MRSU 2020 IOP Publishing Journal of Physics: Conference Series 1560 (2020) 012005 doi:10.1088/1742-6596/1560/1/012005

Influence of the magnetic interactions on the spectrum of elementary particles

N V Samsonenko 1, F Ndahayo 2 and M A Alibin 1 1 RUDN University (Peoplesโ€™ Friendship University of Russia), Moscow, Russia 2 University of Rwanda, Kigali, Rwanda

E-mail: [email protected]; [email protected]; [email protected] Abstract. Different approaches to the problem of mass quantization are discussed. The Barut ideas of crucial influence of magnetic forces for explaining the properties of the strong interaction are considered in details. It is shown that this approach gives the possibility to understand the enormous number of elementary particles (about 400) as the excited states of stable fundamental particles ( , , ) , bounded by magnetic interactions.

๐‘’๐‘’ ๐‘๐‘ ๐‘ฃ๐‘ฃ 1. Introduction The description of the mass spectrum of the observed elementary particles is included in the Ginzburg list of 30 most important unsolved problems in theoretical physics [1]. There are numerous approaches to its solution: group methods based on SU (N) - symmetries (Gell-Mann); dynamic (Barut); relational (Vladimirov); geometric (Bolokhov, Vladimirov) and many others. Interesting formulas for the of and hadrons are obtained. One of the people who โ€œlaid the foundationโ€ was Nambu [2], whose idea was to connect the masses of all elementary particles known at that time with the fine structure constant. Barut was also a supporter of that idea, and in 1979 obtained a formula in the form of an empirical dependence related to masses [3]: = 1 + (1) 3 ๐‘›๐‘› 4 where is the mass, is the๐‘›๐‘› fine structure๐‘’๐‘’ constant.๐‘˜๐‘˜=0 This formula is in a good agreement๐‘š๐‘š with๐‘š๐‘š the๏ฟฝ observed2๐›ผ๐›ผ โˆ‘ masses๐‘˜๐‘˜ ๏ฟฝ of leptons. For example, for n = 0 ๐‘’๐‘’ . we get the๐‘š๐‘š electron mass ๐›ผ๐›ผ. = 0.510999 ( = 0.510999 ); for n = 1 - the . mass . = 105.549 ๐‘ก๐‘กโ„Ž๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ ( = 105.658 )๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’; for n = 2 the mass of the tauon . = . ๐‘’๐‘’ ๐‘’๐‘’ 1786.155๐‘ก๐‘กโ„Ž๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ =๐‘š๐‘š1776.822๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ ๐‘š๐‘š ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ ๐‘ก๐‘กโ„Ž๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ ๐œ‡๐œ‡ ( ๐œ‡๐œ‡ ). With a value of n = 3, the 4th lepton with a mass๐œ๐œ of 10293๐‘š๐‘š.711 is ๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’predicted,๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ which๐‘š๐‘š has not yet been๐‘€๐‘€๐‘€๐‘€ observed.๐‘€๐‘€ ๐‘š๐‘š A little ๐‘€๐‘€later,๐‘€๐‘€๐‘€๐‘€ a๐‘š๐‘š Japanese๐œ๐œ physicist๐‘€๐‘€ Yoshio๐‘€๐‘€๐‘€๐‘€ Koide discovered the following relationship between the masses of๐‘€๐‘€ leptons๐‘€๐‘€๐‘€๐‘€ [4]: + + = + + (2) 2 2 ๐‘’๐‘’ ๐œ‡๐œ‡ ๐œ๐œ ๐‘’๐‘’ ๐œ‡๐œ‡ ๐œ๐œ Expression (2) is true with a very high๐‘š๐‘š accuracy.๐‘š๐‘š ๐‘š๐‘š Based3 ๏ฟฝ ๏ฟฝon๐‘š๐‘š experimental๏ฟฝ๐‘š๐‘š ๏ฟฝ data๐‘š๐‘š ๏ฟฝ (2016), the ratio of the left side of (2) to the right side (on the right side without taking into account the coefficient) is obtained and is equal 0.6666605 ยฑ 0.0000068 (in theory that ratio is 0.666666(26)). Despite of 3 Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1 MRSU 2020 IOP Publishing Journal of Physics: Conference Series 1560 (2020) 012005 doi:10.1088/1742-6596/1560/1/012005

this, no reasonable theoretical explanation of formula (2) has yet been obtained. The predicted mass of the -lepton from the Koide formula, turns out to be . = 1786.968884 ยฑ0.000065, and . the experimental value is = 1776.822. ๐‘ก๐‘กโ„Ž๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ ๐œ๐œ Varlamov๐œ๐œ [5] also presented๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ his own formula for the particles๐‘š๐‘š masses. If we take into account the principle of equivalence between๐‘š๐‘š๐œ๐œ mass and energy, it can be argued that the mass formula

= + + (3) 1 1 ๐‘’๐‘’ defining the mass (energy) of the state (cyclic๐‘š๐‘š Lorenz๐‘š๐‘š representation๏ฟฝ๐‘™๐‘™ 2๏ฟฝ ๏ฟฝ๐‘–๐‘– 2 ๏ฟฝ( , )), is, in a sense, similar to the well-known relation = , where the electron mass plays the role of โ€œquantum of massโ€ . Up to present it is difficult to give preference to any of the existing๐‘™๐‘™ app๐‘–๐‘– roaches. In our opinion, Barut approach is more promising,๐ธ๐ธ โ„Ž๐œˆ๐œˆ as it allows one to naturally extend it to describe the spectrum๐‘š๐‘š of๐‘’๐‘’ the hadron sector, which is much richer in the number of observed states.

2.Materials and methods From the very beginning we shall indicate some not well known facts about the magnetic interaction.

2.1. Unusual (little known) properties of magnetic forces 2.1.1 Attraction is possible at different orientation of magnetic moments.

= 2 < 0 (4) ๐œ‡๐œ‡1๐œ‡๐œ‡2 ๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– 3 ๐‘Š๐‘Š โˆ’ ๐‘Ÿ๐‘Ÿ

Figure 1. Coaxial parallel orientation of magnetic moments

= < 0 (5) ๐œ‡๐œ‡1๐œ‡๐œ‡2 ๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– 3 ๐‘Š๐‘Š โˆ’ ๐‘Ÿ๐‘Ÿ

Figure 2. Misaligned antiparallel orientation of magnetic moments

2.1.2. Different dependence upon a distance.

~ ยฑ ยฑ + (6) ๐‘๐‘ ๐‘๐‘ ๐‘‘๐‘‘ ๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– 2 3 4 2.1.3. Emergence of a repulsive core independently๐‘Š๐‘Š of ๐‘Ÿ๐‘Ÿ orientation๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ .

[ ร— ] ~ +๐œ‡๐œ‡โƒ— 2 (7) ๐œ‡๐œ‡๏ฟฝ ๐‘Ÿ๐‘Ÿฬ… The presence of terms with different signs in the๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– interaction6 potential makes it possible to obtain for different particles with different masses and charges๐‘Š๐‘Š a large๐‘Ÿ๐‘Ÿ number of potential wells in which the bound states of particle systems can exist and may be observed experimentally as resonances.

2.2. Barut mass formula

2 MRSU 2020 IOP Publishing Journal of Physics: Conference Series 1560 (2020) 012005 doi:10.1088/1742-6596/1560/1/012005

To illustrate the effectiveness of the Barut method, let us deduce the above mass Barut formula (1) for leptons [3]. For a particle of mass with a charge moving in the field of a magnetic dipole we have: ๐‘š๐‘š = ๐‘’๐‘’ ๐œ‡๐œ‡ 2 (8) ๐‘š๐‘š๐‘ฃ๐‘ฃ ๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ In the nonrelativistic case, the Bohr-Sommerfeld quantization3 rule can be applied: = ๐‘Ÿ๐‘Ÿ , ๐‘Ÿ๐‘Ÿ = 0,1,2, โ€ฆ (9) From (9) we find = , then we substitute this expression into (8) and we obtain: ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š ๐‘›๐‘›ฤง ๐‘›๐‘› ๐‘›๐‘›ฤง ๐‘Ÿ๐‘Ÿ ๐‘š๐‘š๐‘š๐‘š = 2 (10) ฤง For kinetic energy, we have the expression: 2 ๐‘ฃ๐‘ฃ๐‘›๐‘› ๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ ๐‘›๐‘›

= = = 2 4 (11) ๐‘š๐‘š๐‘ฃ๐‘ฃ๐‘›๐‘› ฤง 4 4 On the other hand, adding the rest mass of the electron2 2 to the Nambu formula for the muon [2]: ๐ธ๐ธ๐‘›๐‘› 2 2๐‘’๐‘’ ๐‘š๐‘š๐œ‡๐œ‡ ๐‘›๐‘› ๐œ†๐œ†๐œ†๐œ†

= (12) 3 we get ๐œ‡๐œ‡ ๐‘’๐‘’ ๐‘š๐‘š 2๐›ผ๐›ผ ๐‘š๐‘š = 1 + , = 1 (13) 3 Using (11) and (13) we get the Barut๐œ‡๐œ‡ formula๐‘’๐‘’ [3]: ๐‘š๐‘š ๐‘š๐‘š ๏ฟฝ 2๐›ผ๐›ผ๏ฟฝ ๐‘›๐‘› = 1 + (14) 3 ๐‘›๐‘› 4 Here = 0 for electron; = 1 for๐‘›๐‘› muon;๐‘’๐‘’ = 2 for๐‘˜๐‘˜= 0tauon; = 3 for the 4-th lepton. ๐‘š๐‘š ๐‘š๐‘š ๏ฟฝ 2๐›ผ๐›ผ โˆ‘ ๐‘˜๐‘˜ ๏ฟฝ 2.3. The ๐‘›๐‘›main ideas of Barut ๐‘›๐‘› ๐‘›๐‘› ๐‘›๐‘› As it is well known, the show no existence in nature (nobody observed them up to now). Observed elementary particles (more than several hundreds) according to Barut can be described as bounded states of a small number of really stable particles , , . The features of strong interactions, such as: โˆ’ 1) Short interaction range; ๐‘๐‘ ๐‘’๐‘’ ๐œˆ๐œˆ 2) Saturation; 3) Charge independence (isotopic invariance); 4) Strong spin dependence; 5) Pairing; 6) Pauli principle; 7) Experimentally observed potential;

( ) = + + (15) can be explained strictly by electromagnetic forces only.๐‘Ž๐‘Ž ๐‘‰๐‘‰ ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ ๐‘๐‘๐‘๐‘ ๐‘๐‘ 2.4. Dirac equation with electromagnetic interaction From the Dirac Equation

+ m = 0 (16) describing a free particle, one can obtain an๐œ‡๐œ‡ extended Dirac equation for a charged particle ๐œ‡๐œ‡ interacting with an external electromagnetic ๏ฟฝfield๐›พ๐›พ ๐œ•๐œ• in two๏ฟฝ steps.๐›น๐›น 1) The extension of derivatives results in the appearance of additional terms

๐œ•๐œ•๐œ‡๐œ‡ โ†’ ๐œ•๐œ•๐œ‡๐œ‡ โˆ’ ๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐œ‡๐œ‡

3 MRSU 2020 IOP Publishing Journal of Physics: Conference Series 1560 (2020) 012005 doi:10.1088/1742-6596/1560/1/012005

( ) + ( ) (17) in the Hamiltonian operator, where is the normal magnetic dipole moment of the charged particle. ๐œ‡๐œ‡๐‘›๐‘› ๐œŒ๐œŒ3 ๐œŽ๐œŽ๏ฟฝ โˆ™ ๐ป๐ป๏ฟฝ ๐œ‡๐œ‡๐‘›๐‘› ๐œŒ๐œŒ1 ๐œŽ๐œŽ๏ฟฝ โˆ™ ๐ธ๐ธ๏ฟฝ 2) For a neutral particle with an abnormal๐œ‡๐œ‡๐‘›๐‘› (anomalous) magnetic dipole moment (such as a neutron), one has to add on the right hand side of the Dirac Equation , the Pauli coupling term

0 = ( ) + ( ) (18) ๐œ‡๐œ‡๐œˆ๐œˆ ๐‘Ž๐‘Ž ๐œ‡๐œ‡๐œˆ๐œˆ ๐‘Ž๐‘Ž 3 ๐‘Ž๐‘Ž 1 where is the abnormalโ†’ magnetic๐œ‡๐œ‡ ๐น๐น ๐œŽ๐œŽ dipole๐œ‡๐œ‡ moment๐œŒ๐œŒ ๐œŽ๐œŽ๏ฟฝ โˆ™. ๐ป๐ป๏ฟฝ ๐œ‡๐œ‡ ๐œŒ๐œŒ ๐œŽ๐œŽ๏ฟฝ โˆ™ ๐ธ๐ธ๏ฟฝ The above two steps, when applied to the electron moving around a proton, yield a radial equation with an effective๐œ‡๐œ‡๐‘Ž๐‘Ž potential of the following form:

( ) = ยฑ + ยฑ + (19) ๐‘Ž๐‘Ž ๐‘๐‘ ๐‘๐‘ ๐‘‘๐‘‘ 2 3 4 The coefficients , , , are obtained automatically๐‘‰๐‘‰ ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ and๐‘Ÿ๐‘Ÿ they๐‘Ÿ๐‘Ÿ are fixed๐‘Ÿ๐‘Ÿ in the model and their explicit form will be given below. ๐‘Ž๐‘Ž ๐‘๐‘ ๐‘๐‘ ๐‘‘๐‘‘

Figure 3. Effective interaction potential of the electron with the proton in the Barut model

Figure 3 shows two potential wells that are obtained for the โ€œelectron-protonโ€ system, for given values of the parameters , , , which are automatically fixed in the model as a result of the above procedure (two steps) to turn on the interaction. The right potential well๐‘Ž๐‘Ž has๐‘๐‘ ๐‘๐‘ a ๐‘‘๐‘‘minimum at 10 cm. In this well the terms + play the โˆ’8 ๐‘Ž๐‘Ž ๐‘๐‘ main role. We call this domain electric. Other terms in (19) related to magnetism give small2 corrections. It is in this well that a familiar bound๐‘Ÿ๐‘Ÿ โ‰ˆ state the hydrogen atom arises. Inโˆ’ the๐‘Ÿ๐‘Ÿ left๐‘Ÿ๐‘Ÿ potential well with a minimum at 10 10 cm, the short-range magnetic forces play the main role, and the electric forces give smallโˆ’ 13corrections.โˆ’14 Here the formation of๐‘Ÿ๐‘Ÿ heavyโ‰ˆ particlesโˆ’ is possible due to magnetism, which in the experiment will look like resonances. In the case of a coupled system of two heavy particles (for example, a neutron- proton), the left well is interpreted in the Barut model as a well that reproduces all the properties of strong interaction with small electromagnetic corrections from the right well.

4 MRSU 2020 IOP Publishing Journal of Physics: Conference Series 1560 (2020) 012005 doi:10.1088/1742-6596/1560/1/012005

2.5. Effective potential for two charged particles with normal and anomalous magnetic moments Let us consider two interacting charged particles with normal and anomalous magnetic moments. The full Hamiltonian of the system in this most general case is as follows [6]:

= + + + ( ) | | (20) 1 ๐‘’๐‘’1 2 1 ๐‘’๐‘’2 2 ๐‘’๐‘’1๐‘’๐‘’2

2๐‘š๐‘š1 1 ๐‘๐‘ โƒ—2 2๐‘š๐‘š2 2 ๐‘๐‘ โƒ—1 ๐‘Ÿ๐‘Ÿโƒ—1โˆ’๐‘Ÿ๐‘Ÿโƒ—2 12 1 2 ร—( ๐ป๐ป ) ๏ฟฝ๐‘๐‘โƒ— โˆ’ร—( ๐ด๐ด ๏ฟฝ) ๏ฟฝ๐‘๐‘โƒ— โˆ’ ๐ด๐ด ๏ฟฝ ๐‘†๐‘† ๐‘Ÿ๐‘Ÿโƒ— โˆ’ ๐‘Ÿ๐‘Ÿโƒ— = , = Here | | | | are vector potentials of the electromagnetic field created ๐‘€๐‘€๏ฟฝ๏ฟฝโƒ—1 ๐‘Ÿ๐‘Ÿโƒ—2โˆ’๐‘Ÿ๐‘Ÿโƒ—1 ๐‘€๐‘€๏ฟฝ๏ฟฝโƒ—2 ๐‘Ÿ๐‘Ÿโƒ—1โˆ’๐‘Ÿ๐‘Ÿโƒ—2 3 3 by one particle๐ด๐ดโƒ—1 ๐‘Ÿ๐‘Ÿatโƒ—1โˆ’ ๐‘Ÿ๐‘Ÿtheโƒ—2 point๐ด๐ดโƒ—2 of location๐‘Ÿ๐‘Ÿโƒ—2โˆ’๐‘Ÿ๐‘Ÿโƒ—1 of the other particle; = (1 + ) is the intrinsic magnetic moment of a charged particle with spin 1/2, proportional to๐‘’๐‘’ ฤงthe Bohr magneton; is a ๏ฟฝ๏ฟฝโƒ— parameter that determines the magnitude of the intrinsic anomalous๐‘€๐‘€ magnetic2๐‘š๐‘š๐‘š๐‘š moment๐‘Ž๐‘Ž ๐œŽ๐œŽโƒ— of the particle; is the particle spin operator; , ( = 1,2) are charges and masses of particles; the last๐‘Ž๐‘Ž term describes the spin-spin interaction of the intrinsic magnetic moments of the particles. It is usually ๐œŽ๐œŽwrittenโƒ— as: ๐‘’๐‘’๐‘–๐‘– ๐‘š๐‘š๐‘–๐‘– ๐‘–๐‘–

( ) = 3 , = | | (21) 1 ๐‘Ÿ๐‘Ÿโƒ— 3 ๐‘†๐‘†12 ๐‘Ÿ๐‘Ÿโƒ—1 โˆ’ ๐‘Ÿ๐‘Ÿโƒ—2 ๐‘Ÿ๐‘Ÿ ๏ฟฝ๏ฟฝ๐‘€๐‘€๏ฟฝ๏ฟฝโƒ—1๐‘€๐‘€๏ฟฝ๏ฟฝโƒ—2๏ฟฝ โˆ’ ๏ฟฝ๐‘€๐‘€๏ฟฝ๏ฟฝโƒ—1๐‘Ÿ๐‘Ÿโƒ—0๏ฟฝ๏ฟฝ๐‘€๐‘€๏ฟฝ๏ฟฝโƒ—2๐‘Ÿ๐‘Ÿโƒ—0๏ฟฝ๏ฟฝ ๐‘Ÿ๐‘Ÿโƒ—0 ๐‘Ÿ๐‘Ÿโƒ— After the transition to the center of mass system, the Hamiltonian takes the form:

1 ร— ร— = + + + 2 + 2 22 2 2 2 2 ๐‘๐‘โƒ— ๐‘’๐‘’1๐‘’๐‘’2 ๐‘’๐‘’1๐‘€๐‘€๏ฟฝ๏ฟฝโƒ—2 ๐‘’๐‘’2๐‘€๐‘€๏ฟฝ๏ฟฝโƒ—1 ๐‘’๐‘’1 ๐‘€๐‘€๏ฟฝ๏ฟฝโƒ—2 ๐‘Ÿ๐‘Ÿโƒ— ๐‘’๐‘’2 ๐‘€๐‘€๏ฟฝ๏ฟฝโƒ—1 ๐‘Ÿ๐‘Ÿโƒ— 3 ๏ฟฝโƒ— 2 3 2 3 ๐ป๐ป โˆ’ ๏ฟฝ๐ฟ๐ฟ ๏ฟฝ 1+ 2 ๏ฟฝ๏ฟฝ 3 1 ๏ฟฝ ๏ฟฝ 1 ๏ฟฝ ๏ฟฝ (22) ๐œ‡๐œ‡ ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ ๐‘š๐‘š ๐‘๐‘ 1 ๐‘š๐‘š2 ๐‘๐‘ ๐‘š๐‘š 2๐‘๐‘ ๐‘Ÿ๐‘Ÿ ๐‘š๐‘š ๐‘๐‘ ๐‘Ÿ๐‘Ÿ ๐‘€๐‘€ ๐‘€๐‘€ 2 3 ๐‘Ÿ๐‘Ÿ ๏ฟฝ๐‘†๐‘†โƒ— โˆ’ ๏ฟฝ๐‘†๐‘†โƒ—๐‘Ÿ๐‘Ÿโƒ—0๏ฟฝ ๏ฟฝ Here = is the reduced mass; = ; = ; = + ; = + ; ๐‘š๐‘š1+๐‘š๐‘š2 ๐‘š๐‘š1๐‘๐‘โƒ—1โˆ’๐‘š๐‘š2๐‘๐‘โƒ—2 = ๐œ‡๐œ‡ ๐‘š๐‘š 1is๐‘š๐‘š 2the radius of the mass ๐‘Ÿ๐‘Ÿโƒ—center๐‘Ÿ๐‘Ÿโƒ—2 ;โˆ’ ๐‘Ÿ๐‘Ÿโƒ—1= ๐‘๐‘โƒ—ร— ; ๐‘€๐‘€= ( ๐‘€๐‘€+ ๐‘š๐‘š) 1is the๐‘š๐‘š 2operator๐‘ƒ๐‘ƒ๏ฟฝโƒ— ๐‘๐‘โƒ—1 of ๐‘๐‘theโƒ—2 1 1 2 2 total ๐‘š๐‘šspin๐‘Ÿ๐‘Ÿโƒ— +of๐‘š๐‘š a๐‘Ÿ๐‘Ÿโƒ— system of two particles. 1 ๏ฟฝโƒ— ๏ฟฝโƒ— โƒ— 2 1 ๐‘…๐‘… Formula๐‘€๐‘€ (22) gives the effective potential of interaction๐ฟ๐ฟ ๐‘Ÿ๐‘Ÿโƒ— ๐‘๐‘forโƒ— ๐‘†๐‘†the radial2 ๐œŽ๐œŽ๏ฟฝ function๐œŽ๐œŽ๏ฟฝ in the form:

( ) = + + + (23) ๐‘๐‘1 ๐‘๐‘2 ๐‘๐‘3 ๐‘๐‘4 2 3 4 ๐‘‰๐‘‰ ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ In this expression the centrifugal potential ~ appeared as a result of variables separation of the 1 = , , 2 Laplacian inside the term 2 2 . ๐‘Ÿ๐‘Ÿ ๐‘๐‘โƒ— ฤง โˆ†๐‘Ÿ๐‘Ÿ ๐œ‘๐œ‘ ๐œƒ๐œƒ The coefficients , , , are of the form [6]: 2๐œ‡๐œ‡ โˆ’ 2๐œ‡๐œ‡

1 2 3 4 ๐‘๐‘ ๐‘๐‘ ๐‘๐‘ ๐‘๐‘ =

๐‘๐‘1 = ๐‘’๐‘’1๐‘’๐‘’(2 + 1) 2 2 ( )( ) = ( + ) + ๐‘๐‘ ฤง ๐‘™๐‘™ ๐‘™๐‘™ + 3 2 1 2 1 2 1 2 2 1 2 ๐‘’๐‘’ ๐‘’๐‘’ ฤง ๐‘’๐‘’ ๐‘’๐‘’ ฤง ๐‘’๐‘’ ๐‘’๐‘’ ฤง 1+๐‘Ž๐‘Ž 1+๐‘Ž๐‘Ž 2 2 2 2 3 2๐‘š๐‘š1๐‘š๐‘š2๐‘๐‘ ๏ฟฝโƒ— 2 2 1 1 ๐‘š๐‘š1๐‘š๐‘š2๐‘๐‘ ๏ฟฝโƒ— โƒ— 4๐‘š๐‘š1๐‘š๐‘š2๐‘๐‘ โƒ— โƒ— 0 ๐‘๐‘ ๏ฟฝ๐ฟ๐ฟ ๐‘Ž๐‘Ž ๐œŽ๐œŽ๏ฟฝ ๐‘Ž๐‘Ž ๐œŽ๐œŽ๏ฟฝ ๏ฟฝ ( ๏ฟฝ๐ฟ๐ฟ)โˆ™ ๐‘†๐‘† ๏ฟฝ( ) ๏ฟฝ๐‘†๐‘† โˆ’ ๏ฟฝ๐‘†๐‘† โˆ™ ๐‘Ÿ๐‘Ÿโƒ— ๏ฟฝ ๏ฟฝ = + 2 2 2 (24) ๐‘’๐‘’1๐‘’๐‘’2ฤง 1+๐‘Ž๐‘Ž1 1+๐‘Ž๐‘Ž2 4 ๐‘๐‘4 4๐‘š๐‘š1๐‘š๐‘š2๐‘๐‘ ๏ฟฝ ๐‘š๐‘š1 ๐‘š๐‘š2 ๏ฟฝ

5 MRSU 2020 IOP Publishing Journal of Physics: Conference Series 1560 (2020) 012005 doi:10.1088/1742-6596/1560/1/012005

In general case, both the relativistic and nonrelativistic descriptions of two interacting fermions do not allow to completely solve the problem analytically. The main advantage of a relativistic description is a wide range of allowable energies. However, as a result, the final equations are complex and analytically solvable only for a small number of fields, often with a very specific choice of parameters. The scope of nonrelativistic equations is naturally limited by the range of permissible energies. The advantages of a nonrelativistic analysis are the relative simplicity of the equations and the possibility of easy comparison with known results, as well as the ability to use fewer โ€œadjustableโ€ parameters.

3. Conclusion We presented in a brief form the main ideas of Barut and gave a general view of the potential of interaction of two charged particles with normal and anomalous magnetic moments. Using the general expression (20) for the Hamiltonian, a number of problems were solved earlier. In the case of the โ€œepโ€ system, it was predicted the possible existence of small Barut-Vigier atoms with a size of 10 cm [7]. The use of expression (20) for the bound โ€œneutron-protonโ€ system (deuterium nucleus)โˆ’ 11turned out to be very effective [8], allowing us to describe the basic properties of the ๐‘Ÿ๐‘Ÿdeuteron.โ‰ˆ For example, the absence of a singlet state in a deuteron on the experiment is easily proved. In this case, the spins of the particles are antiparallel (which means that the magnetic moments are parallel due to the fact that = +2.7 , = 1.9 ) and there will be no potential well due ๐‘’๐‘’ฤง ๐‘’๐‘’ฤง to the repulsion of the magnetic moments. There is hope using the general formula (20) to obtain a ๐œ‡๐œ‡๐‘๐‘ 2๐‘€๐‘€๐‘๐‘๐‘๐‘ ๐œ‡๐œ‡๐‘›๐‘› โˆ’ 2๐‘€๐‘€๐‘›๐‘›๐‘๐‘ more accurate mass spectrum of light and heavy particles.

Reference [1] Ginzburg V L 1999 What problems of physics and astrophysics seem now to be especially important and interesting (thirty years later, already on the verge of XXI century)? Physics- Uspekhi 169 pp 419โ€“41 [2] Nambu Y 1952 An empirical mass spectrum of elementary particles Prog. Theor. Phys. 7 pp 595โ€“96 [3] Barut A O 1979 Lepton mass formula Phys. Rev. Lett. 42 p 1251 [4] Koide Y 1983 New view of quark and lepton mass hierarchy Physical Review D 28 pp 252 โ€“ 54 [5] Varlamov V V 2017 Mass quantization and lorentz group Mathematical Structures and Modeling 2(42) pp 11โ€“28 [6] Tahti D V 2000 PhD Thesis โ€œThe consequences of the accurate accounting of the magnetic moments in the two-body problem for interacting particlesโ€ Peoplesโ€™ Friendship University of Russia (RUDN) Moscow pp 1-112 [7] Samsonenko N V, Tahti D V and Ndahayo F 1996 On the Barut-Vigier model of the hydrogen atom Physics Letters A 220 pp 297-301 [8] Samsonenko N V, Tahti D V and Ndahayo F 1998 On the consequences of the accurate accounting of the โ€œspin-spinโ€ and โ€œspin-orbitโ€ interactions in deuteron Proceedings of the International conference on Physics of atomic nuclei Saint-Petersburg RAN p 45

6