisallowedpostfixation for48h! vi)TRIMMINGTHEBLOCK Trim gelatine brainblock with moist, warm blade to subsequently be able to optimally orientthesampleonthemicrotomeholder.CAVE:Riskofmistakingbrains!

ICCprotocol 135

vii)TRANSFER/STORAGEINTOPBSUCROSE Forstorage,transferintoPBsucrose(seeBii).Blocksubsided? C)FREEZECUTTING i)PREPARATION Freezesampleinadvanceat–70°Cifapplicable(labelthecontactareapriortofreezing!). Preparejarsforsections(24wellsorsortingboxeswith12compartments),labelwells!C knives,1pairofcrudetweezers,1pairoffinetweezers,1scalpel,2brushesno.4,PB, azide, TissueTec ®,filterpaper,adhesivetape,marker,scissors,spatulaspoons,protocol copies;ifnecessary,rosterofjars(wells),whichharbourssectionsuntilfurthertreatment. Bringmicrotomeholderintobackwardposition.Saturatesmallpieceoffilterpaper( Aqua bidest .), set onto microtomeholder without bubbles. Apply the readily trimmed, en bloc embeddedsamplewithTissueTec ®(accordingtodesignatedcuttingdirection). Freeze with maximal cooling capacity, isolate sample in the meantime by styrofoam coating;fillPBintopreparedjars,storeinfridge. ii)CUTTING a)sagittal/horizontalseries b)transversalseries(rostral→caudal) Adjust plane, unspoilt position of knife, label/record positins. While cutting, optimize temperature. Toocold :sectionswillrollup. Optimal :sectionsunrollonknifelikejalousie. Toowarm :sectionsappearsludgy. Chosenthicknessofsections Numberofwellplates Numberofsectionsperwell Σofsections Coolwellplateswithsectionsataround4°C;treatsectionspreferablyinfreshcondition, otherwiseaddazide(1dropperwell),orstoreinbufferbeforehand(0.050.1%).→Select sectionsfordiverseABandlabelwithcolourstickers. D)PRIMARYINCUBATION i)Removalofendogenousperoxidase

RemovalofendogenousperoxidasethroughincubationofsectionsinH 2O2solution (30min).

H 2O2conc.bottle(30%) diluteH 2O2 withbidest.1:100(0.3%) ii)Preincubation/preadsorption Additionofhomologousantigen(cFos)intoserumofprimaryincubationinorderto adsorbcFosAB(anticFos).

ICCprotocol 136

iii)Adsorptioncontrol OmitprimaryAB(anticFos)andsubsequentlytreatsectionsidentically. Chosen1°antibodies:______(seealiquotationprotocol) CAVE!Aliquotefreeofbubbles;dismisspipettetip,ifnecessary!Usemicrolitresyringes atbest. iv)Preparationandfirstwash Selectsections,prepareprotocol. Prepare: chilled PBS (pH 7.4); shaker, netted jars, dishes (tube cylinder), 6wellplates, hockeysticks.Usehockeysticksfortransferringsectionsfromwellplatesintonettedjars locatedwithindishes(shorttubecylinder,filledwithPBS). Wash(3x,10min.each);PBS1.5cmhighindishesontheshaker. v)Preparationof1°AB Inthemeantime,mix1°AB. Example:cFosaliquots Predilution1:10with25l/aliquot(isserumprediluted?) Entiredilutionfactor:1:_____ Calculationfordilution(example1:2,000,1:10prediluted);aliquotsà25l 1aliquotyields:25lx200=5000l=5ml ►1aliquot(25l)→5mlsolution ►1aliquotfor5mlequivalentto1compartmentàappr.1012sections vi)Furtherwashingprocedure 1washwithfresh“SAPJE”(30min.). Recipefor„SAPJE“ :200mlPBS+0.2gBSA+1mltritone; NO azide!

1rinsewithPBS(5min.). Avidinblocking(15min.). 1washwithPBS(max.5min.). Biotinblocking(15min.). 3washeswithPBS(10min.each).

ICCprotocol 137 vii)Applicationof1°AB Application of primary antibody (1° AB) and overnight incubation (appr. 12h) at room temperature: Fill up compartments of wellplates with 5ml of 1°AB each directly after mixing.Use5mlEppendorfCombitipsyringesdesignatedsolelyfortheusedAB(e.g.c Fos).Sealwellplateswitchadhesivetape(e.g.Scotchtape ®,TESA ®),putintosmallfreezer bagsandtapeontoshaker. When re-using 1°AB, freeze the latter or add azide! E)SECONDARYINCUBATION Chosen2°antibodies:______ i)Firstwashing 3washes(10min.each)inPBS. ii)Applicationof2°AB DuringprecedingPBSwashings,prepare2°AB(e.g.Goatantirabbit[Gar]). Dilutionfactor1:_____(e.g.[Gar]fromABCKit1:200) Example: (adaptforrespectivetask)

Add3drops(150 l)ofnormalblockingserumstock(yellowlabel)to10mlofbuffer inmixingbottleandaddonedrop(50l)ofbiotinylatedantibodystock(bluelabel).

[Gar]neededfor10mlsolution(2compartments):1x50lGarin10mlSAPJE. Fill up each well (solely using a Combitipsyringe designated for the chosen 2°AB, e.g. [Gar])with5mlofdiluted/mixedserum. Transfersectionsinnetjarsintothe2°AB(e.g.[Gar]),incubatefor90min ontheshakerat roomtemperature. Note:PrepareABCcomplexpriortothisincubation(seeF),letrestfor30min. iii)Furtherwashing 3washeswithPBS(10min.each) F)ABCINCUBATION Prepare avidinbiotincomplex (Vectastain ® Elite ® ABCKit, Vector Laboratories Inc., Burlingham,U.S.A.). (cf.,datasheet1:100,i.e.1dropAand1Beach(=1dropABCcomplex)in10ml[1drop =50l]);otherdilution:1drop(=100l)ABCcomplexin40mlSAPJE,i.e.1:800).Use freshCombitipsyringesandfill5ml/compartmentintowellplates.Incubatefor2hours ontheshaker. Dilutionfactor1:_____ Note:PrepareDABduring2 nd hourofincubation(seeG)!

ICCprotocol 138

G)DABPREPARATION i)Firstwashing 3washeswithPBS(10min.each) FromnowonuseagainPBinsteadofPBS! ii)Preparation Workunderfumehood!TakerespectiveamountofDAB(frozenaliquot)outoffreezer

(usethickgloves!!!),warmupDABunderlukewarmrunningwater.

Preparealsowellplates,5mlCombitipsyringes,transferpipette, (NH 4)2Ni(SO 4)2solution (1%),CoCl 2solution(1%);bothrecipesseebelow;beakers,filterpaperandfunnels,DAB measuringcylinder,stopwatch,disheswith0.1mlPB(stopbath).

PreparealsoH 2O2bottle(30%),1mltuberculinesyringeandpipette2001000l. Recipeforheavymetalsolutions :(each1%)

(1) 1g(NH 4)2Ni(SO 4)2+100mldH 2O(stiruntildiluted) (2) 1gCoCl 2+100mldH 2O Bothtobestoredintightglassbottles!

iii)Mixingthereagents Addreagentsinprescribedorder(seeRecipeboxbelow);filtrate!

1 aliquot DAB (5ml) + 92.75ml PB + 1ml (NH 4)2Ni(SO 4)2solution + 1.25ml CoCl 2 (prepareenoughsolution,filterwillabsorbmuch!)→prepare10mlpreincubationsolution percompartment(5mlforpreincubation,5mlforDABreaction).

RecipeforDAB&heavymetalmixturecalculation(per100ml) : 1aliquotDAB(ca.5ml)

1ml(NH 4)2Ni(SO 4)2(1%) 1.25mlCoCl 2(1%) iv)Preparingtheincubationsolution Processinstepsperwellplatedish/box(keepstrictlytoorder;usegloves!). Prepareincubationsolution(seerecipeboxbelow);filtrate;incubateindelayedsteps(1530 sec.). RecipeforDABincubationsolution :

660lH 2O2(3%)/100mlDABreactionsolution 33lH 2O2 /5ml(percompartment)→200lperwellplateper30mlreaction solution

ICCprotocol 139 v)Reaction Add5mlincubationsolutionpercompartment.Movethereactiontubesslightlytoand fro.Incubationtimeisdetermineduntiloptimalmarking is achieved (check under light microscope).Donotletsectionsgettoodark(particularlycFos).Testsmallamountsfirst andcheckthose;addH 2O2 toDABonlywhenneeded! vi)Stopreaction Stop the reaction by washing twice in PB on the shaker, each 10 min (Add azide if necessary;coverwithparafilm). vii)Storagebeforemountingontoslides TransferthesectionswithinthereactionjarsintoPBandstorethemuntilmountingonto glassslidesinthefridge. Authors:C.Helpertetal. ModifiedTranslation:R.E.Wegner

GelatinecoatingandNisslstainingrecipe 140

G Glassslidegelatinecoverrecipe COVERING GLASS SLIDES WITH CHROMEALAUNGELATINE SOLUTION Materialsad1000ml Aqua bidest. : 5gGelatinepowder,Merck(Darmstadt,Germany),Art.4078,60Bloom 0.5gChromeAlaun(Potassicchrome(III)sulphate),Merck(Darmstadt,Germany),Art. 1036 Heat Aqua bidest. untillukewarm.Addchemicalswhilestirringand heat solution up to 60°C. Takejaroffheatingplateandletcooldown(stir!). Letsolutioncooldown(roomtemperature);filtrateshortlypriortouse. Onlyusethoroughlycleanedglass(milddetergent;Aqua bidest. ;onlytouchatedges). Bathingelatinetwice;letdryincabinetdrier. Authors:C.Helpertetal. ModifiedTranslation:R.E.Wegner

H Nisslstainingrecipe CRESYLVIOLETSOLUTIONFORSUBSEQUENTNISSLSTAINING Cresylvioletsolution: 5gCresylViolet(BDH,Poole,UK) 60mlSodiumacetatesolution(Merck,Darmstadt,Germany) 340mlAceticAcid(Roth,Karlsruhe,Germany) 600ml Aqua bidest . Mixandstirforapproximatelyoneweek.Filtrate.Stirpriortouseapproximatelytwoother days.Filtrate.Protectfromlight.Storeat4°C. Nisslstaining: Transfermounted,welldriedsectionsthroughdescendingethanolseries: 1)5min.eachinethanol100%,96%,80%,and70% 2)30sec.in Aqua bidest. 3)15min.incresylvioletsolution(0.5%,39°C;forsectionsof60mthickness) 4)30sec.inmixtureofconcentratedaceticacid(0.1mlin0.1l Aqua bidest. ) 5)5min.inethanol70% 6)5min.inethanol96% 7)differentiateintomixtureof0.1mlconcentratedaceticacidin0.1lethanol(96%) 8)5min.inisopropanol(100%) 9)repeatstep8 10)5minutesinxylol 11)repeatstep10 12)closebycoverslippingwithEukitt(Kindler,Freiburg). 60mlSodiumacetatesolution(Merck,Darmstadt,Germany)

TechnoramaForumLecture:2000yearsofmagnetism 141

I TechnoramaForumLecture:2000yearsofmagnetism TechnoramaForumLecture 2000yearsofmagnetismin40minutes PresentedbyPaulDoherty,18October2001 http://www.exo.net/~pauld/technorama/technoramaforum.html Thelegendhasitthatbefore1ADaGreekshepherdboynamedMagnusfromtheGreekregionof Magnesianotedthatcertainstonesattractedironnails.Thesestoneswenowcallmagnetite,they aremadeofironandoxygenwiththechemicalequation,Fe 3O4.Lucretiuswrotethatthesestones attractedandrepelledeachother.Thenanamazingthinghappenedforthenext1000years,atleast amazingviewedfromourmodernperspective,nothing.AfterallthattimeinChinaitwasfound thatifloadstonewerecarvedintoaspoonshapethehandleofthespoonwhenplacedonasmooth surfacewouldpointsouth. Chineserefertocompassesas"southpointers."SouthwasanimportantdirectionintheChinese practiceofGeomancy.ItisnowstillimportantinFengSui.Itishardtotellwhenthecompasswas inventedbecausethereisanother"southpointer"inChinese,theemperor'schariot.Thechariot wasgearedsothatasittwistedandturnedinitsprogressthroughacitytheemperorsthronealways pointedinthesamedirection,south.Itisdifficulttodeterminewhenthewords"southpointer" stoppedmeaningtheemperor'schairandstartedmeaningacompassbutitwassometimebefore 1100AD.) Meanwhile back in Europe...In 1265 a warriorscientistnamedPeterPeregrinuswroteabouthis experimentswithmagnets.Henotedthattheyhadtwospecialendswhichhenamed"polus"or poles,andthatwhenthemagnetswerefloatedonwaterthepoleslinedupsothatonepointedto thenorthstar.TheEuropeansusedthecompasstonavigateandsogavegreatimportancetothe northpointingend,theendthatshowedthemthelocationofthenorthpolestarduringtheday. Theendthatpointedtothenorthpolestarwasnamedthe"northseekingpole."Laterthiswas shortenedtothenorthpole. Aside: Since navigators were lead by the stones they were called leadstones which has become lodestonesinmodernEnglish.(Bytheway,thenameofmagnetitestonesinFrenchisappropriately "lovingstones,"sincethestonesattractand"kiss.") It was known that like poles repelled and opposite poles attracted. For example, north poles repellednorthpolesandattractedsouthpoles. Whydidthenorthseekingpolepointnorth? 300 years later William Gilbert discovered why thestonespointednorth,theearthitselfwasamagnet.Unfortunately,thismeantthatthenames thatPeterPeregrinushadchosenwereconfusing.Thenorthpoleofamagnetpointedtothenorth geographicpoleoftheearthbecauseitwasattractedtothenorthgeographicpolewhichmeantthat thenorthgeographicpolewasasouthmagneticpole,theconfusionthiscausedhasremaineduntil thepresentday.Onallmapsthesouthpoleoftheearthmagnetisnamedthe"northmagnetic pole." TheCuriePoint Gilbertthoughtthattheearthwasanironmagnet.Whilethecoreofthe earthismadeofiron,itcannotbemagneticbecauseitissohot.WhatGilbertdidn'tknowisthat whenironisheateduphotenoughitlosesallofitsmagnetism,thetemperatureofamaterialwhere itlosesitsferromagnetismisknownasitscuriepoint.Forironthecuriepointis770°C.Theiron insidetheearthismuchhotterthan770°Candsocannotbeanironmagnet.Ihaveseveralrods withacuriepointof5°C.Icanattracttheseoutoftheiceusingferritemagnets.Whentherods warmuptheylosetheirmagnetismanddropoffthemagnet. When rods start above the Curie pointandarecooledbelowitinthepresenceofamagneticfieldsuchasthatoftheearththey becomemagnetized.TheChineseusedthistomakecompassesoutofiron.Lavaincludeshot,iron containing minerals such as basalt, which can be magnetized. As the lava cools it locks in the directionofthemagneticfieldoftheearth.Thislocksinthelatitudeatwhichthelavacooled.On

TechnoramaForumLecture:2000yearsofmagnetism 142

Aneroid peak in eastern Oregon there are lava layers which preserve horizontal magnetic fields. Thismeansthatthoselavascooledneartheequator.Continentaldrifthasmovedthemfarnorthto wheretheyaretodayinOregon. MagneticBacteria Therearebacteriawhichusethemagneticfieldoftheearth.Insidethese bacteria are grains of magnetite. The bacteria are anaerobic, i.e. killed by oxygen. They use the magneticfieldtosense"down"whichisthedirectionawayfromoxygenandtowardlife.Inthe northern hemisphere these bacteria swim towards a south magnetic pole, in the southern hemispheretheyswimtowardnorthpoles. LifeonMars Grains similar to those made by bacteria have been found in a meteorite from Mars.ThismeteoritewasfoundintheAllanHillsregionofAntarcticaandiscalledALH840001.It isonebitofevidencethattherewereatonetimebacteriaonMars. TheConnectionbetweenElectricityandMagnetism In1820aphysicslecturer,Hans Christian Oersted, was passing an electric current from a voltaic pile through a wire in an experimentwhichshowedthatthewirebecamehot.(Iwillrepeatthisexperimentsoon.)Nearby wasacompass.Whenthecurrentstartedtoflowthroughthewire,Oerstednotedthatthecompass needlemoved.Thiswasthefirsttimeelectricityandmagnetismwereshowntobeconnected.An electriccurrentcreatesmagnetism. TheMagneticField InEngland,MichaelFaradaymadeagreatadvanceinmagnetismbyusing field lines to understand magnetic experiments. Perhaps you have sprinkled iron filings over a magnet,theylineuparoundthemagnetinapattern.Faradayhypothesizedthattheylinedupwitha forcefieldmadebythemagnet. TheMagneticfieldofSunspots The sun also has a magnetic field. Indeed sunspots are magneticandcomeinpairsonenorthpolespotpairedwithasouthpolespot. AsimpleExperiment A simple experiment can be done which cannot be understood without theconceptoffieldlines.Thisisadangerousexperiment,I'mgoingtousemagnetswhichareso bigandstrongthattheycanleapseveralinchesandcrushthebonesofmyfingersbetweenthemas theysmashtogether.Istartwithapileofthreelargeflatmagnets,oneontopoftheother.The northpoleofonenexttothesouthpoleofitsneighborattractingthetwotogether.WhenIpull thetopmagnettothesideitispushedupintheairbythesamemagnetthathadbeenpullingit down!Iworkhardtopullthetopmagnettothesidetoemphasizethedanger.Thefieldlinesfrom thecentralmagnetpointupabovethemagnetandthenpointdownonthesidesofthemagnet. Thischangesthedirectionoftheforceontheothermagnetsfromadownwardattractionwhen onemagnetisabovetheothertoupwardrepulsionwhenonemagnetispulledtotheside.Itis incongruous to see a magnet leaning on the air. It is even more interesting to give the leaning magnetadownwardpushandwatchitbobupanddownforalongtime.Putonemagnettoeither side and start one oscillating. The magnetic fields will push on the distant magnet and start it oscillating too. Tune the oscillations so that they have the same frequency and the magnet you startedwillcometorestwhiletheothermagnetstealsallofitsmotion.Theprocessthencontinues asallthemotionisreturned. LightisElectromagneticRadiation Faraday's discoveries provided the basis from which James Clerk Maxwell created the theory of electromagnetism and discovered that light was electromagneticradiation. MotionfromMagnetism Faraday also discovered that magnets could push on current carryingwires.Thisledtotheinventionoftheelectricmotorwhichhasrevolutionizedourlives. Thinkofalltheelectricmotorsthatsurroundyou:poweringrefrigeratorcompressors,blowingair inhairdryers,rollingdowncarwindowsandmanymanymore. Ferrofluid Onegreatmodernmaterialisferrofluid,anoilfullofsuspendedmagneticparticles. You can see some great ferrofluid demonstrations here at Technorama. Ihavesomehomemadeferrofluidhere.Ferrofluidinabottlerisesagainstgravityandjumpsupthe

TechnoramaForumLecture:2000yearsofmagnetism 143 theneodymiummagnetabove.NoticethatwhenIholdastrongmagnetaboveitthefluidbeginsto bulge upward and then leaps up against gravity to reach the magnet.Thisferrofluidismadeby burningsteelwooltomakeironoxide,andthengrindingtheironoxidetoafinepowderwitha mortarandpestle.Itisthenmixedwithcookingoil. MagneticLevitation Toseeafluidleapupwardagainstgravitymakesmostpeoplelaugh,butit wouldbeevenbettertosuspendmaterialinmidair.Tomakematterfly.Unfortunately,ascientist namedEarnshawonceshowedthattherewasnostablelevitationpossibleusingstaticelectricand magnetic fields. After Earnshaw, physicists didn't even try to make levitated object using static magnets.However,otherexperimentersfoundawayaroundEarnshaw'stheorem.ForexampleI can use electrostatics to levitate a shredded plastic ribbon. I get around Earnshaw's theorem by usingatimevarying,i.e.nonstaticfeedbacksystem,me.Earnshaw'stheoremdoesn'tapplyifother stabilizingforcesarepresentsuchasthosefromapencil.Slidetwodonutmagnetsontoapencil and one will levitate above another. It pays to watch children. They will do things that physics professorswouldneverthinkofdoing.Ididthispencillevitationtrickfor40yearsbeforea7'th gradeboyshowedmeaneattrick.Usingapencilwithasteeleraserbandyoucanholdthepencil pointbetweentwofingersandthelowermagnetwillstayonthepencilasitisattractedtothesteel. Raiseupthetopmagnetanddropit.Theuppermagnetfallsandseemstopassthroughthelower magnet.Thisisanillusionresultingfromanelasticcollisioninwhichtheuppermagnetcollides withthelowerone.Theuppermagnetstopsandiscaughtbytheeraserbandwhilethelowerone popsoffatthesamespeedastheupperone.Earnshaw'stheoremcanalsobebypassedbyusing spinningmagnetswhicharestabilizedbytheirgyroscopicaction.Thiswasusedinthetoyknownas aLevitron.MartinSimonofLosAngelesandOrtwinSchenkerofGermanyhaverecentlybuiltthe spinstabilizedmagneticlevitatorwiththehighestlevitationeverachieved. Diamagnetism Earnshaw's theorem also disallowed levitation using a weak form of repulsivemagnetismknownasdiamagnetism.Inthe1980'sverystrongmagnetswereinventedbya teamatGeneralMotorsResearchLaboratorythatincludedastudentofmine.Thesemagnetsare madeofneodymium,iron,andboron.Theyarestrongenoughtorevealtheweakmagnetismof everydayobjects,calleddiamagnetism,whichcausessomematerialstoberepelledbybothpolesof amagnet. With even stronger magnetic fields from electromagnets wound from superconducting wire an entirefrogcanbesuspendedinairagainstgravity.Noharmcomestothefrog.Atthemomentno onecanconceiveofamagnetstrongenoughtolevitateaperson.Howeveritwouldcertainlybea greatfeelingtobeabletofly. ACLevitation ApulseofACmagneticfieldcanbeusedtoaccelerateaconductingring ofaluminumandsoshootitintotheair.Thisisshown by the exhibit, "Magnetic cannon," at Technorama.AluminumisnotmagneticyettheACmagneticfieldinducesanalternatingelectric current in the aluminum this current is then repelled by the AC magnetic field. This is what is happeninginsidethegrapes,exceptthattheelectriccurrentisinsidetheatomsandmoleculesof waterandsugarinsidethegrapes.ThisbehaviorisdescribedbyLenz'slawwhichsaysthatwhena magnetic field through a conductor changes, currents will flow in the conductor that make a magneticfieldwhichopposesthechange.Ifwecanincreasetheelectriccurrentinthealuminum ringwecanincreasethemagneticforceontheringandincreasetheheighttowhichitisshot.Ican dothisbymakingthealuminumabetterconductor.Thisisdonebycoolingthealuminuminliquid nitrogen.Coldaluminumconductselectricitybetterthanroomtemperaturealuminum.Besidesthe coldaluminumcondensesatrailingcloudfromthehumidairoftheroomandlookscool.Chillthe aluminumringinliquidnitrogenandshootitoutofthemagneticcannon.Itgoestwiceashigh.It's agoodthingthatItestedthisexperimentearlier.Materialsalsoshrinkwhentheygetcold.When thealuminumringwaschilleditshranksomuchthatitwouldnotfitovertheglasstubeofthe magnetic cannon any more. (We removed an inner ringofTeflonfromthealuminumbeforeit wouldfit.) SuperconductingLevitation In1911KammerlingeOnnesinNorwaydiscoveredthat some materials lost all resistance to electrical current when cooled. These materials are called superconductors.Inthe1980'ssuperconductorswerefoundwhichworkedattemperaturesof70 K, below the boiling point of liquid nitrogen. I have a disk of this material known as 1,2,3

TechnoramaForumLecture:2000yearsofmagnetism 144

compound because it is made from Yttrium barium cupric oxide withanequationY 1Ba 2Cu 3O8. This material will levitate against gravity when placed over neodymium magnets. And, in accordancewithNewton'sthirdlawofactionandreaction,neodymiummagnetswillalsolevitate abovethesuperconductor.Recentlyverypuregraphitecrystallizedintherightorientationhasbeen foundtoshowenoughdiamagnetismtolevitateaboveatrackmadeofneodymiummagnets.I'd liketoshowyouthefirstdemonstrationofthisdiscoverytonight. AndsoI'vetakenyouacross2000yearsofmagnetichistory,butI'veleftoutthemostimportant partofthestory.Itturnsoutmagnetismcanbeusedtorecordmusiconamagnetictaperecorder andtocreatemusicinwhatIthinkisthepinnacleofmagnetictechnology... Theelectricguitar The electric guitar is made from a 2 meter long dowel, steel pianowire stretched between eye bolts, a magnetic coil, and neodymium magnets. In this my privately designed"Bender"electricguitar,sonamedbecausebybendingitIbendthenotes,youcansee howthemagnetsmagnetizethemusicwire.Thewiremovesandmakesachangingmagneticfield inthecoilofwire.Thismakesanelectriccurrentwhichisamplified.Thecurrentchangesinthe samewaythatthewiremoves,musically.AsteelwirestretchedtightoveraRadioShackpickup coil.Neodymiummagnetsholdthepickuptothewooddowelandmagnetizethewire.Andthus magnetismreachesitshighestformhelpingustomakemusic. Andsoendsmytaleofhumanprogressinunderstandingmagnetism. Whoknowswhatwillcomenext?

Acknowledgements 145

J Acknowledgements My first and deepest thanks belongs to Prof. Dr. Hynek Burda, who gave me the wonderfulopportunityforwritingmyPhDthesisinhisworkinggroup;withachallenging topic(twotopics,tobehonest),timeforsubstantialtalks,theencouragementtothinkand work selfresponsibly, and always an endless pool of inspiring ideas combined with a motivatingsmile. Mycolleagues,particularlymyroommateanddearfriendDr.SabineBegall,werea constantsourceofbothscientificandprivatefeedback,helpingmorethanwastobehoped for and sharing with me wonderful times on the large scale at numerous conference journeys,butalsoonthesmallscaleduringourdailycoffeebreaks.Technically,Iwould havebeenlostwithoutGerdHamannandhisamazeinghelpandwithoutDr.Wittmann andherspectrometer. I am also deeply indebted to my hardworking, persistent, brave, active and motivatedstudents.Withoutthem,manyprojectpartswouldhavenotbeenpushedpast thethresholdofthe“Material&Methods”chapter.Inorderofappearance:TanjaPletz (Visualperformance),SandraBootsmann&BeateTimpert(Lateralizationexperiments). IamthankfultoProf.Dr.HelmutOelschlägerandtoDr.PavelNĕmec,whomade itpossibleformetodarealittlestepintotheneuroanatomicallaboratoryworld,andwho werealwaysincrediblyencouraging.ThanksalsotoDr.StephanMarholdforquicksupply oforiginaldatafromhisscientificwork.Someothercolleaguesanddearfriendsneedtobe mentionedwhohavealwayssuppliedmewiththefeelingthatIcouldmakeit:Jo&Giora, Rafita&Claude. WithloveIthinkofsomespecialpeople,whomadethepastyearsmorecolourful, sharing the event of “getting promoted” in the same timely frame, but in different academic fields: Christiane, Jasmin, Gerrit & Stefanie in Essen, Mülheim, Marburg, Würzburg;Andrea,Katrin&ClemensinFrankfurt(yousavedmefromgoingnutsinthe W.lab);LouisinSanFrancisco/Paris;ZitainOldenburg;PhilippinHamburg;andlastnot leastmyweeklywritingworkshopmatesDaniela,Kirsten&MintyinDuisburg. MyMischpokehasnotalwaysexactlyunderstoodwhatIwasdoing,buttheynever stoppedsupportingme.You’rewonderful.AsismyhusbandPatrick.Thankyou.

MyworkwasfundedbyDFGBU717/103,agraduategrant(GraFöG)&travelgrants fromtheUniversityofDuisburgEssen,andan[i]labtravelaward.

CurriculumVitae 145

K CurriculumVitae

ReginaE.Moritz Steinzeitweg18–44805Bochum Dipl.Umweltwissenschaftlerin 02342981957 regina.moritz@unidue.de PERSONALIA Geboren 22.November1976inBottrop/NRW Familienstand verheiratet

THEORIE 11.0302.07 Wissensch.MitarbeiterinAbt.Allg.Zoologie UniversitätDuisburgEssen/NRW 11.0211.03 GraduiertenförderungUniversitätDuisburgEssen seit06.02 Promotion Abt.AllgemeineZoologie–UniversitätDuisburgEssen 19962002 StudiumderÖkologie UniversitätDuisburgEssen 19951996 ArchäologischesStudium WWUMünster/NRW 1995 AllgemeineHochschulreife GymnasiumPetrinum,Dorsten/NRW PRAXIS 06.0612.06 KoordinatorinderDoktorandinnenförderungdesFB Biologie&Geographie UniversitätDuisburgEssen 08.03 Veranstaltungen:BundesweiteSommeruniversitätfür FraueninNaturwissenschaftenundTechnik,Universität DuisburgEssen 06.03 Workshop„EvolutionaryBiology“inGuarda/Schweiz Organisator:UniversitätFribourg 0506.03 GestaltungeinerzoologischenUnterrichtsreihefür hochbegabteKinder:„LebeninderTiefe–TiereimWasser und‚unterTage’“ [Zusammenarbeitmitwww.dreistein.net] 07.02 TutorinnenTätigkeit:BundesweiteSommeruniversitätfür FraueninNaturwissenschaftenundTechnik,Universität Essen 01.0202.02 RedaktionellesPraktikumbeiNATURE,München 07.9912.01 StudentischeHilfskraftinderAbt.AllgemeineZoologie 07.9708.97 PraktikumimUmweltamtderStadtDorsten

CurriculumVitae 146

VORTRÄGE 06.06 VortragUniversitéPierreetMarieCurie,Paris6 „Quovadis?Themagneticcompassinanimalorientation” 09.05 JahrestagungderDeutschenGesellschaftfürSäugetierkunde inEssen „Narrowing down the magnetic compass mechanism in a rodent (Cryptomys anselli )” 08.05 Gastredner bei der Summer School Ethologie der SüdböhmischenUniversitätBudweis,Tschechien „MagneticCompassOrientation–WhatBehaviourtellsus“ 08.05 InternationalMammalogicalCongressIXinSapporo,Japan DoppelpräsentationmitDr.S.Begall „SensoryEcologyofsubterraneanrodents:newsinanutshell” 10.04 InternationalPostgraduateCourse„SensoryEcology“ in Lund,Schweden „The enigma of seeing in the subterranean molerat Coetomys anselli (Bathyergidae): behavioural approach”, unterstützt durch einen [i]lab travelaward 07.04 Kongress‚RodensetSpatium’inLublin,Polen „The enigma of seeing in the subterranean molerat Coetomys anselli (Bathyergidae):behaviouralapproach” 07.02 Kongress‚RodensetSpatium’inLouvainlaNeuve,Belgien „Effectoftrapbarriersystemsonpopulationsofricefieldrats( Rattus argentiventer )inIndonesianricefields“ AUSLANDSAUFENTHALTE 03.03 ForschungsaufenthaltinZambia 06.0109.01 ForschungsaufenthaltinAustralienundIndonesien 1990 SprachaufenthaltinIrland

ZUSÄTZLICHE... Sprachen EnglischundFranzösischfließendinWortundSchrift Kenntnisse Latinum;EDV:SPSS,Photoshop,ORIANA Imperia8(ProzessorientiertesContentManagement) Interessen Kryptozoologie,Bewusstseinsforschung DeutscheDichter,Oper,Kochen,Glossen Essen,den30.Januar2007

ListofPublications 148

L ListofPublications [ReginaE.Moritz,geb.Wegner] published

15 LangeS,BurdaH,WegnerRE, DammannP&KawalikaM(2007)Livingina stethoscope:Burrowacousticspromotesauditoryspecializationsinsubterranean rodents. Naturwissenschaften 94:134138. 14 WegnerRE ,BegallS&BurdaH(2006)Magneticcompassinthecornea:local anaesthesiaimpairsorientationinamammal. The Journal of Experimental Biology 209: 47474750. 13 WegnerRE ,BegallS&BurdaH(2006)Lightperceptionin‘blind’subterranean Zambianmolerats. Animal Behaviour 72:10211024. 12 ThalauP,RitzT,BurdaH,WegnerRE &WiltschkoR(2006)Themagnetic compassmechanismsofmammalsandbirdsarebasedondifferentphysical principles. Journal of the Royal Society Interface 3:583587. 11 WegnerRE (2006)Graumull.In:FaszinationNatur;Tiere:SäugetiereI.Brockhaus, Mannheim.p.359. 10 WegnerRE (2006)KapStrandgäber.In:FaszinationNatur;Tiere:SäugetiereI. Brockhaus,Mannheim.pp.357358 9 JacobJ&WegnerRE (2005)Doescontinuousremovalofindividualsseparatehigh andlowqualityricefieldrats? Journal of Wildlife Management 69(2):821826. 8 WegnerRE &BurdaH(2005)Theenigmaofseeinginthesubterraneanmolerat Cryptomys anselli (Bathyergidae):behaviouralapproach. Proceedings of the RIN-05 Conference on Orientation and Navigation - Birds, Humans and Other Animals ;Royal InstituteofNavigation,London. 7 HethG,TodrankJ,BegallS,WegnerRE &BurdaH(2004)Geneticrelatedness discriminationineusocial Cryptomys anselli molerats. Folia Zoologica 53(3):269278. 6 WegnerR &SchiermeierQ(2002)ConservationistsunderfireinthePhilippines. Nature 416:669. 5 SchiermeierQ&WegnerR (2002)Foreignresearchersturntheirbackson Germany. Nature 415:945. inpress

4 MoritzRE ,BurdaH,BegallS&NěmecP(2007)Magneticcompass:Ausefultool underground.In:BegallS,BurdaH&SchleichCE(eds),Subterraneanrodents: Newsfromunderground.SpringerVerlag,Heidelberg. inpreparation

3 DammannP,VanDaeleP,LangeS,MoritzRE ,NovaP,IngramC&BurdaH(in prep.)OnthekaryotypeandtaxonomicstatusofCryptomys"Monze"(Rodentia, Bathyergidae). 2 FrielingS,BegallS,MoritzRE &BurdaH(inprep.)Behavioralevidencefor distantheatsensingintheZambiansubterraneanmolerat Cryptomys anselli . 1 NěmecP ,BurgerT,LucovaM,MoritzRE ,BurdaH&OelschlägerHHA(inprep.) Thehippocampusinvolvedinmagneticorientationinasubterraneanmammal.

Erklärung Hiermit erkläreich,gem.§6Abs2,Nr.8derPromotionsordnungderMath.Nat.Fachbereichezur ErlangungdesDr.rer.nat.,dassichdasArbeitsgebiet,demdasThema„SensoryEcology of Electromagnetic Radiation Perception in Subterranean MoleRats ( Fukomys anselli & Fukomys kafuensis) “zuzuordnenist,inForschungundLehrevertreteunddenAntragvon FrauMoritzbefürworte. Essen,30.Januar2007 (HynekBurda) Erklärung Hiermit erkläreich,gem.§6Abs2,Nr.6derPromotionsordnungderMath.Nat.Fachbereichezur Erlangung des Dr. rer. nat., dass ich die vorliegende Dissertation selbstständig verfasst habeundmichkeineranderenalsderangegebenenHilfsmittelbedienthabe. Essen,30.Januar2007 (ReginaE.Moritz) Erklärung Hiermit erkläreich,gem.§6Abs2,Nr.7derPromotionsordnungderMath.Nat.Fachbereichezur ErlangungdesDr.rer.nat.,dassichkeineanderenPromotionenbzw.Promotionsversuche inderVergangenheitdurchgeführthabeunddassdieseArbeitvonkeineranderenFakultät abgelehntwordenist. Essen,30.Januar2007 (ReginaE.Moritz)