Genetic and Environmental Modifiers of Somatic Trinucleotide Repeat Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Genetic and Environmental Modifiers of Somatic Trinucleotide Repeat Dynamics University of Glasgow Institute of Biomedical and Life Sciences Division of Molecular Genetics Genetic and Environmental Modifiers of Somatic Trinucleotide Repeat Dynamics Mario Gomes-Pereira Thesis submitted for the degree of Doctor of Philosophy June 2002 ProQuest Number: 13833915 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13833915 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW UNIVERSITY lUBRARY: Abstract The expansion of CAG'CTG trinucleotide repeat sequences has been identified as the genetic cause of several human diseases, including myotonic dystrophy type 1, Huntington disease, and an ever-increasing number of spinocerebellar ataxias. Once above a size threshold, the repeats become dramatically unstable in the germline and also throughout the soma, with a marked bias towards further expansion. Such expansions constitute a unique form of dynamic mutation, whose mechanism is poorly understood. While germline instability serves as the molecular basis for genetic anticipation; age-dependent, tissue-specific somatic instability most likely contributes to the tissue specificity, phenotypic variability and progressive nature of these conditions. The study of the mutation mechanism is therefore of major interest, as it may provide valuable clues towards a better understanding of disease pathophysiology. It is generally assumed that the repeat length changes arise through DNA polymerase slippage during DNA replication, however no direct evidence exists to support this hypothesis in mammalian systems. Transgenic mouse models of unstable CAG'CTG repeats have been previously generated, and shown to recreate the dynamic nature of somatic mosaicism observed in humans. Tissues from these mice have now been used in order to establish an in vitro cell culture system, where the repeat dynamics could be investigated under controlled conditions. Monitoring of repeat stability in these cells over long periods of time, and numerous population doublings, has revealed the progressive accumulation of larger alleles, as a result of repeat length changes in vitro, confirmed by single cell cloning. Selection of cells carrying longer repeats was observed during the first few passages of the cultures, and frequent additional selective sweeps were also detected at later stages. The highest levels of instability were observed in cultured kidney cells, whilst the transgene remained relatively stable in eye cells and very stable in lung cells, paralleling previous in vivo observations. More importantly, the levels of repeat instability in cultured cells did not correlate with cell proliferation rates, rejecting a simple association between length change mutations and cell division, and suggesting an important role for additional cell type-specific and possibly environmental trans-acting modifiers of repeat metabolism. The effects of multiple genotoxic agents on the mutational dynamics of expanded trinucleotide repeats were assessed in this tissue culture model of unstable DNA. The drugs tested were selected based on their ability to affect cell cycle progression, DNA polymerase activity, DNA methylation, intracellular levels of oxidative stress or DNA conformational metabolism. The analysis led to the identification of chemicals, such as aspirin, 5-azacytidine and 1-B-D- arabinofuranosyl-cytosine that resulted in the deceleration of the rate of trinucleotide repeat expansion, particularly in a kidney clonal cell line carrying rapidly expanding repetitive tracts. These observations were reported in the absence of major changes in the rates of cell turnover. In contrast, forced cell cycle progression by exposure to caffeine resulted in a significantly higher rate of triplet repeat expansion. Increased levels of oxidative stress, generated in culture by exposure to 2 a variety of drugs, were associated with reduced levels of repeat size variability, most likely through means of cell selection in culture. Since pathology in CAG#CTG-associated diseases is mediated by a variety of complex and unrelated molecular pathways, drug induced modification of DNA dynamics could present a possible therapeutical route for these disorders. Specifically, chemical treatments that resulted in suppression of somatic repeat expansion would be expected to be beneficial, whilst reversion of the expanded mutant repeat to the normal repeat size range, observed in the general population, would be predicted to be curative. Although preliminary, the findings described in this study may open new avenues in the search for novel therapeutical strategies. Mechanistic models of repeat length mutation based on DNA replication, recombination and repair have been proposed. The latter have implied the involvement of mammalian M utS homologues ( M sh2 , Msh3 and M sh 6 ). In order to gain further insight into the molecular mechanisms driving trinucleotide repeat mutation, the involvement of a mammalian M utL homologue ( Pms2) in the mutation dynamics was investigated. No significant differences were observed between Pms2+I+ and P m s2+I' mice, suggesting that a single functional Pm s2 allele is sufficient to maintain high levels of somatic mosaicism. The levels of Pms2 mRNA and protein in heterozygotes deficient for Pms2 have not yet been investigated. In contrast to what would be predicted by the replication slippage model, lower levels of trinucleotide somatic mosaicism were detected in homozygous Pms2-nu\l mice, compared with age-matched controls, carrying either one or two functional copies of the Pm s2 allele. In addition, a higher frequency of rare but large deletion events was detected in Pms2'1' animals. Both results proved statistically significant by single molecule analysis. These findings imply that, not only MMR enzymes that directly bind to DNA, but also proteins that are subsequently recruited by MutS proteins, play a central role in the accumulation of repeat length changes, arguing against a mutation mechanism mediated by stabilisation of alternative DNA secondary structures by MMR proteins. MMR gene polymorphisms and variants might therefore be considered potential determinants of trinucleotide repeat instability in humans, predicted to affect both age of onset and disease progression. 3 Let us learn to dream.... then perhaps we shall find the truth. Friedrich August Kekule Tambem eu, tambem eu, joguei as escondidas, fiz baloiqos, tive bolas, berlindes, papagaios, automdveis de cor da, cavalinhos... Depois cresci, tornei-me do tamanho que hoje tenho, os brinquedos perdi-os, os meus bibes deixaram de servir-me. Mas nem tudo sefoi: ficou-me, dos tempos de menino, esta alegria ingenua perante as coisas novas e esta vontade de brincar. Vida! nao me venhas roubar o meu tesouro: nao te importes que eu ria, que eu salte como dantes. E se eu riscar os muros ou quebrar algum vidro ralha, ralha comigo, mas de manso... Eu tinha um bibe azul... Tinha berlindes, tinha bolas, cavalos, papagaios... A minha Mae ralhava assim como quern beija... E quantas vezes eu, so pra ouvi-la ralhar, parti os vidros da janela e desenhei bonecos naparede... Vida!, ralha tambem, ralha, se eu tefizer maldades, mas de manso, como se fosse ainda a minha Mae... Sebastiao da Gama 4 Table of contents Abstract ..............................................................................................................................................................2 Table of contents................................................................................................................................................5 List of tables .................................................................................................................................................... 10 List of figures ................................................................................................................................................... 11 Acknowledgements ..........................................................................................................................................14 List of Abbreviations .......................................................................................................................................18 1. Introduction .............................................................................................................................................. 21 1.1. Trinucleotide repeats and human disease........................................................................................... 21 1.2. Molecular pathogenesis......................................................................................................................24 1.2.1. Polyglutamine diseases ........................................................................................................... 24 1.2.1.1. Toxicity of polyglutamine tracts ................................................................................ 25 1.2.1.2. Poly glutamine protein intranuclear inclusions ...........................................................26
Recommended publications
  • An Alu Element-Based Model of Human Genome Instability George Wyndham Cook, Jr
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2013 An Alu element-based model of human genome instability George Wyndham Cook, Jr. Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Cook, Jr., George Wyndham, "An Alu element-based model of human genome instability" (2013). LSU Doctoral Dissertations. 2090. https://digitalcommons.lsu.edu/gradschool_dissertations/2090 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. AN ALU ELEMENT-BASED MODEL OF HUMAN GENOME INSTABILITY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by George Wyndham Cook, Jr. B.S., University of Arkansas, 1975 May 2013 TABLE OF CONTENTS LIST OF TABLES ...................................................................................................... iii LIST OF FIGURES .................................................................................................... iv LIST OF ABBREVIATIONS ......................................................................................
    [Show full text]
  • Retrotransposon Long Interspersed Nucleotide Element1 (LINE1) Is
    The Japanese Society of Developmental Biologists Develop. Growth Differ. (2012) 54, 673–685 doi: 10.1111/j.1440-169X.2012.01368.x Original Article Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration Wei Zhu,1 Dwight Kuo,2 Jason Nathanson,3 Akira Satoh,4,5 Gerald M. Pao,1 Gene W. Yeo,3 Susan V. Bryant,5 S. Randal Voss,6 David M. Gardiner5*and Tony Hunter1* 1Molecular and Cell Biology Laboratory and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, Departments of 2Bioengineering and 3Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA; 4Okayama University, R.C.I.S. Okayama-city, Okayama, 700-8530, Japan; 5Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California 92697, and 6Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40506, USA Salamanders possess an extraordinary capacity for tissue and organ regeneration when compared to mam- mals. In our effort to characterize the unique transcriptional fingerprint emerging during the early phase of sala- mander limb regeneration, we identified transcriptional activation of some germline-specific genes within the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells into a germline-like state. In this work, we focus on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon, which is usually active in germ cells and silent in most of the somatic tissues in other organisms. LINE-1 was found to be dramatically upregulated during regeneration.
    [Show full text]
  • Effects of Activation of the LINE-1 Antisense Promoter on the Growth of Cultured Cells
    www.nature.com/scientificreports OPEN Efects of activation of the LINE‑1 antisense promoter on the growth of cultured cells Tomoyuki Honda1*, Yuki Nishikawa1, Kensuke Nishimura1, Da Teng1, Keiko Takemoto2 & Keiji Ueda1 Long interspersed element 1 (LINE‑1, or L1) is a retrotransposon that constitutes ~ 17% of the human genome. Although ~ 6000 full‑length L1s spread throughout the human genome, their biological signifcance remains undetermined. The L1 5′ untranslated region has bidirectional promoter activity with a sense promoter driving L1 mRNA production and an antisense promoter (ASP) driving the production of L1‑gene chimeric RNAs. Here, we stimulated L1 ASP activity using CRISPR‑Cas9 technology to evaluate its biological impacts. Activation of the L1 ASP upregulated the expression of L1 ASP‑driven ORF0 and enhanced cell growth. Furthermore, the exogenous expression of ORF0 also enhanced cell growth. These results indicate that activation of L1 ASP activity fuels cell growth at least through ORF0 expression. To our knowledge, this is the frst report demonstrating the role of the L1 ASP in a biological context. Considering that L1 sequences are desilenced in various tumor cells, our results indicate that activation of the L1 ASP may be a cause of tumor growth; therefore, interfering with L1 ASP activity may be a potential strategy to suppress the growth. Te human genome contains many transposable element-derived sequences, such as endogenous retroviruses and long interspersed element 1 (LINE-1, or L1). L1 is one of the major classes of retrotransposons, and it constitutes ~ 17% of the human genome1. Full-length L1 consists of a 5′ untranslated region (UTR), two open reading frames (ORFs) that encode the proteins ORF1p and ORF2p, and a 3′ UTR with a polyadenylation signal.
    [Show full text]
  • Adaptive Tuning of Mutation Rates Allows Fast Response to Lethal Stress In
    Manuscript 1 Adaptive tuning of mutation rates allows fast response to lethal stress in 2 Escherichia coli 3 4 a a a a a,b 5 Toon Swings , Bram Van den Bergh , Sander Wuyts , Eline Oeyen , Karin Voordeckers , Kevin J. a,b a,c a a,* 6 Verstrepen , Maarten Fauvart , Natalie Verstraeten , Jan Michiels 7 8 a 9 Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Kasteelpark Arenberg 20, 10 3001 Leuven, Belgium b 11 VIB Laboratory for Genetics and Genomics, Vlaams Instituut voor Biotechnologie (VIB) Bioincubator 12 Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium c 13 Smart Systems and Emerging Technologies Unit, imec, Kapeldreef 75, 3001 Leuven, Belgium * 14 To whom correspondence should be addressed: Jan Michiels, Department of Microbial and 2 15 Molecular Systems (M S), Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, box 16 2460, 3001 Leuven, Belgium, [email protected], Tel: +32 16 32 96 84 1 Manuscript 17 Abstract 18 19 While specific mutations allow organisms to adapt to stressful environments, most changes in an 20 organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often 21 considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in 22 cellular mutation rates as a response to changes in selective pressure. We show that hypermutation 23 independently evolves when different Escherichia coli cultures adapt to high ethanol stress. 24 Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation 25 rate. Specifically, population mutation rates rise when cells experience higher stress and decline again 26 once cells are adapted.
    [Show full text]
  • Whole-Genome Sequencing Reveals Principles of Brain Retrotransposition in Neurodevelopmental Disorders
    Cell Research (2018) 28:187-203. © 2018 IBCB, SIBS, CAS All rights reserved 1001-0602/18 $ 32.00 ORIGINAL ARTICLE www.nature.com/cr Whole-genome sequencing reveals principles of brain retrotransposition in neurodevelopmental disorders Jasmine Jacob-Hirsch1, 2, Eran Eyal1, Binyamin A Knisbacher2, Jonathan Roth3, 5, Karen Cesarkas1, Chen Dor1, Sarit Farage-Barhom1, Vered Kunik1, Amos J Simon1, Moran Gal2, Michal Yalon4, Sharon Moshitch-Moshkovitz1, Rick Tearle6, Shlomi Constantini3, 5, Erez Y Levanon2, Ninette Amariglio1, 2, Gideon Rechavi1, 5 1Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Is- rael; 2Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel; 3Department of Pediatric Neurosurgery, Dana Children’s Hospital, Tel Aviv Medical Center, Israel; 4Department of Pediatric Hematology-Oncology, Edmond and Lily Sa- fra Children’s Hospital, The Chaim Sheba Medical Center, Tel Hashomer, Israel; 5Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 6Complete Genomics, 2071 Stierlin Court, Mountain View, CA 94043, USA Neural progenitor cells undergo somatic retrotransposition events, mainly involving L1 elements, which can be potentially deleterious. Here, we analyze the whole genomes of 20 brain samples and 80 non-brain samples, and char- acterized the retrotransposition landscape of patients affected by a variety of neurodevelopmental disorders including Rett syndrome, tuberous sclerosis, ataxia-telangiectasia and autism. We report that the number of retrotranspositions in brain tissues is higher than that observed in non-brain samples and even higher in pathologic vs normal brains. The majority of somatic brain retrotransposons integrate into pre-existing repetitive elements, preferentially A/T rich L1 sequences, resulting in nested insertions.
    [Show full text]
  • Demonstration of Potential Link Between Helicobacter Pylori Related Promoter Cpg Island Methylation and Telomere Shortening in Human Gastric Mucosa
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 28 Research Paper Demonstration of potential link between Helicobacter pylori related promoter CpG island methylation and telomere shortening in human gastric mucosa Tomomitsu Tahara1, Tomoyuki Shibata1, Masaaki Okubo1, Tomohiko Kawamura1, Noriyuki Horiguchi1, Takamitsu Ishizuka1, Naoko Nakano1, Mitsuo Nagasaka1, Yoshihito Nakagawa1, Naoki Ohmiya1 1Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan Correspondence to: Tomomitsu Tahara, email: [email protected] Keywords: DNA methylation, telomere length, gastric mucosa, H. pylori, gastritis Received: October 24, 2015 Accepted: May 02, 2016 Published: June 01, 2016 ABSTRACT Background: Telomere length shortening in Helicobacter pylori (H. pylori) infected gastric mucosa constitutes the earliest steps toward neoplastic transformation. In addition to this genotoxic changes, epigenetic changes such as promoter CpG island (PCGI) methylation are frequently occurred in H. pylori infected gastric mucosa. The aim of this study was to investigate a potential link between H. pylori related PCGI methylation and telomere length shortening in the human gastric mucosa. Methods: Telomere length was measured in non-neoplastic gastric mucosa from 106 cancer-free subjects. To identify H. pylori related PCGI methylation, bisulfite pyrosequencing was used to quantify the methylation of 49 PCGIs from 47 genes and LINE1 repetitive element Results: We identified five PCGIs (IGF2, SLC16A12, SOX11, P2RX7 and MYOD1), which the methylation is closely associated with H. pylori infection. Hypermethylation of all these PCGIs was associated with development of pathological state from normal to mild, active, and atrophic gastritis (P<0.001) and lower pepsinogen I/ II ratio (P<0.05), an indicator for gastric mucosal atrophy.
    [Show full text]
  • The Abundance of Processed Pseudogenes Derived from Glycolytic Genes Is Correlated with Their Expression Level
    147 The abundance of processed pseudogenes derived from glycolytic genes is correlated with their expression level Laura McDonell and Guy Drouin Abstract: The abundance of processed pseudogenes in different vertebrate species is known to be proportional to the length of their oogenesis. However, this hypothesis cannot explain why, in a given species, certain genes produce more processed pseudogenes than others. In particular, one would expect that all genes of the glycolytic pathway would generate roughly the same number of processed pseudogenes. However, some glycolitic genes generate more processed pseudogenes than others. Here, we show that there is a positive correlation between the abundance of processed pseudogene generated from glycolytic genes and their level of expression. The variation in expression level of different glycolytic genes likely reflects the fact that some of them, such a GAPDH , have functions other than those they play in glycolysis. Furthermore, the age distribution of GAPDH -processed pseudogenes corresponds to the age distribution of LINE1 elements, which are the source of the reverse transcriptase that generates processed pseudogenes. These results support the hypothesis that gene expression levels affect the level of processed pseudogene production. Key words: glycolytic genes, GAPDH, processed pseudogenes, transcription, gene expression. Résumé : L’abondance des pseudogènes remaniés dans différentes espèces vertébrées est proportionnelle à la durée de l ’o- vogenèse chez ces espèces. Cependant, cette hypothèse ne peut expliquer pourquoi, dans une espèce donnée, certains gènes produisent plus de pseudogènes remaniés que d ’autres. En particulier, on pourrait s ’attendre à ce que tous les gènes de la voie glycolytique généreraient des nombres similaires de pseudogènes remaniés.
    [Show full text]
  • LINE1 Inhibition (With Nucleoside Reverse Transcriptase Inhibitors)
    Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in- development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models. LINE1 inhibition (with nucleoside reverse transcriptase inhibitors) Evidence Summary L1 activation may be associated with age-related diseases, and nucleoside reverse transcriptase inhibitors (NRTIs) suppress L1 activation and may be beneficial in age-related diseases. Neuroprotective Benefit: Increased retrotransposition of transposable elements is implicated in neurodegenerative diseases, so NRTIs could theoretically reverse these actions, but only preclinical evidence exists to date. Aging and related health concerns: Preclinical studies suggest that NRTIs may be an effective anti-aging therapy, and clinical studies suggest they may be effective for cancer. Safety: NRTIs are associated with some mild side effects and rare severe, possibly life- threatening, side effects. 1 Availability: Available with Dose: Depends on the Molecular Formula: N/A prescription (as generics) NRTI Molecular weight: N/A Half-life: Depends on the BBB: Possibly penetrant NRTI in animal models Clinical trials: Many for HIV, Observational studies: one for ALS Many What is it? Retrotransposons are stretches of DNA that can replicate and reinsert into other parts of the genome. Their presence in the DNA comes from retroviral infection of germline cells throughout evolutionary history.
    [Show full text]
  • Repetitive Elements in Humans
    International Journal of Molecular Sciences Review Repetitive Elements in Humans Thomas Liehr Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, D-07747 Jena, Germany; [email protected] Abstract: Repetitive DNA in humans is still widely considered to be meaningless, and variations within this part of the genome are generally considered to be harmless to the carrier. In contrast, for euchromatic variation, one becomes more careful in classifying inter-individual differences as meaningless and rather tends to see them as possible influencers of the so-called ‘genetic background’, being able to at least potentially influence disease susceptibilities. Here, the known ‘bad boys’ among repetitive DNAs are reviewed. Variable numbers of tandem repeats (VNTRs = micro- and minisatellites), small-scale repetitive elements (SSREs) and even chromosomal heteromorphisms (CHs) may therefore have direct or indirect influences on human diseases and susceptibilities. Summarizing this specific aspect here for the first time should contribute to stimulating more research on human repetitive DNA. It should also become clear that these kinds of studies must be done at all available levels of resolution, i.e., from the base pair to chromosomal level and, importantly, the epigenetic level, as well. Keywords: variable numbers of tandem repeats (VNTRs); microsatellites; minisatellites; small-scale repetitive elements (SSREs); chromosomal heteromorphisms (CHs); higher-order repeat (HOR); retroviral DNA 1. Introduction Citation: Liehr, T. Repetitive In humans, like in other higher species, the genome of one individual never looks 100% Elements in Humans. Int. J. Mol. Sci. alike to another one [1], even among those of the same gender or between monozygotic 2021, 22, 2072.
    [Show full text]
  • Dynamic Mutations on the Move
    9789 Mled Genet 1993; 30: 978-981 REVIEW ARTICLE J Med Genet: first published as 10.1136/jmg.30.12.978 on 1 December 1993. Downloaded from Dynamic mutations on the move Grant R Sutherland, Robert I Richards It is only a short time since the isolation and quences is rapidly increasing (table). These characterisation of the fragile X syndrome mu- include another fragile site (FRAXE) that may tation'-3 uncovered a new genetic element and be associated with mild mental retardation.'2 mechanism of mutation. The genetic element This fragile site has turned out to be similar in was an unstable DNA sequence resulting from structure to the fragile X (FRAXA), involving amplification of a naturally occurring poly- the same trinucleotide p(CCG)n and being morphic trinucleotide repeat, p(CCG)n. The close to a CpG island which is hypermethy- mechanism of mutation, which we have lated when the copy number exceeds approx- termed dynamic mutation,4 is the change (in- imately 200.* crease or decrease) in copy number of the The dynamic mutations characterised to trinucleotide repeat with the rate of change date fall into two categories probably deter- related to the number of copies present at any mined by whether the trinucleotide repeat is in time. This process, in which an initial change a translated or untranslated region of a gene. to a DNA sequence alters the chance of further The mutations in known or presumed changes to it, contrasts with classical or static untranslated regions, FRAXA, FRAXE, and mutation in which the product of a mutation is DM, appear to have little constraint on the no more likely to undergo further changes than number of repeats, which can range up to was the initial DNA sequence.
    [Show full text]
  • General Contribution
    24 Abstracts of 37th Annual Meeting A1 A SCREENING METHOD FOR FRAGILE X MUTATION: DETECTION OF THE CGG REPEAT IN FMR-1 GENE BY PCR WITH BIOTIN-LABELED PRIMER. ..Eiji NANBA, Kousaku OHNO and Kenzo TAKESHITA Division of Child Neurology, Institute of Neurological Sciences, Tot- tori University School of Medicine. Yonago We have developed a new polymerase chain reaction(PCR)-based method for detection of the CGG repeat in FMR-1 gene. No specific product from PCR was detected on the gel with ethidium bromide staining, because 7-deaza-2'-dGTP is necessary for amplification of this repeat. Biotin-labeled primer was used for PCR and the product was transferred to a nylon membrane followed the detection of biotin by Smilight kit. The size of PCR product from normal control were slightly various and around 300bp. No PCR product was detected from 3 fragile X male patients in 2 families diagnosed by cytogenetic examination. This method is useful for genetic screen- ing of male mental retardation patients to exclude the fragile X mutation. A2 DNA ANALYSISFOR FRAGILE X SYNDROME Osamu KOSUDA,Utak00GASA, ~.ideynki INH, a~ji K/NAGIJCltI, and Kazumasa ]tIKIJI (SILL Inc., Tokyo) Fragile X syndrome is X-linked disease having the amplification of (CG6)n repeat sequence in the chromsomeXq27.3. We performed Southern blot analysis using three probes recognized repetitive sequence resion. Normal controle showed 5.2Kb with Eco RI digest and 2.7Kb with Eco RI/Bss ttII digest as the germ tines by the Southern blot analysis. However, three cell lines established fro~ unrelated the patients with fragile X showed the abnormal bands between 5.2 and 7.7Kb with Eco RI digest, and between 2.7 and 7.7Kb with Eco aI/Bss HII digest.
    [Show full text]
  • Cytokines Modulate Telomerase Activity in a Human Multiple Myeloma Cell Line1
    [CANCER RESEARCH 62, 3876–3882, July 1, 2002] Cytokines Modulate Telomerase Activity in a Human Multiple Myeloma Cell Line1 Masaharu Akiyama, Teru Hideshima, Toshiaki Hayashi, Yu-Tzu Tai, Constantine S. Mitsiades, Nicholas Mitsiades, Dharminder Chauhan, Paul Richardson, Nikhil C. Munshi, and Kenneth C. Anderson2 Jerome Lipper Multiple Myeloma Center, Department of Adult Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115 ABSTRACT against fusion and degradation of linear chromosomes (19). More- over, telomeres regulate mitosis through a checkpoint mechanism Telomerase is a ribonucleoprotein DNA polymerase that elongates the because a critical shortening of telomeres leads to cessation of irre- telomeres of chromosomes to compensate for losses that occur with each versible cell division (senescence; Ref. 20). Telomerase is a ribonu- round of DNA replication and maintain chromosomal stability. Interleu- kin 6 (IL-6) and insulin-like growth factor 1 (IGF-1) are proliferative and cleoprotein DNA polymerase that elongates the telomeres of chromo- survival factors for human multiple myeloma (MM) cells. To date, how- somes to compensate for losses that occur with each round of DNA ever, the effects of IGF-1 and IL-6 on telomerase activity and associated replication (21). Therefore, unlimited proliferation in tumor cells sequelae in MM cells have not been characterized. In this study, we requires this enzyme to maintain chromosomal stability and to coun- evaluated the effects of IGF-1 and IL-6 on telomerase activity in MM cell teract the cellular mitotic clock. Conversely, inhibition of telomerase lines (MM.1S, U266, and RPMI 8226), as well as patient MM cells.
    [Show full text]