Teichmüller Theory and Dynamical Systems

Total Page:16

File Type:pdf, Size:1020Kb

Teichmüller Theory and Dynamical Systems Teichm¨ullertheory and dynamical systems Jeremy Kahn Fall 2013{Spring 2014 May 17, 2013 The intention of this year-long seminar course is to cover four subjects: an introduction to rational maps and Kleinian groups, an introduction to Teichm¨ullertheory and the Teichm¨ullermetric, the \classical" applications of Teichm¨ullertheory to rational maps and Kleinian groups, and my own work, in part with Mikhail Lyubich, on the asymptotic theory of moduli and its applications to conformal dynamical systems. Prerequisites are the first year courses in real and complex analysis, or the equivalent. Not everything listed in the course description will necessarily be covered. Kleinian groups and rational maps A rational map is a holomorphic map from the Riemann sphere to itself; a Kleinian group is a discrete group of holomorphic automorphisms of the Rie- mann sphere. Both of these might be called conformal dynamical systems. In this first part we will define the Julia set of a rational map[Mil06] and the limit set of a Kleinian group, and then describe the dynamics on the com- plementary components of the rational map/limit set. We will introduce the Sullivan dictionary between rational maps and Kleinian groups, and describe a number of classical results and problems, such as the Ending Lamination Conjecture[Min10, BCM12] and the Local Connectivity of the Mandelbrot Set. 1 Teichm¨ullerTheory The Teichm¨ullerspace of a Riemann surface is the space of all deformations of the complex structure, with a topological marking that insures that the Teichm¨ullerspace is simply connected. We will define a quasiconformal map and use this to define the Teichmuller metric on Teichmuller space[Ahl06, Gar87, Hub06]. We will then introduce the Bers embedding and the theory of extremal length and use these to prove the Teichm¨ullerexistence and uniqueness theorem, which describes the geodesics in Teichm¨ullerspace. We will also describe how the integrable holomorphic quadratic differentials serve as the cotangent space to Teichmuller space. Teichm¨ullerTheory and conformal dynamical systems We will describe the great classical applications of Teichm¨ullertheory to the theory of rational maps and Kleinian groups: 1. The Ahlfors Finiteness Theorem and Sullivan's No Wandering Domains[Sul85] 2. The Classification of Postcritically Finite Rational Maps[DH93] 3. The Classification of elements of the Mapping Class Group 4. The deformation theory for geometrically finite rational maps and Kleinian groups (including Mostow rigidity)[MS98] 5. The Theta conjecture and the contraction of the skinning map[McM89, McM90]. The theory of degenerate complex structures We will introduce the problem of the asymptotic theory of moduli, where we ask how ratios of moduli of path families behave as the moduli go to infinity. We show in many cases how this can be answered with the theory of degenerate complex structures, and how this answer can be applied to prove classical conjectures about rational maps. We begin with two simple compactifications of universal Teichm¨uller space, one with laminations and one with measured laminations. We describe how the second one leads to Thurston's compactification of the Teichm¨uller space of a surface with the space of projective measured laminations. Then 2 we introduce the theory of modular laminations and use it to prove the Cov- ering Lemma and the Quasi-Additivity Law[KL09a]. We will then describe how these theorems relate to the progress made toward the bounds for renor- malization and the Local Connectivity of the Mandelbrot set[KL09b, KL08]. References [Ahl06] Lars V. Ahlfors. Lectures on quasiconformal mappings, volume 38 of University Lecture Series. American Mathematical Society, Providence, RI, second edition, 2006. With supplemental chap- ters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. [BCM12] Jeffrey F. Brock, Richard D. Canary, and Yair N. Minsky. The classification of Kleinian surface groups, II: The ending lamination conjecture. Ann. of Math. (2), 176(1):1{149, 2012. [DH93] Adrien Douady and John H. Hubbard. A proof of Thurston's topological characterization of rational functions. Acta Math., 171(2):263{297, 1993. [Gar87] Frederick P. Gardiner. Teichm¨uller theory and quadratic differen- tials. Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York, 1987. A Wiley-Interscience Publication. [Hub06] John Hamal Hubbard. Teichm¨uller theory and applications to ge- ometry, topology, and dynamics. Vol. 1. Matrix Editions, Ithaca, NY, 2006. Teichm¨ullertheory, With contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra, With fore- words by William Thurston and Clifford Earle. [KL08] Jeremy Kahn and Mikhail Lyubich. A priori bounds for some infinitely renormalizable quadratics. II. Decorations. Ann. Sci. Ec.´ Norm. Sup´er.(4), 41(1):57{84, 2008. [KL09a] Jeremy Kahn and Mikahil Lyubich. The quasi-additivity law in conformal geometry. Ann. of Math. (2), 169(2):561{593, 2009. 3 [KL09b] Jeremy Kahn and Mikhail Lyubich. Local connectivity of Julia sets for unicritical polynomials. Ann. of Math. (2), 170(1):413{ 426, 2009. [McM89] Curt McMullen. Amenability, Poincar´eseries and quasiconformal maps. Invent. Math., 97(1):95{127, 1989. [McM90] C. McMullen. Iteration on Teichm¨ullerspace. Invent. Math., 99(2):425{454, 1990. [Mil06] John Milnor. Dynamics in one complex variable, volume 160 of An- nals of Mathematics Studies. Princeton University Press, Prince- ton, NJ, third edition, 2006. [Min10] Yair Minsky. The classification of Kleinian surface groups. I. Mod- els and bounds. Ann. of Math. (2), 171(1):1{107, 2010. [MS98] Curtis T. McMullen and Dennis P. Sullivan. Quasiconformal home- omorphisms and dynamics. III. The Teichm¨ullerspace of a holo- morphic dynamical system. Adv. Math., 135(2):351{395, 1998. [Sul85] Dennis Sullivan. Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains. Ann. of Math. (2), 122(3):401{418, 1985. 4.
Recommended publications
  • Commentary on the Kervaire–Milnor Correspondence 1958–1961
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 603–609 http://dx.doi.org/10.1090/bull/1508 Article electronically published on July 1, 2015 COMMENTARY ON THE KERVAIRE–MILNOR CORRESPONDENCE 1958–1961 ANDREW RANICKI AND CLAUDE WEBER Abstract. The extant letters exchanged between Kervaire and Milnor during their collaboration from 1958–1961 concerned their work on the classification of exotic spheres, culminating in their 1963 Annals of Mathematics paper. Michel Kervaire died in 2007; for an account of his life, see the obituary by Shalom Eliahou, Pierre de la Harpe, Jean-Claude Hausmann, and Claude We- ber in the September 2008 issue of the Notices of the American Mathematical Society. The letters were made public at the 2009 Kervaire Memorial Confer- ence in Geneva. Their publication in this issue of the Bulletin of the American Mathematical Society is preceded by our commentary on these letters, provid- ing some historical background. Letter 1. From Milnor, 22 August 1958 Kervaire and Milnor both attended the International Congress of Mathemati- cians held in Edinburgh, 14–21 August 1958. Milnor gave an invited half-hour talk on Bernoulli numbers, homotopy groups, and a theorem of Rohlin,andKer- vaire gave a talk in the short communications section on Non-parallelizability of the n-sphere for n>7 (see [2]). In this letter written immediately after the Congress, Milnor invites Kervaire to join him in writing up the lecture he gave at the Con- gress. The joint paper appeared in the Proceedings of the ICM as [10]. Milnor’s name is listed first (contrary to the tradition in mathematics) since it was he who was invited to deliver a talk.
    [Show full text]
  • George W. Whitehead Jr
    George W. Whitehead Jr. 1918–2004 A Biographical Memoir by Haynes R. Miller ©2015 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. GEORGE WILLIAM WHITEHEAD JR. August 2, 1918–April 12 , 2004 Elected to the NAS, 1972 Life George William Whitehead, Jr., was born in Bloomington, Ill., on August 2, 1918. Little is known about his family or early life. Whitehead received a BA from the University of Chicago in 1937, and continued at Chicago as a graduate student. The Chicago Mathematics Department was somewhat ingrown at that time, dominated by L. E. Dickson and Gilbert Bliss and exhibiting “a certain narrowness of focus: the calculus of variations, projective differential geometry, algebra and number theory were the main topics of interest.”1 It is possible that Whitehead’s interest in topology was stimulated by Saunders Mac Lane, who By Haynes R. Miller spent the 1937–38 academic year at the University of Chicago and was then in the early stages of his shift of interest from logic and algebra to topology. Of greater importance for Whitehead was the appearance of Norman Steenrod in Chicago. Steenrod had been attracted to topology by Raymond Wilder at the University of Michigan, received a PhD under Solomon Lefschetz in 1936, and remained at Princeton as an Instructor for another three years. He then served as an Assistant Professor at the University of Chicago between 1939 and 1942 (at which point he moved to the University of Michigan).
    [Show full text]
  • Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
    Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory.
    [Show full text]
  • Millennium Prize for the Poincaré
    FOR IMMEDIATE RELEASE • March 18, 2010 Press contact: James Carlson: [email protected]; 617-852-7490 See also the Clay Mathematics Institute website: • The Poincaré conjecture and Dr. Perelmanʼs work: http://www.claymath.org/poincare • The Millennium Prizes: http://www.claymath.org/millennium/ • Full text: http://www.claymath.org/poincare/millenniumprize.pdf First Clay Mathematics Institute Millennium Prize Announced Today Prize for Resolution of the Poincaré Conjecture a Awarded to Dr. Grigoriy Perelman The Clay Mathematics Institute (CMI) announces today that Dr. Grigoriy Perelman of St. Petersburg, Russia, is the recipient of the Millennium Prize for resolution of the Poincaré conjecture. The citation for the award reads: The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman. The Poincaré conjecture is one of the seven Millennium Prize Problems established by CMI in 2000. The Prizes were conceived to record some of the most difficult problems with which mathematicians were grappling at the turn of the second millennium; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; to emphasize the importance of working towards a solution of the deepest, most difficult problems; and to recognize achievement in mathematics of historical magnitude. The award of the Millennium Prize to Dr. Perelman was made in accord with their governing rules: recommendation first by a Special Advisory Committee (Simon Donaldson, David Gabai, Mikhail Gromov, Terence Tao, and Andrew Wiles), then by the CMI Scientific Advisory Board (James Carlson, Simon Donaldson, Gregory Margulis, Richard Melrose, Yum-Tong Siu, and Andrew Wiles), with final decision by the Board of Directors (Landon T.
    [Show full text]
  • Arxiv:2006.00374V4 [Math.GT] 28 May 2021
    CONTROLLED MATHER-THURSTON THEOREMS MICHAEL FREEDMAN ABSTRACT. Classical results of Milnor, Wood, Mather, and Thurston produce flat connections in surprising places. The Milnor-Wood inequality is for circle bundles over surfaces, whereas the Mather-Thurston Theorem is about cobording general manifold bundles to ones admitting a flat connection. The surprise comes from the close encounter with obstructions from Chern-Weil theory and other smooth obstructions such as the Bott classes and the Godbillion-Vey invariant. Contradic- tion is avoided because the structure groups for the positive results are larger than required for the obstructions, e.g. PSL(2,R) versus U(1) in the former case and C1 versus C2 in the latter. This paper adds two types of control strengthening the positive results: In many cases we are able to (1) refine the Mather-Thurston cobordism to a semi-s-cobordism (ssc) and (2) provide detail about how, and to what extent, transition functions must wander from an initial, small, structure group into a larger one. The motivation is to lay mathematical foundations for a physical program. The philosophy is that living in the IR we cannot expect to know, for a given bundle, if it has curvature or is flat, because we can’t resolve the fine scale topology which may be present in the base, introduced by a ssc, nor minute symmetry violating distortions of the fiber. Small scale, UV, “distortions” of the base topology and structure group allow flat connections to simulate curvature at larger scales. The goal is to find a duality under which curvature terms, such as Maxwell’s F F and Hilbert’s R dvol ∧ ∗ are replaced by an action which measures such “distortions.” In this view, curvature resultsR from renormalizing a discrete, group theoretic, structure.
    [Show full text]
  • The Arf-Kervaire Invariant Problem in Algebraic Topology: Introduction
    THE ARF-KERVAIRE INVARIANT PROBLEM IN ALGEBRAIC TOPOLOGY: INTRODUCTION MICHAEL A. HILL, MICHAEL J. HOPKINS, AND DOUGLAS C. RAVENEL ABSTRACT. This paper gives the history and background of one of the oldest problems in algebraic topology, along with a short summary of our solution to it and a description of some of the tools we use. More details of the proof are provided in our second paper in this volume, The Arf-Kervaire invariant problem in algebraic topology: Sketch of the proof. A rigorous account can be found in our preprint The non-existence of elements of Kervaire invariant one on the arXiv and on the third author’s home page. The latter also has numerous links to related papers and talks we have given on the subject since announcing our result in April, 2009. CONTENTS 1. Background and history 3 1.1. Pontryagin’s early work on homotopy groups of spheres 3 1.2. Our main result 8 1.3. The manifold formulation 8 1.4. The unstable formulation 12 1.5. Questions raised by our theorem 14 2. Our strategy 14 2.1. Ingredients of the proof 14 2.2. The spectrum Ω 15 2.3. How we construct Ω 15 3. Some classical algebraic topology. 15 3.1. Fibrations 15 3.2. Cofibrations 18 3.3. Eilenberg-Mac Lane spaces and cohomology operations 18 3.4. The Steenrod algebra. 19 3.5. Milnor’s formulation 20 3.6. Serre’s method of computing homotopy groups 21 3.7. The Adams spectral sequence 21 4. Spectra and equivariant spectra 23 4.1.
    [Show full text]
  • Committee to Select the Winner of the Veblen Prize
    Committee to Select the Winner of the Veblen Prize General Description · Committee is standing · Number of members is three · A new committee is appointed for each award Principal Activities The award is made every three years at the Annual (January) Meeting, in a cycle including the years 2001, 2004, and so forth. The award is made for a notable research work in geometry or topology that has appeared in the last six years. The work must be published in a recognized, peer-reviewed venue. The committee recommends a winner and communicates this recommendation to the Secretary for approval by the Executive Committee of the Council. Past winners are listed in the November issue of the Notices in odd-numbered years. About this Prize This prize was established in 1961 in memory of Professor Oswald Veblen through a fund contributed by former students and colleagues. The fund was later doubled by a gift from Elizabeth Veblen, widow of Professor Veblen. In honor of her late father, John L. Synge, who knew and admired Oswald Veblen, Cathleen Synge Morawetz and her husband, Herbert, substantially increased the endowed fund in 2013. The award is supplemented by a Steele Prize from the AMS under the name of the Veblen Prize. The current prize amount is $5,000. Miscellaneous Information The business of this committee can be done by mail, electronic mail, or telephone, expenses which may be reimbursed by the Society. Note to the Chair Work done by committees on recurring problems may have value as precedent or work done may have historical interest.
    [Show full text]
  • William M. Goldman June 24, 2021 CURRICULUM VITÆ
    William M. Goldman June 24, 2021 CURRICULUM VITÆ Professional Preparation: Princeton Univ. A. B. 1977 Univ. Cal. Berkeley Ph.D. 1980 Univ. Colorado NSF Postdoc. 1980{1981 M.I.T. C.L.E. Moore Inst. 1981{1983 Appointments: I.C.E.R.M. Member Sep. 2019 M.S.R.I. Member Oct.{Dec. 2019 Brown Univ. Distinguished Visiting Prof. Sep.{Dec. 2017 M.S.R.I. Member Jan.{May 2015 Institute for Advanced Study Member Spring 2008 Princeton University Visitor Spring 2008 M.S.R.I. Member Nov.{Dec. 2007 Univ. Maryland Assoc. Chair for Grad. Studies 1995{1998 Univ. Maryland Professor 1990{present Oxford Univ. Visiting Professor Spring 1989 Univ. Maryland Assoc. Professor 1986{1990 M.I.T. Assoc. Professor 1986 M.S.R.I. Member 1983{1984 Univ. Maryland Visiting Asst. Professor Fall 1983 M.I.T. Asst. Professor 1983 { 1986 1 2 W. GOLDMAN Publications (1) (with D. Fried and M. Hirsch) Affine manifolds and solvable groups, Bull. Amer. Math. Soc. 3 (1980), 1045{1047. (2) (with M. Hirsch) Flat bundles with solvable holonomy, Proc. Amer. Math. Soc. 82 (1981), 491{494. (3) (with M. Hirsch) Flat bundles with solvable holonomy II: Ob- struction theory, Proc. Amer. Math. Soc. 83 (1981), 175{178. (4) Two examples of affine manifolds, Pac. J. Math.94 (1981), 327{ 330. (5) (with M. Hirsch) A generalization of Bieberbach's theorem, Inv. Math. , 65 (1981), 1{11. (6) (with D. Fried and M. Hirsch) Affine manifolds with nilpotent holonomy, Comm. Math. Helv. 56 (1981), 487{523. (7) Characteristic classes and representations of discrete subgroups of Lie groups, Bull.
    [Show full text]
  • Pierre Deligne
    www.abelprize.no Pierre Deligne Pierre Deligne was born on 3 October 1944 as a hobby for his own personal enjoyment. in Etterbeek, Brussels, Belgium. He is Profes- There, as a student of Jacques Tits, Deligne sor Emeritus in the School of Mathematics at was pleased to discover that, as he says, the Institute for Advanced Study in Princeton, “one could earn one’s living by playing, i.e. by New Jersey, USA. Deligne came to Prince- doing research in mathematics.” ton in 1984 from Institut des Hautes Études After a year at École Normal Supériure in Scientifiques (IHÉS) at Bures-sur-Yvette near Paris as auditeur libre, Deligne was concur- Paris, France, where he was appointed its rently a junior scientist at the Belgian National youngest ever permanent member in 1970. Fund for Scientific Research and a guest at When Deligne was around 12 years of the Institut des Hautes Études Scientifiques age, he started to read his brother’s university (IHÉS). Deligne was a visiting member at math books and to demand explanations. IHÉS from 1968-70, at which time he was His interest prompted a high-school math appointed a permanent member. teacher, J. Nijs, to lend him several volumes Concurrently, he was a Member (1972– of “Elements of Mathematics” by Nicolas 73, 1977) and Visitor (1981) in the School of Bourbaki, the pseudonymous grey eminence Mathematics at the Institute for Advanced that called for a renovation of French mathe- Study. He was appointed to a faculty position matics. This was not the kind of reading mat- there in 1984.
    [Show full text]
  • Math, Physics, and Calabi–Yau Manifolds
    Math, Physics, and Calabi–Yau Manifolds Shing-Tung Yau Harvard University October 2011 Introduction I’d like to talk about how mathematics and physics can come together to the benefit of both fields, particularly in the case of Calabi-Yau spaces and string theory. This happens to be the subject of the new book I coauthored, THE SHAPE OF INNER SPACE It also tells some of my own story and a bit of the history of geometry as well. 2 In that spirit, I’m going to back up and talk about my personal introduction to geometry and how I ended up spending much of my career working at the interface between math and physics. Along the way, I hope to give people a sense of how mathematicians think and approach the world. I also want people to realize that mathematics does not have to be a wholly abstract discipline, disconnected from everyday phenomena, but is instead crucial to our understanding of the physical world. 3 There are several major contributions of mathematicians to fundamental physics in 20th century: 1. Poincar´eand Minkowski contribution to special relativity. (The book of Pais on the biography of Einstein explained this clearly.) 2. Contributions of Grossmann and Hilbert to general relativity: Marcel Grossmann (1878-1936) was a classmate with Einstein from 1898 to 1900. he was professor of geometry at ETH, Switzerland at 1907. In 1912, Einstein came to ETH to be professor where they started to work together. Grossmann suggested tensor calculus, as was proposed by Elwin Bruno Christoffel in 1868 (Crelle journal) and developed by Gregorio Ricci-Curbastro and Tullio Levi-Civita (1901).
    [Show full text]
  • The Pennsylvania State University Schreyer Honors College
    THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MATHEMATICS SPHERE EVERSION: ANALYSIS OF A VERIDICAL PARADOX MATTHEW LITMAN SPRING 2017 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Mathematics with honors in Mathematics Reviewed and approved* by the following: Sergei Tabachnikov Professor of Mathematics Thesis Supervisor Nathanial Brown Professor of Mathematics Associate Head for Equity & Diversity Honors Adviser *Signatures are on file in the Schreyer Honors College. i Abstract In this honors thesis, we investigate the topological problem of everting the 2-sphere in 3-space, i.e. turning a sphere inside out via continuous change allowing self-intersection but not allowing tearing, creasing, or pinching. The result was shown to exist by an abstract theorem proven in the 1950s, but the first explicit construction was not published until almost a decade later. Throughout the past 60 years, many constructions have been made, each providing their own insight into the theory behind the problem. In the following pages, we study the history surrounding the problem, the theory that made it possible, and a myriad of explicit examples giving a solid foundation in descriptive topology. ii Table of Contents List of Figures iii Acknowledgements iv 1 Introduction1 2 The Paradoxical Problem of Everting the Sphere3 2.1 Mathematical Paradoxes.............................4 2.2 Literature Review.................................5 3 Homotopies and Regular Homotopies of the Sphere7 3.1 Definitions.....................................8 3.2 Examples.....................................9 4 Smale’s Proof of Existence 12 4.1 Smale’s Main Result & its Consequences.................... 13 5 “Roll and Pull” Method 15 5.1 Explanation & Execution............................
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]