Equality Labeling on Special Graphs

Total Page:16

File Type:pdf, Size:1020Kb

Equality Labeling on Special Graphs EQUALITY LABELING ON SPECIAL GRAPHS Dr.A.MYDEEN BIBI1 AND M.MALATHI2 1Assistant Professor of Mathematics, the Standard Firework Rajaratnam College for Women, Sivakasi 2Research Scholar the Standard Firework Rajaratnam College for Women, Sivakasi Abstract- Let G be a graph of order n and size m. A onto function : v (G) → {0,1,2,...,n} is called a equality labeling. If it satisfies following condition The edges labeled by {1,2,3,…,2m-1} with │f(u)+f(v)│ if n=m. The edges labeled by{1,2,3,…,m} with │f(u)-f(v)│if n≠m. This labeling is called an equality labeling. It is denoted by Eq (G). In this paper we investigate the behavior of equality labeling for some special graphs. Keywords- Equality labeling I. INTRODUCTION If G is a graph, let V (G) and E (G) denote, respectively, the vertex and the edge set of G. We deal with labeling with domain either the set of all vertices, or the set of all edges, or the set of all vertices and edges, respectively. We call these labeling a vertex labeling, or an edge labeling, or a total labeling, depending on the graph elements that are being labeled. The origin of this labeling is introduced by Rosa. The concept of labeling of graphs has gained a lot of popularity in the area of graph theory. This popularity is not only due to mathematical challenges of graph labeling but also to the wide range of applications that graph labeling offer to other branches of science, for instance, X-ray, crystallography, coding theory, cryptography, astronomy, circuit design and communication networks design. In the last three decades magic and antimagic labeling, prime labeling, graceful labeling, k-graceful labeling, and odd labeling, even and odd mean labeling and strongly labeling etc. have been studied in over 1300 papers. PRELIMINARIES A graph is a pictorial representation of a set of objects where some pairs of objects are connected by links. The interconnected objects are represented by points termed as vertices, and the links that connect the vertices are called edges. Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the set of edges, connecting the pairs of vertices. If the vertices of the graph are assigned values subject to certain conditions then it is known as graph labeling. A Path Pn is a walk in which all the vertices are distinct. A simple graph with ‘n’ vertices (n >= 3) and ‘n’ edges is called a cycle graph if all its edges form a cycle of length ‘n’. If the degree of each vertex in the graph is two, then it is called a Cycle Graph. A wheel graph is obtained from a cycle graph Cn-1 by adding a new vertex. That new vertex is called a Hub which is connected to all the vertices of Cn. The maximum of the degrees of all the vertices is called the maximum degree of the graph and it is denoted by ∆ (G) or ∆. A simple graph in which there exists an edge between every pair of vertices is called a complete graph. A graph G is called labeled if its p points are distinguished from one another by names such as v1, v2, .….vn. A graph G is connected if for every u,v ϵ G there exists a uv-path in G. Otherwise G is called DOI:10.21884/IJMTER.2018.5098.88NOJ 68 International Journal of Modern Trends in Engineering and Research (IJMTER) Volume: 5, Issue: 04, [April– 2018] ISSN (Online):2349–9745 ; ISSN (Print):2393-8161 disconnected. A graph is bipartite if its vertex set is partitioned into two nonempty subsets X and Y such that each edge of G has one end in X and the other end in Y. A complete bipartite graph is a simple bipartite graph such that two vertices are adjacent if and only if they are in different partite sets. The complete bipartite graph with partite sets of size m and n is denoted Km,n. A tree is a connected acyclic simple graph. A vertex of degree 1 is called a leaf or pendant vertex. The fan fn (n2) is obtained by joining all vertices of Pn to a further vertex called the centre and contains n+1 vertex and 2n-1 edges. A friendship graph Fn is a graph which consists of n triangle with a common vertex. A graceful labeling of a graph G of size m is an assignment of distinct elements of the set {0,1,2,…,m} to the vertices of G so that the edges labeling, which prescribes i-j to the edges joining vertices labeled i and j, assigns the labels 1,2,…,m to the edges of G. A graph possessing a graceful labeling is a graceful graph. II. DEFINITION OF EQUALITY LABELING Let G be a graph of order n and size m. A onto function : v (G) → {0,1,2,...,n} is called a equality labeling. If it satisfies following condition The edges labeled by {1,2,3,…,2m-1} with │f(u)+f(v)│ if n=m. The edges labeled by{1,2,3,…,m} with │f(u)-f(v)│if n≠m. This labeling is called an equality labeling. It is denoted by Eq (G). III. EQUALITY LABELING FOR GENERAL GRAPHS 3.1 Path: @IJMTER-2018, All rights Reserved 69 International Journal of Modern Trends in Engineering and Research (IJMTER) Volume: 5, Issue: 04, [April– 2018] ISSN (Online):2349–9745 ; ISSN (Print):2393-8161 3.2 Cycle: IV. EQUALITY LABELING FOR SPECIAL GRAPH 4.1 Diamond-Graph: A graph is diamond free if it has no diamond as an induced subgraph. The triangle free graph are diamond free graphs, since every diamond contains a triangle. 3 n≠m,n=4,m=5 1 2 3 2 1 2 1 0 @IJMTER-2018, All rights Reserved 70 International Journal of Modern Trends in Engineering and Research (IJMTER) Volume: 5, Issue: 04, [April– 2018] ISSN (Online):2349–9745 ; ISSN (Print):2393-8161 4.2 Durer-Graph: Durer’s solid is combinatorially equivalent to a cube with 2 opposite vertices truncated although durer’s depiction of it is not in this from but rather as a truncated rhombohedron or triangular truncated trapezohedron. The durer graph is the graph termed by the vertices & edges of the durer solid. It is a cubic graph of girth 3 & diameter4. 4 6 2 3 6 4 1 11 0 10 1 n≠m,n= 12,m=18 2 5 3 1 8 7 1 1 2 0 3 7 10 2 1 4 6 5 9 2 7 4.3 Bull-Graph: The bull graph is a planar undirected graph with s vertices and 5 edges in the form of a triangle with 2 disjoint pendant edges. It has chromatic number 3, chromatic 3, radius3, diameter and girth 3. It is also a block graph, a split graph, an interval graph, a claw-graph, a 1-vertex connected graph and a 1- edge- connected graph. 1 2 1 7 n=m,n=5,m=5 5 0 5 3 8 3 4.4 Butterfly- Graph: A graph is bowtie-free if it has no butterfly as an induced subgraph. The triangle-free-graph are bowtie-free graph, since every butterfly contains a triangle. The full automorphism group of the butterfly graph is a group of order 8 isomorphic to the Dihedral group D4, the group of symmetries of a square including both rotation and reflection. 1 3 3 8 n≠m,n=5,m=6 8 1 0 4 2 4 2 4.5 Franklin- Graph: The Franklin graph a 3 – regular graph with 12 vertices and 18 edges. It is hamiltonion and has chromatic number 2, chromatic index 3, radius 3, diameter 3, and girth 4.It is also a 3-vertex connected and 3 edge- connected perfect graph. @IJMTER-2018, All rights Reserved 71 International Journal of Modern Trends in Engineering and Research (IJMTER) Volume: 5, Issue: 04, [April– 2018] ISSN (Online):2349–9745 ; ISSN (Print):2393-8161 2 4 2 3 4 5 n≠m,n=12,m=18 1 6 1 9 2 1 9 3 1 1 5 2 8 0 3 0 11 2 1 5 4 1 12 5 7 4.6 Herschel- Graph: The Herschel graph is a bipartite undirected graph with 11 vertices and 18 edges, the smallest non-hamiltonian polyhedral graph. The Herschel graph is a planar graph it can be drawn in the plane with none of its edges crossing. It is also 3-vertex connected. The removal of any 2 of its vertices leaves a connected subgraph. 4 2 8 4 2 4 6 n≠m,n=11,m=18 3 4 3 9 8 5 6 10 11 0 8 10 1 2 5 9 1 8 3 6 9 4.7 Moser- Spindle: The moser-graph (also called mosers spindle) is an undirected graph, with 7 vertices and 11 edges. It is a unit distance graph requiring 4 colors in any graph coloring. 6 1 4 n≠m,n=7,m=11 1 3 5 2 2 1 7 3 5 1 7 2 0 1 1 4.8 Wagner-Graph: The Wagner graph is a 3-regular graph with 8 vertices and 12edges. It is the 8-vertex mobius ladder graph. @IJMTER-2018, All rights Reserved 72 International Journal of Modern Trends in Engineering and Research (IJMTER) Volume: 5, Issue: 04, [April– 2018] ISSN (Online):2349–9745 ; ISSN (Print):2393-8161 1 4 7 5 8 n≠m,n=8,m=12 3 4 2 4 6 4 5 2 3 2 2 6 7 3 4 3 4.9 Hajos-Graph: The Hajós graph is another name for the Sierpiński sieve graph, which is isomorphic to the 2-sun graph.
Recommended publications
  • An Algorithm for Drawing Planar Graphs
    An Algorithm for Drawing Planar Graphs Bor Plestenjak IMFMTCS University of Ljubljana Jadranska SI Ljubljana Slovenia email b orplestenjakfmfuniljsi AN ALGORITHM FOR DRAWING PLANAR GRAPHS SUMMARY A simple algorithm for drawing connected planar graphs is presented It is derived from the Fruchterman and Reingold spring emb edding algorithm by deleting all repulsive forces and xing vertices of an outer face The algorithm is implemented in the system for manipulating discrete mathematical structures Vega Some examples of derived gures are given Key words Planar graph drawing Forcedirected placement INTRODUCTION A graph G is planar if and only if it is p ossible to draw it in a plane without any edge intersections Every connected planar graph admits a convex drawing ie a planar drawing where every face is drawn as a convex p olygon We present a simple and ecient algorithm for convex drawing of a connected planar graph In addition to a graph most existing algorithms for planar drawing need as an input all the faces of a graph while our algorithm needs only one face of a graph to draw it planarly Let G b e a connected planar graph with a set of vertices V fv v g and a set of edges E 1 n fu v u v g Let W fw w w g V b e an ordered list of vertices of an arbitrary face in 1 1 m m 1 2 k graph G which is chosen for the outer face in the drawing The basic idea is as follows We consider graph G as a mechanical mo del by replacing its vertices with metal rings and its edges with elastic bands of zero length Vertices of the
    [Show full text]
  • The Conway Space-Filling
    Symmetry: Art and Science Buenos Aires Congress, 2007 THE CONWAY SPACE-FILLING MICHAEL LONGUET-HIGGINS Name: Michael S. Longuet-Higgins, Mathematician and Oceanographer, (b. Lenham, England, 1925). Address: Institute for Nonlinear Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92037-0402, U.S.A. Email: [email protected] Fields of interest: Fluid dynamics, ocean waves and currents, geophysics, underwater sound, projective geometry, polyhedra, mathematical toys. Awards: Rayleigh Prize for Mathematics, Cambridge University, 1950; Hon.D. Tech., Technical University of Denmark, 1979; Hon. LL.D., University of Glasgow, Scotland, 1979; Fellow of the American Geophysical Union, 1981; Sverdrup Gold Medal of the American Meteorological Society, 1983; International Coastal Engineering Award of the American Society of Civil Engineers, 1984; Oceanography Award of the Society for Underwater Technology, 1990; Honorary Fellow of the Acoustical Society of America, 2002. Publications: “Uniform polyhedra” (with H.S.M. Coxeter and J.C.P. Miller (1954). Phil. Trans. R. Soc. Lond. A 246, 401-450. “Some Mathematical Toys” (film), (1963). British Association Meeting, Aberdeen, Scotland; “Clifford’s chain and its analogues, in relation to the higher polytopes,” (1972). Proc. R. Soc. Lond. A 330, 443-466. “Inversive properties of the plane n-line, and a symmetric figure of 2x5 points on a quadric,” (1976). J. Lond. Math. Soc. 12, 206-212; Part II (with C.F. Parry) (1979) J. Lond. Math. Soc. 19, 541-560; “Nested triacontahedral shells, or How to grow a quasi-crystal,” (2003) Math. Intelligencer 25, 25-43. Abstract: A remarkable new space-filling, with an unusual symmetry, was recently discovered by John H.
    [Show full text]
  • Graph Theory with Applications
    GRAPH THEORY WITH APPLICATIONS J. A. Bondy and U. S. R. Murty Department of Combina tories and Optimization, University of Waterloo, Ontario, Canada NORfH-HOLLAND New York • Amsterdam • Oxford @J.A. Bondy and U.S.R. Muny 1976 First published in Great Britain 1976 by The Macmillan Press Ltd. First published in the U.S.A. 1976 by Elsevier Science Publishing Co., Inc. 52 Vanderbilt Avenue, New York, N.Y. 10017 Fifth Printing, 1982. Sole Distributor in the U.S.A: Elsevier Science Publishing Co., Inc. Library of Congress Cataloging in Publication Data Bondy, John Adrian. Graph theory with applications. Bibliography: p. lncludes index. 1. Graph theory. 1. Murty, U.S.R., joint author. II. Title. QA166.B67 1979 511 '.5 75-29826 ISBN 0.:444-19451-7 AU rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Printed in the United States of America To our parents Preface This book is intended as an introduction to graph theory. Our aim bas been to present what we consider to be the basic material, together with a wide variety of applications, both to other branches of mathematics and to real-world problems. Included are simple new proofs of theorems of Brooks, Chvâtal, Tutte and Vizing. The applications have been carefully selected, and are treated in some depth. We have chosen to omit ail so-called 'applications' that employ just the language of graphs and no theory. The applications appearing at the end of each chapter actually make use of theory developed earlier in the same chapter.
    [Show full text]
  • Triple Connected Line Domination Number for Some Standard and Special Graphs
    International Journal of Advanced Scientific Research and Management, Volume 3 Issue 8, Aug 2018 www.ijasrm.com ISSN 2455-6378 Triple Connected Line Domination Number For Some Standard And Special Graphs A.Robina Tony1, Dr. A.Punitha Tharani2 1 Research Scholar (Register Number: 12519), Department of Mathematics, St.Mary’s College(Autonomous), Thoothukudi – 628 001, Tamil Nadu, India, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli – 627 012, Tamil Nadu, India 2 Associate Professor, Department of Mathematics, St.Mary’s College(Autonomous), Thoothukudi – 628 001, Tamil Nadu, India, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India Abstract vertex domination, the concept of edge The concept of triple connected graphs with real life domination was introduced by Mitchell and application was introduced by considering the Hedetniemi. A set F of edges in a graph G is existence of a path containing any three vertices of a called an edge dominating set if every edge in E graph G. A subset S of V of a non - trivial graph G is – F is adjacent to at least one edge in F. The said to be a triple connected dominating set, if S is a dominating set and the induced subgraph <S> is edge domination number γ '(G) of G is the triple connected. The minimum cardinality taken minimum cardinality of an edge dominating set over all triple connected dominating set is called the of G. An edge dominating set F of a graph G is triple connected domination number and is denoted a connected edge dominating set if the edge by γtc(G).
    [Show full text]
  • Coloring ($ P 6 $, Diamond, $ K 4 $)-Free Graphs
    Coloring (P6, diamond, K4)-free graphs T. Karthick∗ Suchismita Mishra† June 28, 2021 Abstract We show that every (P6, diamond, K4)-free graph is 6-colorable. Moreover, we give an example of a (P6, diamond, K4)-free graph G with χ(G) = 6. This generalizes some known results in the literature. 1 Introduction We consider simple, finite, and undirected graphs. For notation and terminology not defined here we refer to [22]. Let Pn, Cn, Kn denote the induced path, induced cycle and complete graph on n vertices respectively. If G1 and G2 are two vertex disjoint graphs, then their union G1 ∪ G2 is the graph with V (G1 ∪ G2) = V (G1) ∪ V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2). Similarly, their join G1 + G2 is the graph with V (G1 + G2) = V (G1) ∪ V (G2) and E(G1 + G2) = E(G1) ∪ E(G2)∪{(x,y) | x ∈ V (G1), y ∈ V (G2)}. For any positive integer k, kG denotes the union of k graphs each isomorphic to G. If F is a family of graphs, a graph G is said to be F-free if it contains no induced subgraph isomorphic to any member of F. A clique (independent set) in a graph G is a set of vertices that are pairwise adjacent (non-adjacent) in G. The clique number of G, denoted by ω(G), is the size of a maximum clique in G. A k-coloring of a graph G = (V, E) is a mapping f : V → {1, 2,...,k} such that f(u) 6= f(v) whenever uv ∈ E.
    [Show full text]
  • Distance Labelings of Möbius Ladders
    Distance Labelings of M¨obiusLadders A Major Qualifying Project Report: Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by Anthony Rojas Kyle Diaz Date: March 12th; 2013 Approved: Professor Peter R. Christopher Abstract A distance-two labeling of a graph G is a function f : V (G) ! f0; 1; 2; : : : ; kg such that jf(u) − f(v)j ≥ 1 if d(u; v) = 2 and jf(u) − f(v)j ≥ 2 if d(u; v) = 1 for all u; v 2 V (G). A labeling is optimal if k is the least possible integer such that G admits a k-labeling. The λ2;1 number is the largest integer assigned to some vertex in an optimally labeled network. In this paper, we examine the λ2;1 number for M¨obiusladders, a class of graphs originally defined by Richard Guy and Frank Harary [9]. We completely determine the λ2;1 number for M¨obius ladders of even order, and for a specific class of M¨obiusladders with odd order. A general upper bound for λ2;1(G) is known [6], and for the remaining cases of M¨obiusladders we improve this bound from 18 to 7. We also provide some results for radio labelings and extensions to other labelings of these graphs. Executive Summary A graph is a pair G = (V; E), such that V (G) is the vertex set, and E(G) is the set of edges. For simple graphs (i.e., undirected, loopless, and finite), the concept of a radio labeling was first introduced in 1980 by Hale [8].
    [Show full text]
  • Hypercubes Are Determined by Their Distance Spectra 3
    HYPERCUBES ARE DETERMINED BY THEIR DISTANCE SPECTRA JACK H. KOOLEN♦, SAKANDER HAYAT♠, AND QUAID IQBAL♣ Abstract. We show that the d-cube is determined by the spectrum of its distance matrix. 1. Introduction For undefined terms, see next section. For integers n 2 and d 2, the Ham- ming graph H(d, n) has as vertex set, the d-tuples with elements≥ from≥0, 1, 2,...,n 1 , with two d-tuples are adjacent if and only if they differ only in one{ coordinate.− For} a positive integer d, the d-cube is the graph H(d, 2). In this paper, we show that the d-cube is determined by its distance spectrum, see Theorem 5.4. Observe that the d-cube has exactly three distinct distance eigenvalues. Note that the d-cube is not determined by its adjacency spectrum as the Hoffman graph [11] has the same adjacency spectrum as the 4-cube and hence the cartesian product of (d 4)-cube and the Hoffman graph has the same adjacency spectrum − as the d-cube (for d 4, where the 0-cube is just K1). This also implies that the complement of the d-cube≥ is not determined by its distance spectrum, if d 4. ≥ There are quite a few papers on matrices of graphs with a few distinct eigenvalues. An important case is, when the Seidel matrix of a graph has exactly two distinct eigenvalues is very much studied, see, for example [18]. Van Dam and Haemers [20] characterized the graphs whose Laplacian matrix has two distinct nonzero eigenval- ues.
    [Show full text]
  • Isometric Diamond Subgraphs
    Isometric Diamond Subgraphs David Eppstein Computer Science Department, University of California, Irvine [email protected] Abstract. We test in polynomial time whether a graph embeds in a distance- preserving way into the hexagonal tiling, the three-dimensional diamond struc- ture, or analogous higher-dimensional structures. 1 Introduction Subgraphs of square or hexagonal tilings of the plane form nearly ideal graph draw- ings: their angular resolution is bounded, vertices have uniform spacing, all edges have unit length, and the area is at most quadratic in the number of vertices. For induced sub- graphs of these tilings, one can additionally determine the graph from its vertex set: two vertices are adjacent whenever they are mutual nearest neighbors. Unfortunately, these drawings are hard to find: it is NP-complete to test whether a graph is a subgraph of a square tiling [2], a planar nearest-neighbor graph, or a planar unit distance graph [5], and Eades and Whitesides’ logic engine technique can also be used to show the NP- completeness of determining whether a given graph is a subgraph of the hexagonal tiling or an induced subgraph of the square or hexagonal tilings. With stronger constraints on subgraphs of tilings, however, they are easier to con- struct: one can test efficiently whether a graph embeds isometrically onto the square tiling, or onto an integer grid of fixed or variable dimension [7]. In an isometric em- bedding, the unweighted distance between any two vertices in the graph equals the L1 distance of their placements in the grid. An isometric embedding must be an induced subgraph, but not all induced subgraphs are isometric.
    [Show full text]
  • Enumeration of Unlabeled Graph Classes a Study of Tree Decompositions and Related Approaches
    Enumeration of unlabeled graph classes A study of tree decompositions and related approaches Jessica Shi Advisor: Jérémie Lumbroso Independent Work Report Fall, 2015 Abstract In this paper, we study the enumeration of certain classes of graphs that can be fully charac- terized by tree decompositions; these classes are particularly significant due to the algorithmic improvements derived from tree decompositions on classically NP-complete problems on these classes [12, 7, 17, 35]. Previously, Chauve et al. [6] and Iriza [26] constructed grammars from the split decomposition trees of distance hereditary graphs and 3-leaf power graphs. We extend upon these results to obtain an upper bound grammar for parity graphs. Also, Nakano et al. [25] used the vertex incremental characterization of distance hereditary graphs to obtain upper bounds. We constructively enumerate (6;2)-chordal bipartite graphs, (C5, bull, gem, co-gem)-free graphs, and parity graphs using their vertex incremental characterization and extend upon Nakano et al.’s results to analytically obtain upper bounds of O7n and O11n for (6;2)-chordal bipartite graphs and (C5, bull, gem, co-gem)-free graphs respectively. 1. Introduction 1.1. Context The technique of decomposing graphs into trees has been an object of significant interest due to its applications on classical problems in graph theory. Indeed, many graph theoretic problems are inherently difficult due to the lack of recursive structure in graphs, and recursion has historically offered efficient solutions to challenging problems. In this sense, classifying graphs in terms of trees is of particular interest, since it associates a recursive structure to these graphs.
    [Show full text]
  • ABC Index on Subdivision Graphs and Line Graphs
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728 p-ISSN: 2319–765X PP 01-06 www.iosrjournals.org ABC index on subdivision graphs and line graphs A. R. Bindusree1, V. Lokesha2 and P. S. Ranjini3 1Department of Management Studies, Sree Narayana Gurukulam College of Engineering, Kolenchery, Ernakulam-682 311, Kerala, India 2PG Department of Mathematics, VSK University, Bellary, Karnataka, India-583104 3Department of Mathematics, Don Bosco Institute of Technology, Bangalore-61, India, Recently introduced Atom-bond connectivity index (ABC Index) is defined as d d 2 ABC(G) = i j , where and are the degrees of vertices and respectively. In this di d j vi v j di .d j paper we present the ABC index of subdivision graphs of some connected graphs.We also provide the ABC index of the line graphs of some subdivision graphs. AMS Subject Classification 2000: 5C 20 Keywords: Atom-bond connectivity(ABC) index, Subdivision graph, Line graph, Helm graph, Ladder graph, Lollipop graph. 1 Introduction and Terminologies Topological indices have a prominent place in Chemistry, Pharmacology etc.[9] The recently introduced Atom-bond connectivity (ABC) index has been applied up until now to study the stability of alkanes and the strain energy of cycloalkanes. Furtula et al. (2009) [4] obtained extremal ABC values for chemical trees, and also, it has been shown that the star K1,n1 , has the maximal ABC value of trees. In 2010, Kinkar Ch Das present the lower and upper bounds on ABC index of graphs and trees, and characterize graphs for which these bounds are best possible[1].
    [Show full text]
  • OPTIMAL SOLUTIONS and RANKS in the MAX-CUT SDP Daniel
    COVER PAGE: OPTIMAL SOLUTIONS AND RANKS IN THE MAX-CUT SDP Daniel Hong, Skyline High School, Sammamish, WA, USA Hyunwoo Lee, Interlake High School, Bellevue, WA, USA Alex Wei, Interlake High School, Bellevue, WA, USA Instructor: Diego Cifuentes, Massachusetts Institute of Technology, Cam- bridge, MA, USA 1 OPTIMAL SOLUTIONS AND RANKS IN THE MAX-CUT SDP DANIEL HONG, HYUNWOO LEE, AND ALEX WEI Abstract. The max-cut problem is a classical graph theory problem which is NP-complete. The best polynomial time approximation scheme relies on semidefinite programming (SDP). We study the conditions under which graphs of certain classes have rank 1 solutions to the max-cut SDP. We apply these findings to look at how solutions to the max-cut SDP behave under simple combinatorial constructions. Our results determine when solutions to the max-cut SDP for cycle graphs is rank 1. We find the solutions to the max-cut SDP of the vertex sum of two graphs. We then characterize the SDP solutions upon joining two triangle graphs by an edge sum. Keywords: Max-cut, Semidefinite program, Rank, Cycle graphs, Ver- tex sum, Edge sum Contents 1. Introduction 2 Related work 3 Structure 3 2. Background 4 2.1. Semidefinite programs 4 2.2. Max-cut SDP 4 2.3. Clique sums of graphs 6 3. Experiments on rank of max-cut SDP 6 4. Solutions and Ranks for Particular Classes of Graphs 7 4.1. Rank 1 solutions for cycles 7 4.2. Max-cut SDP for a vertex sum 8 4.3. Max-cut SDP for a diamond graph 9 5.
    [Show full text]
  • Math.RA] 25 Sep 2013 Previous Paper [3], Also Relying in Conceptually Separated Tools from Them, Such As Graphs and Digraphs
    Certain particular families of graphicable algebras Juan Núñez, María Luisa Rodríguez-Arévalo and María Trinidad Villar Dpto. Geometría y Topología. Facultad de Matemáticas. Universidad de Sevilla. Apdo. 1160. 41080-Sevilla, Spain. [email protected] [email protected] [email protected] Abstract In this paper, we introduce some particular families of graphicable algebras obtained by following a relatively new line of research, ini- tiated previously by some of the authors. It consists of the use of certain objects of Discrete Mathematics, mainly graphs and digraphs, to facilitate the study of graphicable algebras, which are a subset of evolution algebras. 2010 Mathematics Subject Classification: 17D99; 05C20; 05C50. Keywords: Graphicable algebras; evolution algebras; graphs. Introduction The main goal of this paper is to advance in the research of a novel mathematical topic emerged not long ago, the evolution algebras in general, and the graphicable algebras (a subset of them) in particular, in order to obtain new results starting from those by Tian (see [4, 5]) and others already obtained by some of us in a arXiv:1309.6469v1 [math.RA] 25 Sep 2013 previous paper [3], also relying in conceptually separated tools from them, such as graphs and digraphs. Concretely, our goal is to find some particular types of graphicable algebras associated with well-known types of graphs. The motivation to deal with evolution algebras in general and graphicable al- gebras in particular is due to the fact that at present, the study of these algebras is very booming, due to the numerous connections between them and many other branches of Mathematics, such as Graph Theory, Group Theory, Markov pro- cesses, dynamic systems and the Theory of Knots, among others.
    [Show full text]