A Data Sharing Strategy and a DSL for Service Discovery, Selection And

Total Page:16

File Type:pdf, Size:1020Kb

A Data Sharing Strategy and a DSL for Service Discovery, Selection And Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 37 ( 2014 ) 92 – 100 The 5th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2014) A data sharing strategy and a DSL for service discovery, selection and consumption for the IoT Mehdi Addaa, Rabeb Saadb aMathematics, Computer Science and Engineering Dep. University of Quebec At Rimouski Rimouski, Quebec, Canada Email: mehdi [email protected] bComputer Science and Engineering Dep. University of Quebec At Chicoutimi Chicoutimi, Qubec, Canada Email: [email protected] Abstract The development of the Internet and the increase in Internet-connected physical devices, offer new opportunities to reduce the gap between the physical world and the virtual world represented by the Internet. This Internet of Things (IoT) fosters the development of new platforms, services and applications that are not possible before. The work presented here proposes a data sharing model based on a propagation strategy for the IoT. It is composed of a formal theoretical model, a domain specific language and an IDE that implement this model. The developed language not only shows the feasibility of the model but also eases the integration of the proposed model and the related concepts. ©c 20142014 PublishedThe Authors. by Elsevier Published B.V.by This Elsevier is an B.V. open access article under the CC BY-NC-ND license (Selectionhttp://creativecommons.org/licenses/by-nc-nd/3.0/ and peer-review under responsibility of Elhadi). M. Shakshuki. Peer-review under responsibility of the Program Chairs of EUSPN-2014 and ICTH 2014. Keywords: Internet of Things; Web Services, Data Sharing; DSL; 1. Introduction The Internet of Things (a.k.a IoT) consists mainly at connecting physical objects to the Internet. The GSM Association predicts that by 2020, there will be 24 billion physical devices connected to the internet and there business impact could be US$4.5 trillion 3. The Web of Things (a.k.a WoT ) is a more specific IoT that aims to bring Web technologies and standards to IoT. WOT eases the development of Web applications and services that interact with the connected objects. ∗ Corresponding author. Tel.: +1-418-723-9425 ; fax: +01-418-724-1879. E-mail address: mehdi [email protected] 1877-0509 © 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Peer-review under responsibility of the Program Chairs of EUSPN-2014 and ICTH 2014. doi: 10.1016/j.procs.2014.08.017 Mehdi Adda and Rabeb Saad / Procedia Computer Science 37 ( 2014 ) 92 – 100 93 The emergence of the IoT and WOT offers a great potential for developing new applications and services. As shown in Section 2, there exist many platforms and API for the IoT devices. However, and to the best of our knowledge, they generally limit their scope to a simple data storing and retrieval schema. In an attempt to take advantage of this opportunity, we present in this paper a theoretical model that offers a set of primitives and a collaborative strategy to share data in the IoT world. The proposed model is based on a specific service- centric approach that does not rely on a central entity for service discovery and delivery. Instead it relays on a propagation-like query/response model and a straightforward whitelist/blacklist strategy to enforce a minimalist access control policy. As the proposed model is composed of theoretical and abstract concepts, it is not sufficient to demonstrate its feasibility and effectiveness. To overcome this limitation we developed a set of tools to programmatically support the proposed theoretical model. This set is composed of two parts: i) a Domain Specific Language (DSL) called IOTCollab, and ii) a complete Eclipse IDE. The IOTCollab DSL is intended to ease the programming and the management of the different concepts introduced in the model at high level of abstraction. It is mainly motivated by the need to reflect in the implementation model the domain business by the fundamental domain concepts. This DSL helps us avoid tweaking existing languages in order to define IoT systems based on the proposed model. The IDE, which is based on Eclipse, supports IOTCollab with a rich feature set such as code completion, syntax coloring, static analysis, etc. Thus, working with IOTCollab is made easy and intuitive for the developers and programmers who are familiar with modern IDEs such Eclipse. The rest of the paper is organized as follows. Section 2 summarizes related. Sections 3 presents the main con- cepts of the proposed model. The IOTCollab DSL is presented in Section 4. Concluding remarks and discussions on future work are given in Section 5. 2. Related work Even if the IoT is receiving more attention recently, it is not a new idea. At the end of the last century and the beginning of the current century many attempts have been made to connect physical objects to computer networks. For example, Want et al. have presented the results of their implementations where they attempt to connect physical objects to wireless networks by means of RFID tags and other physical components 27. Pederson presented in 24 a method for tracking physical activities using a wearable computer technology. Later on, different approaches have been proposed to integrate physical objects to the Internet. An information sharing architecture for IoT is presented in 26. The authors suggested the concept of a user- centric architecture of the IoT that seamlessly integrates IoT objects, Web protocols, Web applications, and Social platforms, etc. Angulo-Lopez et al. proposed in 12 a collaboration framework for the IoT based on the multiagent paradigm. In order to avoid connecting physical objects directly to the Internet, some approaches suggested abstracting those objects as services by adopting the Service Oriented Paradigm 23,14,19,20,22,25,21. For instance, the work pre- sented by Guinard et al. in 20 illustrates the adoption this paradigm by describing the architecture of the WoT based on the principles of the traditional Web such as scalability and modularity. They advocate the reuse and adaptation of existing Web technologies such as REST architectural style 16 to interact with IoT objects. In order to insure the interconnectivity of IoT devices, many API and technologies are developed. For example, Xively is a platform as a service (PAAS) for IoT that is intended to ease the connection of physical devices to the internet 7. Spark OS is an open source operating system for IoT 4. Right now, it is only compatible with Spark Core boards. ThingSpeak is an open source application platform and API for the IoT that aims to facilitate data storage and retrieval from IoT devices 5,6. One of the advantages of ThingSpeak is its openness to different hardware profiles. Crowsnest is a proprietary RESTful API that has to be coupled to a proprietary HUB in order to connect IoT devices 2. AllJoyn is a promising open source framework and services for IoT devices interoperability 1. Big companies and organisations, such as Microsoft, Cisco, D-Link, HTC, LG, AT&T, etc., are involved in this project. 94 Mehdi Adda and Rabeb Saad / Procedia Computer Science 37 ( 2014 ) 92 – 100 3. Data sharing model We developed a a data sharing model for IoT based on a specific service architecture. It is composed of three phases: i) service discovery, ii) service selection, and iii) service consumption (See Figure 1). The main concepts used in this model are Actor and Service and they are defined bellow (See Section 3.1). Fig. 1: Collaboration model for IoT: service process 3.1. Main concepts: Service and Actor In our IoT model, a service is defined as a couple that holds information about the data a physical object is sharing. This information includes the type of data, how often these data are collected, and the geolocation of the physical device, etc. (See Definition 3.1). Definition 3.1. Service A service S is a couple data, ctx such that: • data = d, frq, ops where: – d = {t, u | t is a data type and u the unit of this data type}, – frq = start, end, crne wher start represents the start date, end the end date, and crn a Crontab-like1 string that defines the frequency at which the data is collected, – ops may be used to specify other options in the form of couples attribute, value. • ctx = lat, lon, options where: – lat, lon represent the latitude and the longitude, respectively, of the geographical point of the IoT object, – ops may be used to specify other options in the form of couples attribute, value. The universe of all services is represented by US . In our setting, an actor is an abstract concept that represents a set of IoT objects owned and managed by the same user. Thus, an actor is represented by a set of IoT objects and the services each object may offer (See Definition 3.2). Actor , , , Definition 3.2. Given UOIoT the universe of all IoT objects, an actor A is represented by O1 S 1 rating1 O2, S 2, rating2, ..., On, S n, ratingn such that for i ∈ [1, n] we have the following: • ∈ Oi UOIoT , • S i ∈ US , • ratingi ∈ [1..10] and represent the rating of the service S i. The universe of all actors is represented by UA. Remarks 3.1. 1 Crontab:http://unixhelp.ed.ac.uk/CGI/man-cgi?crontab+5 Mehdi Adda and Rabeb Saad / Procedia Computer Science 37 ( 2014 ) 92 – 100 95 1. The brackets ([]) are used to refer to an element at a given position in a list.
Recommended publications
  • Internet of Things: a Scientometric Review
    S S symmetry Article Internet of Things: A Scientometric Review Juan Ruiz-Rosero 1,* ID , Gustavo Ramirez-Gonzalez 1 ID , Jennifer M. Williams 2 ID , Huaping Liu 2, Rahul Khanna 3 ID and Greeshma Pisharody 3 ID 1 Departamento de Telemática, Universidad del Cauca, Popayán, Cauca 190002, Colombia; [email protected] 2 School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA; [email protected] (J.M.W.); [email protected] (H.L.) 3 Intel Corporation, 2111 NE 25th Ave., Hillsboro, OR 97124, USA; [email protected] (R.K.); [email protected] (G.P.) * Correspondence: [email protected]; Tel.: +57-(2)-820-9900 Received: 31 August 2017; Accepted: 23 November 2017; Published: 6 December 2017 Abstract: Internet of Things (IoT) is connecting billions of devices to the Internet. These IoT devices chain sensing, computation, and communication techniques, which facilitates remote data collection and analysis. wireless sensor networks (WSN) connect sensing devices together on a local network, thereby eliminating wires, which generate a large number of samples, creating a big data challenge. This IoT paradigm has gained traction in recent years, yielding extensive research from an increasing variety of perspectives, including scientific reviews. These reviews cover surveys related to IoT vision, enabling technologies, applications, key features, co-word and cluster analysis, and future directions. Nevertheless, we lack an IoT scientometrics review that uses scientific databases to perform a quantitative analysis. This paper develops a scientometric review about IoT over a data set of 19,035 documents published over a period of 15 years (2002–2016) in two main scientific databases (Clarivate Web of Science and Scopus).
    [Show full text]
  • Business Process Management & Enterprise Architecture Track
    BIO - Bioinformatics Track Track Co-Chairs: Juan Manuel Corchado, University of Salamanca, Spain Paola Lecca, University of Trento, Italy Dan Tulpan, University of Guelph, Canada An Insight into Biological Data Mining based on Rarity and Correlation as Constraints .............................1 Souad Bouasker, University of Tunis ElManar, Tunisia Drug Target Discovery Using Knowledge Graph Embeddings .........................................................................9 Sameh K. Mohamed, Insight Centre for Data Analytics, Ireland Aayah Nounu, University of Bristol, UK Vit Novacek, INSIGHT @ NUI Galway, Ireland Ensemble Feature Selectin for Biomarker Discovery in Mass Spectrometry-based Metabolomics ............17 Aliasghar Shahrjooihaghighi, University of Louisville, USA Hichem Frigui, University of Louisville, USA Xiang Zhang, University of Louisville, USA Xiaoli Wei, University of Louisville, USA Biyun Shi, University of Louisville, USA Craig J. McClain, University of Louisville, USA Molecule Specific Normalization for Protein and Metabolite Biomarker Discovery ....................................23 Ameni Trabelsi, University of Louisville, USA Biyun Shi, University of Louisville, USA Xiaoli Wei, University of Louisville, USA HICHEM FRIGUI, University of Louisville, USA Xiang Zhang, University of Louisville, USA Aliasghar Shahrajooihaghighi, University of Louisville, USA Craig McClain, University of Louisville, USA BPMEA - Business Process Management & Enterprise Architecture Track Track Co-Chairs: Marco Brambilla, Politecnico di
    [Show full text]
  • Exploring Internet of Things, Mobile Computing and Ubiquitous Computing in Computer Science Education: a Systematic Mapping Study
    www.ijtes.net Exploring Internet of Things, Mobile Computing and Ubiquitous Computing in Computer Science Education: A Systematic Mapping Study Olga Fragou1, Anna Mavroudi2 1Hellenic Open University, Greece 2Νorwegian University of Science & Technology, Norway To cite this article: Fragou, O. & Mavroudi, A. (2020). Exploring internet of things, mobile computing and ubiquitous computing in computer science education: A systematic mapping study. International Journal of Technology in Education and Science (IJTES), 4(1), 72-85. The International Journal of Technology in Education and Science (IJTES) is a peer-reviewed scholarly online journal. This article may be used for research, teaching, and private study purposes. Authors alone are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of the research material. All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations regarding the submitted work. International Journal of Technology in Education and Science Volume 4, Issue 1, Winter 2020 ISSN: 2651-5369 Exploring Internet of Things, Mobile Computing and Ubiquitous Computing in Computer Science Education: A Systematic Mapping Study Olga Fragou, Anna Mavroudi Article Info Abstract Article History Ubiquitous computing, mobile computing and the Internet of Things (UMI) have been widely used in several application areas. To date, methods and techniques Received: for the application of these technologies in real life situations have continued to 17 June 2019 emerge; however, their use in education settings focusing on existing practices remain largely underexplored.
    [Show full text]
  • Internet of Nano-Things, Things and Everything: Future Growth Trends
    future internet Review Internet of Nano-Things, Things and Everything: Future Growth Trends Mahdi H. Miraz 1 ID , Maaruf Ali 2, Peter S. Excell 3,* and Richard Picking 3 1 Centre for Financial Regulation and Economic Development (CFRED), The Chinese University of Hong Kong, Sha Tin, Hong Kong, China; [email protected] 2 International Association of Educators and Researchers (IAER), Kemp House, 160 City Road, London EC1V 2NX, UK; [email protected] 3 Faculty of Art, Science and Technology, Wrexham Glyndwrˆ University, Wrexham LL11 2AW, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-797-480-6644 Received: 22 June 2018; Accepted: 25 July 2018; Published: 28 July 2018 Abstract: The current statuses and future promises of the Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano-Things (IoNT) are extensively reviewed and a summarized survey is presented. The analysis clearly distinguishes between IoT and IoE, which are wrongly considered to be the same by many commentators. After evaluating the current trends of advancement in the fields of IoT, IoE and IoNT, this paper identifies the 21 most significant current and future challenges as well as scenarios for the possible future expansion of their applications. Despite possible negative aspects of these developments, there are grounds for general optimism about the coming technologies. Certainly, many tedious tasks can be taken over by IoT devices. However, the dangers of criminal and other nefarious activities, plus those of hardware and software errors, pose major challenges that are a priority for further research. Major specific priority issues for research are identified.
    [Show full text]
  • Advancing the Industrial Internet of Things
    Advancing the Industrial Internet of Things An Industrial Internet Consortium and oneM2M™ Joint Whitepaper Authors Amar Deol (Huawei), Ken Figueredo (InterDigital Inc.), Shi-Wan Lin (Yo-i), Brett Murphy (RTI), Dale Seed (Convida Wireless), Jason Yin (Huawei) Editors Shi-Wan Lin (Yo-i) and Ken Figueredo (InterDigital Inc.) Contributors1 Josef Blanz (Qualcomm), Omar Elloumi (Nokia), Rajive Joshi (RTI), Peter Klement (XMPro), Sam Bhattarai (Toshiba), Atte Lansisalmi (Nokia) and Chuck Byers (IIC) 2019-12-12 1 Individuals who have provided valuable comments and inputs that have substantially improved the quality of this whitepaper. - i - 1 Context for Collaboration .................................................................................................. 1 2 Organizational Overviews ................................................................................................. 2 2.1 Overview of the IIC .............................................................................................................. 2 2.2 Overview of oneM2MTM....................................................................................................... 3 3 Alignment Between IIRA and oneM2M Architecture Frameworks ...................................... 6 3.1 IIC’s IIRA .............................................................................................................................. 7 3.2 oneM2M Architecture and Common Services Layer .............................................................. 9 3.2.1 Common Service Layer Functions
    [Show full text]
  • Case Studies in Iot -Smart-Home Solutions Pedagogical Perspective
    Case Studies in IoT -Smart-Home Solutions Pedagogical Perspective with Industrial Applications and some latest Developments Hans-Petter Halvorsen, Alexander Jonsaas, Saba Mylvaganam, Josef Timmerberg, Jean-Marc Thiriet To cite this version: Hans-Petter Halvorsen, Alexander Jonsaas, Saba Mylvaganam, Josef Timmerberg, Jean-Marc Thiriet. Case Studies in IoT -Smart-Home Solutions Pedagogical Perspective with Industrial Applications and some latest Developments. EAEEIE 2017 - 27th EAEEIE Annual Conference on Innovation in Education for Electrical and Information Engineering, Jun 2017, Grenoble, France. hal-01658856 HAL Id: hal-01658856 https://hal.archives-ouvertes.fr/hal-01658856 Submitted on 7 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Case Studies in IoT - Smart-Home Solutions Pedagogical Perspective with Industrial Applications and some latest Developments Hans-Petter Halvorsen, Alexander Jonsaas, Saba Josef Timmerberg Mylvaganam Jade University of Applied Sciences, D-26389 Wilhelmshaven, [email protected] ; Faculty of Technology, Department
    [Show full text]
  • Recommending Privacy Settings for Internet-Of-Things
    Clemson University TigerPrints All Dissertations Dissertations December 2019 Recommending Privacy Settings for Internet-of-Things Yangyang He Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation He, Yangyang, "Recommending Privacy Settings for Internet-of-Things" (2019). All Dissertations. 2528. https://tigerprints.clemson.edu/all_dissertations/2528 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Recommending Privacy Settings for Internet-of-Things A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Computer Science by Yang He December 2019 Accepted by: Dr. Bart P. Knijnenburg, Committee Chair Dr. Larry F. Hodges Dr. Alexander Herzog Dr. Ilaria Torre Abstract Privacy concerns have been identified as an important barrier to the growth of IoT. These concerns are exacerbated by the complexity of manually setting privacy preferences for numerous different IoT devices. Hence, there is a demand to solve the following, urgent research question: How can we help users simplify the task of managing privacy settings for IoT devices in a user-friendly manner so that they can make good privacy decisions? To solve this problem in the IoT domain, a more fundamental understanding of the logic behind IoT users' privacy decisions in different IoT contexts is needed. We, therefore, conducted a series of studies to contextualize the IoT users' decision-making characteristics and designed a set of privacy-setting interfaces to help them manage their privacy settings in various IoT contexts based on the deeper understanding of users' privacy decision behaviors.
    [Show full text]
  • Indoor Air Quality Monitoring Sensor for the Web of Things †
    Proceedings Indoor Air Quality Monitoring Sensor for the Web of Things † Daniel Ibaseta 1, Julio Molleda 2,*, Fidel Díez 1 and Juan C. Granda 2 1 CTIC Technological Centre, 33203 Gijón, Spain; [email protected] (D.I.); [email protected] (F.D.) 2 Department of Computer Science and Engineering, University of Oviedo, 33204 Gijón, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-985-182-518 † Presented at 2nd International Research Conference on Sustainable Energy Engineering, Materials and Environment, Mieres, Spain, 25–27 July 2018. Published: 14 November 2018 Abstract: Many Internet of Things platforms use dedicated software coupled with proprietary devices and interfaces, creating silo solutions with no interoperability. The Web of Things paradigm promotes using open Web standards to connect physical objects to the Internet through an application layer. In this paper, we propose a low-cost, indoor air quality monitoring sensor implementing a minimal servient building block recommended by the Web of Things Working Group of the World Wide Web Consortium. The proposed sensor runs a Web server on a low-power system-on-chip microcontroller, which provides temperature, relative humidity and carbon dioxide measurements to the Internet through a REST API. Any client on the Internet able to manage the HTTP protocol may access this sensor, making it compatible with any air quality monitoring platform that uses HTTP. Keywords: IoT; WoT; REST API; air quality monitoring; SoC microcontroller 1. Introduction Embedded computing and low-power wireless communication provide physical objects with Internet connectivity, forming the Internet of Things (IoT) [1]. The IoT offers services that lay at the core of many fields, such as smart homes, smart cities, smart industries and smart agriculture.
    [Show full text]
  • Table of Contents
    Table of Contents Scroll to the title and select a Blue link to open a paper. After viewing the paper, use the bookmarks to the left to return to the beginning of the Table of Contents. Theme: AI and Agents BIO - Bioinformatics Track Track Co-Chairs: Paola Lecca, University of Trento, Italy Dan Tulpan, University of Guelph, Canada Juan Manuel Corchado, University of Salamanca, Spain Track Editorial ..................................................................................................................................................... 1 An Insight into Biological Data Mining based on Rarity and Correlation as Constraints ........................... 3 Souad Bouasker, University of Tunis ElManar, Tunisia Sadok Ben Yahia, Tallinn University of Technology, Estonia Gayo Diallo, University of Bordeaux, France Drug Target Discovery using Knowledge Graph Embeddings ..................................................................... 11 Sameh K. Mohamed, National University of Ireland Galway, Ireland Aayah Nounu, University of Bristol, UK Vit Nováček, National University of Ireland Galway, Ireland Ensemble Feature Selectin for Biomarker Discovery in Mass Spectrometry-based Metabolomics .......... 19 AliAsghar ShahrjooiHaghighi, University of Louisville, USA Hichem Frigui, University of Louisville, USA Xiang Zhang, University of Louisville, USA Xiaoli Wei, University of Louisville, USA Biyun Shi, University of Louisville, USA Craig J. McClain, University of Louisville, USA Molecule Specific Normalization for Protein and Metabolite Biomarker
    [Show full text]
  • A Wot Testbed for Research and Course Projects 6
    CHAPTER A WOT TESTBED FOR RESEARCH AND COURSE PROJECTS 6 Mina Younan ∗, Sherif Khattab †, Reem Bahgat † Computer Science Department, Minia University, Minia, Egypt ∗ Computer Science Department, Cairo University, Cairo, Egypt † 6.1 WHAT YOU NEED TO GET STARTED The main objective of this chapter is to gain the required practical knowledge and skills for building simple physical testbeds for the WoT, which integrates the real world into the digital world. Concrete steps for building a WoT testbed are presented in the form of four experiments and a mini-project. Testbed evaluation is out of the scope of this chapter; our work elsewhere [1] discusses evaluation of an integrated WoT testbed. This chapter focuses on the interaction between microcontrollers, sen- sors, actuators, and PCs using HTTP and Zigbee protocols. The required platforms and devices for running examples in this chapter are as follows: • Platforms : C#, ASP.net, and Arduino programming language. • Devices: Examples in this chapter are for WoT-based smart home applications and will use the components listed in Table 6.1 . 6.2 INTRODUCTION Augmenting everyday’s objects (e.g., light bulbs, curtains, and appliances) with em- bedded computers or visual markers (e.g., LEDs and small LCD displays) allows things and information about them to be digitally accessible through the Web or mobile phones [1,2] . They become the Internet’s interface to the physical world by converging the physical world into digital world [3,4] . With a partial lack of efficient and scalable communication standards, the number of devices connected to the In- ternet will increase rapidly as soon as IP becomes the core standard in the field of embedded devices.
    [Show full text]
  • Context Aware Computing for the Internet of Things: a Survey
    IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. X, NO. X, XXXX XXXX 1 Context Aware Computing for The Internet of Things: A Survey Charith Perera, Student Member, IEEE, Arkady Zaslavsky, Member, IEEE, Peter Christen, and Dimitrios Georgakopoulos, Member, IEEE Abstract—As we are moving towards the Internet of Things discuss briefly in Section III. The definitions for ‘context’ and (IoT), the number of sensors deployed around the world is ‘context-awareness’ that are widely accepted by the research growing at a rapid pace. Market research has shown a significant community today were proposed by Abowd et al. [3] in 1999. growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the During the last two decades, researchers and engineers future. These sensors continuously generate enormous amounts have developed a significant amount of prototypes, systems, of data. However, in order to add value to raw sensor data and solutions using context-aware computing techniques. Even we need to understand it. Collection, modelling, reasoning, and though the focus varied depending on each project, one aspect distribution of context in relation to sensor data plays critical remained fairly unchanged: that is the number of data sources role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we (e.g. software and hardware sources). For example, most of survey context awareness from an IoT perspective. We present the proposed solutions collect data from a limited number of the necessary background by introducing the IoT paradigm and physical (hardware) and virtual (software) sensors.
    [Show full text]
  • A Survey on Internet of Things Architectures
    Journal of King Saud University – Computer and Information Sciences (2016) xxx, xxx–xxx King Saud University Journal of King Saud University – Computer and Information Sciences www.ksu.edu.sa www.sciencedirect.com A survey on Internet of Things architectures P.P. Ray Department of Computer Applications, Sikkim University, Sikkim 737102, India Received 4 July 2016; revised 24 September 2016; accepted 3 October 2016 KEYWORDS Abstract Internet of Things is a platform where every day devices become smarter, every day pro- Internet of Things (IoT); cessing becomes intelligent, and every day communication becomes informative. While the Internet Architecture; of Things is still seeking its own shape, its effects have already stared in making incredible strides as Cyber physical system a universal solution media for the connected scenario. Architecture specific study does always pave the conformation of related field. The lack of overall architectural knowledge is presently resisting the researchers to get through the scope of Internet of Things centric approaches. This literature surveys Internet of Things oriented architectures that are capable enough to improve the under- standing of related tool, technology, and methodology to facilitate developer’s requirements. Directly or indirectly, the presented architectures propose to solve real-life problems by building and deployment of powerful Internet of Things notions. Further, research challenges have been investigated to incorporate the lacuna inside the current trends of architectures to motivate the aca- demics and industries get involved into seeking the possible way outs to apt the exact power of Internet of Things. A main contribution of this survey paper is that it summarizes the current state-of-the-art of Internet of Things architectures in various domains systematically.
    [Show full text]