Relativistic Jets in Active Galactic Nuclei Alan P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polarimetric Properties of Blazars Caught by the WEBT
galaxies Review Polarimetric Properties of Blazars Caught by the WEBT Claudia M. Raiteri * and Massimo Villata INAF, Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese, Italy; [email protected] * Correspondence: [email protected] Abstract: Active galactic nuclei come in many varieties. A minority of them are radio-loud, and exhibit two opposite prominent plasma jets extending from the proximity of the supermassive black hole up to megaparsec distances. When one of the relativistic jets is oriented closely to the line of sight, its emission is Doppler beamed and these objects show extreme variability properties at all wavelengths. These are called “blazars”. The unpredictable blazar variability, occurring on a continuous range of time-scales, from minutes to years, is most effectively investigated in a multi-wavelength context. Ground-based and space observations together contribute to give us a comprehensive picture of the blazar emission properties from the radio to the g-ray band. Moreover, in recent years, a lot of effort has been devoted to the observation and analysis of the blazar polarimetric radio and optical behaviour, showing strong variability of both the polarisation degree and angle. The Whole Earth Blazar Telescope (WEBT) Collaboration, involving many tens of astronomers all around the globe, has been monitoring several blazars since 1997. The results of the corresponding data analysis have contributed to the understanding of the blazar phenomenon, particularly stressing the viability of a geometrical interpretation of the blazar variability. We review here the most significant polarimetric results achieved in the WEBT studies. Keywords: active galactic nuclei; blazars; jets; polarimetry Citation: Raiteri, C.M.; Villata, M. -
Pos(FRAPWS2016)027 ∗ -Elements, Fe and Heavier
The chemical evolution of the Milky Way PoS(FRAPWS2016)027 Francesca Matteucci∗ Dipartimento di Fisica, Università di Trieste E-mail: [email protected] Emanuele Spitoni Dipartimento di Fisica, Università di Trieste E-mail: [email protected] Donatella Romano I.N.A.F. Osservatorio Astronomico di Bologna E-mail: [email protected] Alvaro Rojas-Arriagada Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile Millennium Institute of Astrophysics, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile E-mail: [email protected] We will discuss some highlights concerning the chemical evolution of our Galaxy, the Milky Way. First we will describe the main ingredients necessary to build a model for the chemical evolution of the Milky Way. Then we will illustrate some Milky Way models which includes detailed stellar nucleosynthesis and compute the evolution of a large number of chemical elements, including C, N, O, α-elements, Fe and heavier. The main observables and in particular the chemical abun- dances in stars and gas will be considered. A comparison theory-observations will follow and finally some conclusions from this astroarchaeological approach will be derived. Frontier Research in Astrophysics - II 23-28 May 2016 Mondello (Palermo), Italy Speaker. ∗ © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Milky Way Francesca Matteucci 1. Introduction In the last years a great deal of spectroscopic data concerning a very large number of Galactic stars has appeared in the literature. -
Active Galactic Nuclei: a Brief Introduction
Active Galactic Nuclei: a brief introduction Manel Errando Washington University in St. Louis The discovery of quasars 3C 273: The first AGN z=0.158 2 <latexit sha1_base64="4D0JDPO4VKf1BWj0/SwyHGTHSAM=">AAACOXicbVDLSgMxFM34tr6qLt0Ei+BC64wK6kIoPtCNUMU+oNOWTJq2wWRmSO4IZZjfcuNfuBPcuFDErT9g+hC09UC4h3PvJeceLxRcg20/W2PjE5NT0zOzqbn5hcWl9PJKUQeRoqxAAxGoskc0E9xnBeAgWDlUjEhPsJJ3d9rtl+6Z0jzwb6ETsqokLZ83OSVgpHo6754xAQSf111JoK1kTChN8DG+uJI7N6buYRe4ZBo7di129hJ362ew5NJGAFjjfm3V4m0nSerpjJ21e8CjxBmQDBogX08/uY2ARpL5QAXRuuLYIVRjooBTwZKUG2kWEnpHWqxiqE+MmWrcuzzBG0Zp4GagzPMB99TfGzGRWnekZya7rvVwryv+16tE0DysxtwPI2A+7X/UjASGAHdjxA2uGAXRMYRQxY1XTNtEEQom7JQJwRk+eZQUd7POfvboej+TOxnEMYPW0DraRA46QDl0ifKogCh6QC/oDb1bj9ar9WF99kfHrMHOKvoD6+sbuhSrIw==</latexit> <latexit sha1_base64="H7Rv+ZHksM7/70841dw/vasasCQ=">AAACQHicbVDLSgMxFM34tr6qLt0Ei+BCy0TEx0IoPsBlBWuFTlsyaVqDSWZI7ghlmE9z4ye4c+3GhSJuXZmxFXxdCDk599zk5ISxFBZ8/8EbGR0bn5icmi7MzM7NLxQXly5slBjGayySkbkMqeVSaF4DAZJfxoZTFUpeD6+P8n79hhsrIn0O/Zg3Fe1p0RWMgqPaxXpwzCVQfNIOFIUro1KdMJnhA+yXfX832FCsteVOOzgAobjFxG+lhGTBxpe+HrBOBNjiwd5rpZsky9rFUn5BXvgvIENQQsOqtov3QSdiieIamKTWNogfQzOlBgSTPCsEieUxZde0xxsOaurMNNPPADK85pgO7kbGLQ34k/0+kVJlbV+FTpm7tr97Oflfr5FAd6+ZCh0nwDUbPNRNJIYI52nijjCcgew7QJkRzitmV9RQBi7zgguB/P7yX3CxVSbb5f2z7VLlcBjHFFpBq2gdEbSLKugUVVENMXSLHtEzevHuvCfv1XsbSEe84cwy+lHe+wdR361Q</latexit> The power source of quasars • The luminosity (L) of quasars, i.e. how bright they are, can be as high as Lquasar ~ 1012 Lsun ~ 1040 W. • The energy source of quasars is accretion power: - Nuclear fusion: 2 11 1 ∆E =0.007 mc =6 10 W s g− -
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
Arxiv:2010.11303V2 [Astro-Ph.GA] 23 Feb 2021
DRAFT VERSION FEBRUARY 24, 2021 Preprint typeset using LATEX style emulateapj v. 01/23/15 RECONCILING EHT AND GAS DYNAMICS MEASUREMENTS IN M87: IS THE JET MISALIGNED AT PARSEC SCALES? BRITTON JETER1,2,3 ,AVERY E. BRODERICK1,2,3 , 1 Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada 2 Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5, Canada 3 Waterloo Centre for Astrophysics, University of Waterloo, Waterloo, ON N2L 3G1, Canada Draft version February 24, 2021 ABSTRACT The Event Horizon Telescope mass estimate for M87* is consistent with the stellar dynamics mass estimate and inconsistent with the gas-dynamics mass estimates by up to 2σ. We have previously explored a new gas-dynamics model that incorporated sub-Keplerian gas velocities and could, in principle, explain the discrepancy in the stellar and gas-dynamics mass estimate. In this paper, we extend this gas-dynamical model to also include non-trivial disk heights, which may also resolve the mass discrepancy independent of sub-Keplerian velocity components. By combining the existing velocity measurements and the Event Horizon Telescope mass estimate, we place con- straints on the gas disk inclination and sub-Keplerian fraction. These constraints require the parsec-scale ionized gas disk to be misaligned with the milliarcsecond radio jet by at least 11◦, and more typically 27◦. Modifications to the gas-dynamics model either by introducing sub-Keplerian velocities or thick disks produce further misalign- ment with the radio jet. If the jet is produced in a Blandford–Znajek-type process, the angular momentum of the black hole is decoupled with the angular momentum of the large-scale gas feeding M87*. -
Active Galactic Nuclei
Active Galactic Nuclei • Optical spectra, distance, line width • Varieties of AGN and unified scheme • Variability and lifetime • Black hole mass and growth • Geometry: disk, BLR, NLR • Reverberation mapping • Jets and blazars • AGN spectra Optical spectrum of an AGN • Variety of different emission lines • Each line has centroid, area, width • There is also continuum emission Emission lines • Shift of line centroid gives recession velocity v/c = Δλ/λ. • The width is usually characterized by the “Full Width at Half Maximum”. For a Gaussian FHWM = 2.35σ. • The line width is determined by the velocity distribution of the line emitting gas, Δv/c = σ/λ. • Area is proportional to the number of detected line photons or the line flux. • Usually characterized by “equivalent width” or range in wavelength over which integration of the continuum produces the same flux as the line. Early observations of AGN • Very wide emission lines have been known since 1908. • In 1959, Woltjer noted that if the profiles are due to Doppler motion and the gas is gravitationally bound then v2 ~ GM/r. For v ~ 2000 km/s, we have 10 r M ≥10 ( 100 pc ) M Sun • So AGN, known at the time as Seyfert galaxies, must either have a very compact and luminous nucleus or be very massive. Quasars • Early radio telescopes found radio emission from stars, nebulae, and some galaxies. • There were also point-like, or star-like, radio sources which varied rapidly these are the `quasi-stellar’ radio sources or quasars. • In visible light quasars appear as points, like stars. Quasar optical spectra Redshift of 3C273 is 0.16. -
HUBBLE SPACE TELESCOPE ULTRAVIOLET SPECTROSCOPY of 14 LOW-REDSHIFT QUASARS1 Rajib Ganguly,2 Michael S
A The Astronomical Journal, 133:479Y486, 2007 February # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. HUBBLE SPACE TELESCOPE ULTRAVIOLET SPECTROSCOPY OF 14 LOW-REDSHIFT QUASARS1 Rajib Ganguly,2 Michael S. Brotherton,2 Nahum Arav,3 Sara R. Heap,4 Lutz Wisotzki,5 Thomas L. Aldcroft,6 Danielle Alloin,7,8 Ehud Behar,9 Gabriela Canalizo,10 D. Michael Crenshaw,11 Martijn de Kool,12 Kenneth Chambers,13 Gerald Cecil,14 Eleni Chatzichristou,15 John Everett,16,17 Jack Gabel,3 C. Martin Gaskell,18 Emmanuel Galliano,19 Richard F. Green,20 Patrick B. Hall,21 Dean C. Hines,22 Vesa T. Junkkarinen,23 Jelle S. Kaastra,24 Mary Elizabeth Kaiser,25 Demosthenes Kazanas,4 Arieh Konigl,26 Kirk T. Korista,27 Gerard A. Kriss,28 Ari Laor,9 Karen M. Leighly,29 Smita Mathur,30 Patrick Ogle,31 Daniel Proga,32 Bassem Sabra,33 Ran Sivron,34 Stephanie Snedden,35 Randal Telfer,36 and Marianne Vestergaard37 Received 2006 June 27; accepted 2006 October 4 ABSTRACT We present low-resolution ultraviolet spectra of 14 low-redshift (zem P 0:8) quasars observed with the Hubble Space Telescope STIS as part of a Snapshot project to understand the relationship between quasar outflows and luminosity. By design, all observations cover the C iv emission line. Ten of the quasars are from the Hamburg-ESO catalog, three are from the Palomar-Green catalog, and one is from the Parkes catalog. The sample contains a few interesting quasars, including two broad absorption line (BAL) quasars (HE 0143À3535 and HE 0436À2614), one quasar with a mini-BAL (HE 1105À0746), and one quasar with associated narrow absorption (HE 0409À5004). -
Superluminal Motion of Gamma-Ray Blazars
High Energy Blazar Astronomy ASP Conference Series, Vol. 299, 2003 L.O. Takalo and E. Valtaoja Superluminal Motion of Gamma-Ray Blazars S.G. Jorstad Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA 02215-1401 Astronomical Institute of St. Petersburg State University, Universitetskij pr. 28, 198504 St. Petersburg, Russia A.P. Marscher Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA 02215-1401 Abstract. We have completed a program of monitoring of a sample of γ-ray blazars with the VLBA at 22 and 43 GHz. Analysis of the data allows us to conclude that the population of bright γ-ray blazars can be classified as highly superluminal, with apparent speeds as high as ∼40c. However, many of the blazars exhibit a wide range of apparent speeds from ∼4c to ∼20c in the same source. Comparison of brightness and polarization parameters with the jet velocities of moving components does not show significant correlation between these parameters. Intensive multifrequency VLBI monitoring is needed to reveal any patterns that might exist in the distribution of apparent speeds observed in the same object. 1. Introduction Apparent speed is one of the most important parameters for determining the physics of radio jets. The largest class of identified γ-ray sources (Hartman et al. 1999) consists of violently variable AGNs (blazars) characterized by one-sided superluminal radio jets. A popular model for the production of high-energy radiation in AGNs involves inverse-Compton scattering of low-energy photons by highly relativistic electrons in the jet. However, the seed photons for this process are uncertain: they might be from the accretion disk and/or nearby region (ECS-model; Sikora et al. -
Gamma-Ray and Neutrino Signals from Accretion Disk Coronae of Active Galactic Nuclei
galaxies Review Gamma-ray and Neutrino Signals from Accretion Disk Coronae of Active Galactic Nuclei Yoshiyuki Inoue 1,2,3,* , Dmitry Khangulyan 4 and Akihiro Doi 5,6 1 Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan 2 Interdisciplinary Theoretical & Mathematical Science Program (iTHEMS), RIKEN, 2-1 Hirosawa, Saitama 351-0198, Japan 3 Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa 277-8583, Japan 4 Department of Physics, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan; [email protected] 5 Institute of Space and Astronautical Science JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan; [email protected] 6 Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210, Japan * Correspondence: [email protected] Abstract: To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and Gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 year survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current Citation: Inoue, Y.; Khangulyan, D.; observational understanding of AGN coronae and describes how AGN coronae generate high-energy Doi, A. -
OJ 287: NEW TESTING GROUND for GENERAL RELATIVITY and BEYOND C Sivaram Indian Institute of Astrophysics, Bangalore
OJ 287: NEW TESTING GROUND FOR GENERAL RELATIVITY AND BEYOND C Sivaram Indian Institute of Astrophysics, Bangalore Abstract: The supermassive short period black hole binary OJ287 is discussed as a new precision testing ground for general relativity and alternate gravity theories. Like in the case of binary pulsars, the relativistic gravity effects are considerably larger than in the solar system. For instance the observed orbital precession is forty degrees per period. The gravitational radiation energy losses are comparable to typical blazar electromagnetic radiation emission and it is about ten orders larger than that of the binary pulsar with significant orbit shrinking already apparent in the light curves. This already tests Einstein gravity to a few percent for objects at cosmological distances. Constraints on alternate gravity theories as well as possible detection of long term effects of dark matter and dark energy on this system are described. 1 For more than fifty years after Einstein proposed the general theory of relativity in 1915, observational tests to verify some of the predictions were confined to within the solar system; where the effects are quite small. This situation changed with the discovery of the binary pulsar in 1975 where the relativistic periastron shift was more than four degrees per year, a whopping thirty thousand times more than the paltry well known correction of 43 arc seconds/century for mercury.1, 2 The recently discovered 2.4 hour period binary pulsar has a periastron shift of sixteen degrees per year!3 Other relativistic effects like the time delay of the signals and time dilation and frequency shifts are also much larger for these binary systems. -
Positron Annihilation Spectroscopy of Active Galactic Nuclei
Research Paper J. Astron. Space Sci. 36(1), 21-33 (2019) https://doi.org/10.5140/JASS.2019.36.1.21 Positron Annihilation Spectroscopy of Active Galactic Nuclei Dmytry N. Doikov1, Alexander V. Yushchenko2, Yeuncheol Jeong3† 1Odessa National Maritime University, Department of Mathematics, Physics and Astronomy, Odessa, 65029, Ukraine 2Astrocamp Contents Research Institute, Goyang, 10329, Korea 3Daeyang Humanity College, Sejong University, Seoul, 05006, Korea This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non- central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. -
On the Possibility of Faster-Than-Light Motions in Nonlinear Electrodynamics
Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 2, 835–842 On the Possibility of Faster-Than-Light Motions in Nonlinear Electrodynamics Gennadii KOTEL’NIKOV RRC Kurchatov Institute, 1 Kurchatov Sq., 123182 Moscow, Russia E-mail: [email protected] A version of electrodynamics is constructed in which faster-than-light motions of electro- magnetic fields and particles with real masses are possible. 1 Introduction For certainty, by faster-than-light motions we shall understand the motions with velocities v> 3 · 108 m/sec. The existence of such motions is the question discussed in modern physics. As already as in 1946–1948 Blokhintsev [1] paid attention to the possibility of formulating the field theory that allows propagation of faster-than-light (superluminal) interactions outside the light cone. Some time later he also noted the possibility of the existence of superluminal solutions in nonlinear equations of electrodynamics [2]. Kirzhnits [3] showed that a particle possessing the i tensor of mass M k =diag(m0,m1,m1,m1), i, k =0, 1, 2, 3, gab =diag(+, −, −, −)canmove faster-than-light, if m0 >m1. Terletsky [4] introduced into theoretical physics the particles with imaging rest masses moving faster-than-light. Feinberg [5] named these particles tachyons and described their main properties. Research on superluminal tachyon motions opened up additional opportunities which were studied by many authors, for example by Bilaniuk and Sudarshan [6], Recami [7], Mignani (see [7]), Kirzhnits and Sazonov [8], Corben (see [7]), Patty [9], Oleinik [10]. It has led to original scientific direction (several hundred publications).