<<

Case Study:

© 2014 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics 1 Concepts for Lunar Equipment Carriers

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 2 Concepts for Lunar Equipment Carriers

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 3 Concepts for Lunar Equipment Carriers

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 4 Modular Equipment Transporter

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 5 MET Structure

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 6 MET Equipment Load ( 14)

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 7 Pneumatic Tire Specifications

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 8 Thermal Vacuum Testing of Wheels

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 9 Towing Force vs. Vehicle Weight ()

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 10 Designing the

Excerpts from “Lunar Rover” from A&E series “” (available on YouTube at https://www.youtube.com/watch?v=5aDSYTMqyQw ) U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 11 LRV Three-View and Dimensions

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 12 LRV Payload Components

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 13 LRV in Stowed Configuration

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 14 LRV Deployment (1-6)

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 15 LRV Deployment Sequence (7-12)

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 16 LRV Deployment Sequence (13-15)

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 17 LRV Speed Capabilities

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 18 LRV Chassis Structure

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 19 LRV Wheel Suspension

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 20 LRV Wheel Steering Connections

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 21 LRV Wheel Motor and Gearing

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 22 LRV Wheel and Fender

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 23 LRV Wheel Design Details

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 24 LRV Wheel Testing

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 25 LRV Wheel Deflection

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 26 Location of LRV Center of Gravity

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 27 LRV Static Stability

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 28 Limiting Velocity for Obstacle Impact

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 29 Sliding Limit in Turn (µ=0.8)

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 30 LRV Overturn Limits in Turning

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 31 Turning Radius with CG Shift - 0° Slope

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 32 Turning Radius with CG Shift - 20° Slope

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 33 Turning Radius Limit for Higher CG

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 34 LRV Top Speed Limits (Struct. Fatigue)

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 35 LRV Power Requirements - 0° Slope

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 36 LRV Power Requirements - 5° Slope

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 37 LRV Power Requirements - 10° Slope

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 38 LRV Traction Performance

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 39 Battery Current vs. Speed

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 40 Wheel Motor Temperature vs. Slope

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 41 Power Usage by System

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 42 LRV Wheel Loading

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 43 Drive Motor Characteristics

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 44 LRV Stopping Distance vs. Speed/Slope

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 45 LRV Terrain Design Cases • Crevasse crossing capability 70 cm • Step Obstacle Climbing Capability 35 cm • Clearance under chassis 35 cm

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 46 LRV Mobility Parameters

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 47 Terrain (“Lurain”)

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 48 Apollo 15 LRV

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 49 “Lunar Grand Prix”

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 50 Apollo 16 LRV (image stabilized)

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 51 References • Glenn C. Miller, “The Lunar Cart” 7th Aerospace Mechanisms Symposium, Houston, Texas, Sept. 2-3, 1972 • Alex B. Hunter and Bryan W. Spacey, “Lunar Roving Vehicle Deployment Mechanism” 7th Aerospace Mechanisms Symposium, Houston, Texas, Sept. 2-3, 1972 • Boeing Company, “LRV Operations Handbook Appendix A (Performance Data” NASA TM- X-66816, April 19, 1971

U N I V E R S I T Y O F Case Study – Lunar Roving Vehicle ENAE 788X - Planetary Surface Robotics MARYLAND 52